
Fair Testing and Stubborn Sets

Antti Valmari1 and Walter Vogler2

1 Department of Mathematics, Tampere University of Technology
P.O. Box 553, FI–33101 Tampere, FINLAND

antti.valmari@tut.fi
2 Institut für Informatik, University of Augsburg

D-86135 Augsburg, GERMANY
walter.vogler@informatik.uni-augsburg.de

Abstract. Partial-order methods alleviate state explosion by consider-
ing only a subset of transitions in each constructed state. The choice
of the subset depends on the properties that the method promises to
preserve. Many methods have been developed ranging from deadlock-
preserving to CTL∗- and divergence-sensitive branching bisimilarity pre-
serving. The less the method preserves, the smaller state spaces it con-
structs. Fair testing equivalence unifies deadlocks with livelocks that can-
not be exited, and ignores the other livelocks. It is the weakest congru-
ence that preserves whether the ability to make progress can be lost. We
prove that a method that was designed for trace equivalence also pre-
serves fair testing equivalence. We describe a fast algorithm for comput-
ing high-quality subsets of transitions for the method, and demonstrate
its effectiveness on a protocol with a connection and data transfer phase.
This is the first practical partial-order method that deals with a practical
fairness assumption.

Keywords: partial-order methods; fairness; progress; fair testing equivalence

1 Introduction

State spaces of systems that consist of many parallel components are often huge.
Usually many states arise from executing concurrent transitions in different or-
ders. So-called partial-order methods [2, 3, 5–7, 9, 10, 13, 15–17,19] try to reduce
the number of states by, roughly speaking, studying only some orders that rep-
resent all of them. This is achieved by only investigating a subset of transitions
in each state. This subset is usually called ample, persistent, or stubborn. In this
study we call it aps, when the differences between the three do not matter.

This intuition works well only with executions that lead to a deadlock.
However, traces and divergence traces, for instance, arise from not necessarily
deadlocking executions. With them, to obtain good reduction results, a con-
structed execution must often lack transitions and contain additional transitions
compared to the executions that it represents. With branching-time properties,
thinking in terms of executions is insufficient to start with.

As a consequence, a wide range of aps set methods has been developed. The
simplest only preserve the deadlocks (that is, the reduced state space has pre-
cisely the same deadlocks as the full state space) [13], while at the other end the
CTL∗ logic (excluding the next state operator) and divergence-sensitive branch-
ing bisimilarity are preserved [5, 10, 15]. The more a method preserves, the worse
are the reduction results that it yields. The preservation of the promised prop-
erties is guaranteed by stating conditions that the aps sets must satisfy. Various
algorithms for computing sets that satisfy the conditions have been proposed. In
an attempt to improve reduction results, more and more complicated conditions
and algorithms have been developed. There is a trade-off between reduction re-
sults on the one hand, and simplicity and the time that it takes to compute an
aps set on the other hand.

Consider a cycle where the system does not make progress, but there is a path
from it to a progress action. As such, traditional methods for proving liveness
treat the cycle as a violation against liveness. However, this is not always the
intention. Therefore, so-called fairness assumptions are often formulated, stating
that the execution eventually leaves the cycle. Unfortunately, how to take them
into account while retaining good reduction results has always been a problem
for aps set methods. For instance, fairness is not mentioned in the partial order
reduction chapter of [2]. Furthermore, as pointed out in [3], the most widely used
condition for guaranteeing linear-time liveness (see, e.g., [2, p. 155]) often works
in a way that is detrimental to reduction results.

Fair testing equivalence [11] always treats this kind of cycles as progress.
If there is no path from a cycle to a progress action, then both fair testing
equivalence and the traditional methods treat it as non-progress. This makes
fair testing equivalence suitable for catching many non-progress errors, without
the need to formulate fairness assumptions.

Fair testing equivalence implies trace equivalence. So it cannot have better
reduction methods than trace equivalence. Fair testing equivalence is a branching
time notion. Therefore, one might have guessed that any method that preserves
it would rely on strong conditions, resulting in bad reduction results. Suprisingly,
it turned out that a 20 years old trace-preserving stubborn set method [15] also
preserves fair testing equivalence. This is the main result of the present paper.
It means that no reduction power is lost compared to trace equivalence.

Background concepts are introduced in Section 2. Sections 3 and 4 present the
trace-preserving method and discuss how it can be implemented. This material
makes this publication self-contained, but it also contains some improvements
over earlier publications. Section 5 discusses further why it is good to avoid strong
conditions. The proof that the method also applies to fair testing equivalence is
in Section 6. Some performance measurements are presented in Section 7.

2 Labelled Transition Systems and Equivalences

In this section we first define labelled transition systems and some operators for
composing systems from them. We also define some useful notation. Then we de-

2

fine the well-known trace equivalence and the fair testing equivalence of [11]. We
also define tree failure equivalence, because it is a strictly stronger equivalence
with a related but much simpler definition.

The symbol τ denotes the invisible action. A labelled transition system or
LTS is a tuple L = (S,Σ,∆, ŝ) such that τ /∈ Σ, ∆ ⊆ S × (Σ ∪ {τ}) × S
and ŝ ∈ S. The elements of S, Σ, and ∆ are called states, visible actions, and
transitions, respectively. The state ŝ is the initial state. An action is a visible
action or τ .

We adopt the convention that, unless otherwise stated, L′ = (S′, Σ′, ∆′, ŝ′),
Li = (Si, Σi, ∆i, ŝi), and so on.

The empty string is denoted with ε. We have ε 6= τ and ε /∈ Σ.
Let n ≥ 0, s and s′ be states, and a1, . . . , an be actions. The notation

s−a1 · · · an→ s′ denotes that there are states s0, . . . , sn such that s = s0, sn = s′,
and (si−1, ai, si) ∈ ∆ for 1 ≤ i ≤ n. The notation s−a1 · · · an→ denotes that
there is s′ such that s−a1 · · · an→ s′. The set of enabled actions of s is defined
as en(s) = {a ∈ Σ ∪ {τ} | s−a→}.

The reachable part of L is defined as the LTS (S′, Σ,∆′, ŝ), where

– S′ = {s ∈ S | ∃σ ∈ (Σ ∪ {τ})∗ : ŝ−σ→ s} and
– ∆′ = {(s, a, s′) ∈ ∆ | s ∈ S′}.

The parallel composition of L1 and L2 is denoted with L1 || L2. It is the
reachable part of (S,Σ,∆, ŝ), where S = S1 × S2, Σ = Σ1 ∪ Σ2, ŝ = (ŝ1, ŝ2),
and ((s1, s2), a, (s

′
1, s

′
2)) ∈ ∆ if and only if

– (s1, a, s
′
1) ∈ ∆1, s

′
2 = s2 ∈ S2, and a /∈ Σ2,

– (s2, a, s
′
2) ∈ ∆2, s

′
1 = s1 ∈ S1, and a /∈ Σ1, or

– (s1, a, s
′
1) ∈ ∆1, (s2, a, s

′
2) ∈ ∆2, and a ∈ Σ1 ∩Σ2.

That is, if a belongs to the alphabets of both components, then an a-transition
of the parallel composition consists of simultaneous a-transitions of both com-
ponents. If a belongs to the alphabet of one but not the other component, then
that component may make an a-transition while the other component stays in its
current state. Also each τ -transition of the parallel composition consists of one
component making a τ -transition without the other participating. The result of
the parallel composition is pruned by only taking the reachable part.

It is easy to check that (L1 || L2) || L3 is isomorphic to L1 || (L2 || L3). This
means that || can be considered associative, and that L1 || · · · ||Ln is well-defined
for any positive integer n.

Let A be a set. The hiding of A in L is denoted with L \ A. It is L \ A =
(S,Σ′, ∆′, ŝ), where Σ′ = Σ \ A and ∆′ = {(s, a, s′) ∈ ∆ | a /∈ A} ∪ {(s, τ, s′) |
∃a ∈ A : (s, a, s′) ∈ ∆}. That is, labels of transitions that are in A are replaced
by τ and removed from the alphabet. Other labels of transitions are not affected.

Let σ ∈ Σ∗. The notation s=σ⇒ s′ denotes that there are a1, . . . , an such
that s−a1 · · · an→ s′ and σ is obtained from a1 · · · an by leaving out each τ . We
say that σ is the trace of the path s−a1 · · · an→ s′. The notation s=σ⇒ denotes
that there is s′ such that s=σ⇒ s′. The set of traces of L is

Tr(L) = {σ ∈ Σ∗ | ŝ=σ⇒} .

3

The LTSs L1 and L2 are trace equivalent if and only if Σ1 = Σ2 and Tr(L1) =
Tr(L2).

Let L be an LTS, K ⊆ Σ+, and s ∈ S. The state s refuses K if and only
if for every σ ∈ K we have ¬(s=σ⇒). For example, ŝ refuses K if and only if
K∩Tr(L) = ∅. Because s=ε⇒ holds vacuously for every state s, this definition is

equivalent to what would be obtained with K ⊆ Σ∗. The pair (σ,K) ∈ Σ∗×2Σ
+

is a tree failure of L, if and only if there is s ∈ S such that ŝ=σ⇒ s and s refuses
K. The set of tree failures of L is denoted with Tf(L). The LTSs L1 and L2 are
tree failure equivalent if and only if Σ1 = Σ2 and Tf(L1) = Tf(L2).

To define the main equivalence of this publication, we also need the following
notation: For ρ ∈ Σ∗ and K ⊆ Σ∗, we write ρ−1K for {π | ρπ ∈ K} and call ρ
a prefix of K if ρ−1K 6= ∅.

Definition 1. The LTSs L1 and L2 are fair testing equivalent if and only if

1. Σ1 = Σ2,

2. if (σ,K) ∈ Tf(L1), then either (σ,K) ∈ Tf(L2) or there is a prefix ρ of K
such that (σρ, ρ−1K) ∈ Tf(L2), and

3. Part 2 holds with the roles of L1 and L2 swapped.

If K 6= ∅, then the first option “(σ,K) ∈ Tf(L2)” implies the other by letting
ρ = ε. Therefore, the “either”-part could equivalently be written as “K = ∅ and
(σ, ∅) ∈ Tf(L2)”. The way it has been written makes it easy to see that tree
failure equivalence implies fair testing equivalence.

The definitions imply that if σ ∈ Tr(L1), then (σ, ∅) ∈ Tf(L1), (σ, ∅) ∈
Tf(L2), and σ ∈ Tr(L2). So fair testing equivalence implies trace equivalence.

3 The Trace-Preserving Strong Stubborn Set Method

The trace-preserving strong stubborn set method applies to LTS expressions of
the form

L = (L1 || · · · || Lm) \A .

To discuss the method, it is handy to first give indices to the τ -actions of the
Li. Let τ1, . . . , τm be symbols that are distinct from each other and from all
elements of Σ = Σ1∪· · ·∪Σm. For 1 ≤ i ≤ m, we let L̄i = (Si, Σ̄i, ∆̄i, ŝi), where

– Σ̄i = Σi ∪ {τi} and
– ∆̄i = {(s, a, s′) | a ∈ Σi ∧ (s, a, s′) ∈ ∆i} ∪ {(s, τi, s

′) | (s, τ, s′) ∈ ∆i} .

The trace-preserving strong stubborn set method computes a reduced version of

L′ = (L̄1 || · · · || L̄m) \ (A ∪ {τ1, . . . , τm}) .

For convenience, we define

– L̄ = L̄1 || · · · || L̄m ,
– V = Σ \A , and

4

a a

a1a2 · · · an

a1a2 · · · an

s

s′n

a a

a1a2 · · · an

a1a2 · · · an

s

s′

sn

s′n

Fig. 1. Illustrating D1 (left) and D2 (right). The solid states and transition sequences
are assumed to exist and the condition promises the existence of the dashed ones. The
yellow part is in the reduced LTS, the rest is not necessarily

– I = (Σ ∩ A) ∪ {τ1, . . . , τm} .

Now we can write L′ = (L̄1 || · · · || L̄m) \ I = L̄ \ I.

It is obvious from the definitions that L′ is the same LTS as L. The only
difference between L̄ and L1 || · · · || Lm is that the τ -transitions of the latter
are τi-transitions of the former, where i reveals the Li from which the transition
originates. The hiding of I makes them τ -transitions again. We have V ∩ I = ∅,
V ∪ I = Σ̄ = Σ ∪ {τ1, . . . , τm}, and L̄ has no τ -transitions at all (although it
may have τi-transitions). Therefore, when discussing the trace-preserving strong
stubborn set method, the elements of V and I are called visible and invisible,
respectively.

The method is based on a function T that assigns to each s ∈ S a subset of
Σ̄, called stubborn set. Before discussing the definition of T , let us see how it is
used. The stubborn set method computes a subset of S called Sr and a subset
of ∆ called ∆r. It starts by letting Sr = {ŝ} and ∆r = ∅. For each s that it has
put to Sr and for each a ∈ T (s), it puts to Sr every s′ that satisfies (s, a, s′) ∈ ∆̄
(unless s′ is already in Sr). Furthermore, it puts (s, a′, s′) to ∆r (even if s′ is
already in Sr), where a′ = τ if a ∈ I and a′ = a otherwise. The only difference
to the computation of L′ is that in the latter, every a ∈ Σ̄ is used instead of
every a ∈ T (s).

The LTS Lr = (Sr, Σ,∆r, ŝ) is the reduced LTS, while L = L′ = (S,Σ,∆, ŝ)
is the full LTS. We will refer to concepts in Lr with the prefix “r-”, and to L with
“f-”. For instance, if s ∈ Sr, then s is an r-state. If, furthermore, s=σ⇒ holds in
Lr for no σ ∈ K, then s r-refuses K. Because Sr ⊆ S and ∆r ⊆ ∆, every r-state
is also an f-state and every r-trace is an f-trace. We will soon state conditions on
T that guarantee that also the opposite holds, that is, every f-trace is an r-trace.

Typically many different functions could be used as T , and the choice between
them involves trade-offs. Typically some function is easy and fast to compute, but
tends to give worse reduction results (that is, bigger Sr and ∆r) than another
function. Therefore, we will not specify a unique function T . Instead, in the
remainder of this section we will only give four conditions that it must satisfy,
and in the next section we will discuss how a reasonably good T is computed
quickly.

A function from states to subsets of Σ̄ qualifies as T if and only if for every
s ∈ Sr it satisfies the four conditions below:

5

D1 If a ∈ T (s), a1, . . . , an are not in T (s), and s−a1 · · ·ana→ s′n, then
s−aa1 · · · an→ s′n.

D2 If a ∈ T (s), a1, . . . , an are not in T (s), s−a→ s′, and s−a1 · · · an→ sn, then
there is s′n such that s′ −a1 · · ·an→ s′n and sn −a→ s′n.

V If T (s) ∩ V ∩ en(s) 6= ∅, then V ⊆ T (s).
S For each a ∈ V there is an r-state sa and an r-path from s to sa such that

a ∈ T (sa).

Intuitively, D1 says two things. First, it says that a sequence of actions that
are not in the current stubborn set (a1 · · · an in the definition) cannot enable an
action that is in the current stubborn set (a in the definition). That is, disabled
actions in a stubborn set remain disabled while actions outside the set occur.
Second, together with D2 it says that the enabled actions inside the current
stubborn set are in a certain kind of a commutativity relation with enabled
sequences of outside actions. In theories where actions are deterministic (that is,
for every s, s1, s2, and a, s−a→ s1 and s−a→ s2 imply s1 = s2), the then-part
of D2 is usually written simply as sn −a→. It, D1, and determinism imply our
current version of D2. However, we do not assume that actions are deterministic.

Certain partial-order semantic models of concurrency use a so-called inde-
pendence relation [8]. Unlike in the present study, actions are assumed to be de-
terministic. If a1 and a2 are independent, then (1) if s−a1→ s1 and s−a2→ s2,
then there is an s′ such that s1 −a2→ s′ and s2 −a1→ s′; (2) if s−a1a2→ then
s−a2→; and (3) if s−a2a1→ then s−a1→. It is often claimed that ample, per-
sistent, and stubborn set methods rely on an independence relation. This is why
they are classified as “partial-order methods”. In reality, they rely on various
strictly weaker relations. For instance, even if determinism is assumed, D1 and
D2 do not imply independence of a1 from a, because they fail to yield (3).

The names D1 and D2 reflect the fact that together with a third condition
called D0, they guarantee that the reduced LTS has precisely the same terminal
states – also known as deadlocks – as the full LTS. D0 is not needed in the
present method, because now the purpose is not to preserve deadlocks but traces.
However, because we do not yet have an implementation that has been optimized
to the present method, in our experiments in Section 7 we used a tool that relies
on D0 and implements it. Therefore, we present its definition:

D0 If en(s) 6= ∅, then T (s) ∩ en(s) 6= ∅.

That is, if s is not a deadlock, then T (s) contains an enabled action. We skip
the (actually simple) proof that D0, D1, and D2 guarantee that deadlocks are
preserved, see [15].

The condition V says that if the stubborn set contains an enabled visible
action, then it contains all visible actions (also disabled ones). It guarantees
that the reduction preserves the ordering of visible actions, in a sense that will
become clear in the proof of Lemma 3.

The function T∅ that always returns the empty set satisfies D1, D2, and V.
Its use as T would result in a reduced LTS that has one state and no transitions.

6

It is thus obvious that D1, D2, and V alone do not guarantee that the reduced
LTS has the same traces as the full LTS.

The condition S forces the method to investigate, intuitively speaking, ev-
erything that is relevant for the preservation of the traces. It does that by guar-
anteeing that every visible action is taken into account, not necessarily in the
current state but necessarily in a state that is r-reachable from the current state.
Taking always all visible actions into account in the current state would make
the reduction results much worse. The name is S because, historically, a similar
condition was first used to guarantee the preservation of what is called safety
properties in the linear temporal logic framework. Again, the details of how S
does its job will become clear in the proof of Lemma 3.

If V = ∅, then T∅ satisfies also S. Indeed, then Tr(L) = {ε} = Tr(Lr) even
if Lr is the one-state LTS that has no transitions. That is, if V = ∅, then T∅
satisfies the definition and yields ideal reduction results.

No matter what V is, the function T (s) = Σ̄ always satisfies D1, D2, V, and
S. However, it does not yield any reduction. The problem of computing sets that
satisfy D1, D2, V, and S and do yield reduction will be discussed in Section 4.
In Section 6 we prove that D1, D2, V, and S guarantee that the reduced LTS is
fair testing equivalent (and thus also trace equivalent) to the full LTS.

4 On Computing Trace-Preserving Stubborn Sets

To make the abstract theory in the remainder of this publication more concrete,
we present in this section one new good way of computing sets that satisfy D1,
D2, V, and S. It is based on earlier ideas but has been fine-tuned for the present
situation. We emphasize that it is not the only good way. Other possibilities
have been discussed in [16, 19], among others.

Because the expression under analysis is of the form (L̄1 || · · · || L̄m) \ I, its
states are of the form (s1, . . . , sm), where si ∈ Li for each 1 ≤ i ≤ m. We employ
the notation eni(si) = {a | ∃s′i : (si, a, s

′
i) ∈ ∆i}, that is, the set of actions that

are enabled in si in Li. We have τ /∈ eni(si) ⊆ Σ̄i = Σi ∪ {τi}. Furthermore,
if a /∈ en(s), then there is at least one i such that a ∈ Σ̄i and a /∈ eni(si). Let
dis(s, a) denote the smallest such i.

We start by presenting a sufficient condition for D1 and D2 that does not
refer to other states than the current.

Theorem 2. Assume that the following hold for s = (s1, . . . , sm) and for every

a ∈ T (s):

1. If a /∈ en(s), then there is i such that a ∈ Σ̄i and a /∈ eni(si) ⊆ T (s).
2. If a ∈ en(s), then for every i such that a ∈ Σ̄i we have eni(si) ⊆ T (s).

Then T (s) satisfies D1 and D2.

Proof. Let a1 /∈ T (s), . . . , an /∈ T (s).
Let first a /∈ en(s). By 1, there is i such that Li disables a and eni(si) ⊆ T (s).

To enable a, it is necessary that Li changes its state. It requires that some action

7

in eni(si) occurs. They are all in T (s). This implies that s−a1 · · · ana→ cannot
hold. Obviously s−a→ does not hold either. So both D1 and D2 are vacuously
true.

Let now a ∈ en(s). Our next goal is to show that there are no 1 ≤ i ≤ n
and 1 ≤ j ≤ m such that both a ∈ Σ̄j and ai ∈ Σ̄j . To derive a contra-
diction, consider a counterexample where i has the smallest possible value.
So none of a1, . . . , ai−1 is in Σ̄j. If s−a1 · · · an→, then there is s′ such that
s−a1 · · · ai−1→ s′ −ai→. Obviously ai ∈ enj(s

′
j). This implies ai ∈ enj(sj), be-

cause Lj does not move between s and s′, because none of a1, . . . , ai−1 is in Σ̄j .
By 2, enj(sj) ⊆ T (s). This contradicts ai /∈ T (s).

This means that the Lj that participate in a are disjoint from the Lj that
participate in a1 · · ·an. From this D1 and D2 follow by well-known properties of
the parallel composition operator. ⊓⊔

Theorem 2 makes it easy to represent a sufficient condition for D1 and D2
as a directed graph that depends on the current state s. The set of the vertices
of the graph is Σ̄. There is an edge from a ∈ Σ̄ to b ∈ Σ̄, denoted with a ❀ b,
if and only if either a /∈ en(s) and b ∈ eni(si) where i = dis(s, a), or a ∈ en(s)
and there is i such that a ∈ Σ̄i and b ∈ eni(si). By the construction, if T (s) is
closed under the graph (that is, for every a and b, if a ∈ T (s) and a ❀ b, then
b ∈ T (s)), then T (s) satisfies D1 and D2.

It is not necessary for correctness to use the smallest i, when more than
one Li disables a. The choice to use the smallest i was made to obtain a fast
algorithm. An alternative algorithm (called deletion algorithm in [16]) is known
that exploits the freedom to choose any i that disables a. It has the potential to
yield smaller reduced LTSs than the algorithm described in this section. On the
other hand, it consumes more time per constructed state.

Furthermore, the condition in Theorem 2 is not the weakest possible, as
shown by the following useful observation: Assume a writes to a finite-capacity
fifo Lf , ā reads from it, and they have no other Li in common; although Σ̄f links
them, we need not declare a ❀ ā when a is enabled, and we need not declare
ā ❀ a when ā is enabled, since they commute if both are enabled. Trying to
make the condition as weak as possible would have made it very hard to read.

It is trivial to also take the condition V into account in the graph representa-
tion of the stubborn set computation problem. It suffices to add the edge a ❀ b
from each a ∈ V ∩ en(s) to each b ∈ V .

Let “❀∗” denote the reflexive transitive closure of “❀”. By the definitions,
if a ∈ Σ̄, then {b | a ❀

∗ b} satisfies D1, D2, and V. We denote it with clsr(a). It
can be computed quickly with well-known elementary graph search algorithms.
However, we can do better.

The better algorithm is denoted with esc(a), for “enabled strong component”.
Applied at some state s, it uses a as the starting point of a depth-first search in
(Σ̄, “❀”). During the search, the strong components (i.e., the maximal strongly
connected subgraphs) of (Σ̄, “❀”) are recognized using Tarjan’s algorithm [12,
4]. It recognizes each strong component at the time of backtracking from it.
When esc(a) finds a strong component C that contains an action enabled at s,

8

it stops and returns C as the result; note that a might not be in C. In principle,
the result should also contain actions that are reachable from C but are not in
C. However, they are all disabled, so leaving them out does not change Lr, which
we are really interested in. If esc(a) does not find such a strong component, it
returns ∅.

Obviously esc(a) ⊆ clsr(a). So esc(a) has potential for better reduction re-
sults. Tarjan’s algorithm adds very little overhead to depth-first search. There-
fore, esc(a) is never much slower than clsr(a). On the other hand, it may happen
that esc(a) finds a suitable strong component early on, in which case it is much
faster than clsr(a).

To discuss the implementation of S, let V = {a1, . . . , a|V |}. Let S(s, i) denote
that there is an si and an r-path from s to si such that ai ∈ T (si). Our algorithm
constructs Lr in depth-first order. The root of a strong component C of Lr is the
state in C that was found first. Our algorithm recognizes the roots with Tarjan’s
algorithm. In each root sC , it enforces S(sC , i) for each 1 ≤ i ≤ n in a manner
which is discussed below. This suffices, because if S(s, i) holds for one state in a
strong component, then it clearly holds for every state in the component.

Each state s has an attribute ν such that if ν > |V |, then S(s, i) is known to
hold for a1, . . . , aν−|V |. When a state is processed for the first time, its ν value is
set to 1 and esc(a1) is used as its stubborn set. When the algorithm is about to
backtrack from a root sC , it checks its ν value. The algorithm actually backtracks
from a root only when ν = 2|V |. Otherwise it increments ν by one. Then it
extends T (sC) by esc(aν) if ν ≤ |V |, and by clsr(aν−|V |) if |V | < ν ≤ 2|V |.
The extension may introduce new outgoing transitions for sC , and sC may cease
from being a root. If sC remains a root, then its ν eventually grows to 2|V | and
S holds for sC . The purpose of making T (sC) grow in steps with esc-sets first is
to obtain as small a stubborn set as possible, if sC ceases from being a root.

During the depth-first search, information on ν-values is backward propa-
gated and the maximum is kept. This way, if sC ceases from being a root, the
new root benefits from the work done at sC . Furthermore, non-terminal strong
components automatically get ν = 2|V |. To exploit situations where V ⊆ T (s)
by condition V, if a visible action is in en(s) ∩ T (s), then the algorithm makes
the ν value of s be 2|V |.

Unfortunately, we do not yet have an implementation of this algorithm.
Therefore, in our experiments in Section 7 we used a trick. A system is always

may-terminating if and only if, from every reachable state, the system is able to
reach a deadlock. For each deadlock s, we can pretend that T (s) = Σ̄ and thus
that V ⊆ T (s), because T (s) contains no enabled actions no matter how we
choose it. This implies that S holds automatically for always may-terminating
systems. In [17] it was proven that if, instead of S, the condition D0 is used,
then it is easy to check from the reduced LTS whether the system is always
may-terminating. So we will use the following new approach in Section 7:

1. Try to make the system always may-terminating.

2. Construct Lr obeying D0, D1, D2, and V.

9

3. If Lr is always may-terminating, then extract a reduced LTS for the original
system as will be described in Section 7. Otherwise, go back to 1.

Stubborn sets obeying D0, D1, D2, and V can be computed by, in each state
that is not a deadlock, choosing an enabled a and computing esc(a).

5 On the Performance of Various Conditions

The goal of aps set methods is to alleviate the state explosion problem. Therefore,
reducing the size of the state space is a main issue. However, if the reduction
introduces too much additional work per preserved state, then time is not saved.
Therefore, also the cost of computing the aps set is important. Also the software
engineering issue plays a role. Very little is known on the practical performance
of ideas that have the biggest theoretical reduction potential (such as weak
stubborn sets and the deletion algorithm, see [16]), because they are complicated
to implement, so very few experiments have been made.

Often a state has more than one aps set. Let T1 and T2 be two of them and
let E(T1) and E(T2) be the sets of enabled transitions in T1 and T2. It is obvious
that if the goal is to preserve deadlocks and if E(T1) ⊆ E(T2), then T1 can lead
to better but cannot lead to worse reduction results than T2.

We are not aware of any significant result on the question which should be
chosen, T1 or T2, if both are aps, E(T1) 6⊆ E(T2), and E(T2) 6⊆ E(T1). Let us call
it the non-subset choice problem. Already [14] gave an example where always
choosing the set with the smallest number of enabled transitions does not yield
the best reduction result.

We now demonstrate that the order in which the components of a system are
given to a tool can have a tremendous effect on the running time and the size
of the reduced state space. Assume that L1 || · · · || Lm has deadlocks. Consider
L1 || · · · || Lm || τ . This extended system has no deadlocks. If the deadlock-
preserving stubborn set method always investigates the added τ last, then it
finds the deadlocks of the original system in the original fashion, finds that the
added τ -transition is enabled in them, and eventually concludes that the system
has no deadlocks. So it does approximately the same amount of work as it does
with L1 || · · · ||Lm. If the method happens to investigate the added τ -transition
first, it gets back to the initial state. D0, D1, and D2 do not tell it to investigate
anything else. So it stopped extremely quickly, after constructing only one state.

For this and other reasons, measurements are not as reliable for comparing
different methods as we would like them to be.

Technically, optimal sets could be defined as those (not necessarily aps) sets of
enabled transitions that yield the smallest reduced state space that prerserves the
deadlocks. Unfortunately, it was shown in [19] that finding subsets of transitions
of a 1-safe Petri net that are optimal in this sense is at least as hard as testing
whether the net has a deadlock. Another similar result was proven in [2, p. 154].
Therefore, without additional assumptions, optimal sets are too hard to find.

This negative result assumes that optimality is defined with respect to all
possible ways of obtaining information on the behaviour of the system. Indeed,

10

p1

t1

p2

t2

p3

t3 t6

p4

t4

p5

t5

p6

t1

t2

t4

t3

t1

t5

t2 t3

t1

t6

t4

t4

t3

t5

t5

t2

t6

t6

100100

010100

001100

100010

010010

001010

010001

001001

100001

Fig. 2. Transitions are tried in the order of their indices until one is found that does
not close a cycle. If such a transition is not found, then all transitions are taken

optimal sets can be found by first constructing and investigating the full state
space. Of course, aps set methods do not do so, because constructing the full
state space is what they try to avoid. In [19], a way of obtaining information
was defined such that most (but not all) deadlock-preserving aps set methods
conform to it. Using non-trivial model-theoretic reasoning, it was proven in [19]
that, in the case of 1-safe Petri nets, the best possible (not necessarily aps) sets
that can be obtained in this context are of the form E(Ts), where Ts is stubborn.
In this restricted but nevertheless meaningful sense, stubborn sets are optimal.

The situation is much more complicated when preserving other properties
than deadlocks. We only discuss one difficulty. Instead of S, [2, p. 155] assumes
that the reduced state space is constructed in depth-first order and tells to
choose an aps set that does not close a cycle if possible, and otherwise use all
enabled transitions. Figure 2 shows an example where this condition leads to
the construction of all reachable states, although the processes do not interact
at all. With S and some additional tricks, this problem can be avoided in this
example. However, far too little is known on this problem area.

The approach in Sections 4 and 7 that does not use S is entirely free of this
difficulty. This is one reason why it seems very promising.

In general, it is reasonable to try to find as weak conditions as possible
in place of D1, V, S, and so on, because the weaker a condition is, the more
potential it has for good reduction results. Because of the non-subset choice
problem and other similar problems, it is not certain that the potential can be
exploited in practice. However, if the best set is ruled out already by the choice
of the condition, then it is certain that it cannot be exploited.

For instance, instead of V, [2, p. 149] requires that if T (s) ∩ V ∩ en(s) 6= ∅,
then T (s) must contain all enabled transitions. This condition is strictly stronger
than V and thus has less potential for reduction. Furthermore, the algorithm in
Section 4 can exploit the additional potential of V at least to some extent.

This also illustrates why stubborn sets are defined such that they may contain
disabled transitions. The part V ⊆ T (s) in the definition of condition V could
not be formulated easily, or perhaps not at all, if T (s) cannot contain disabled

11

ε ε

σn

σn−1λn−1

ai

sn
s0,0

sh,0
sn−1

s′n
s0,n

s′n−1

sh,n

σ ε

σ

ε

s

z

s′

z′

Fig. 3. Illustrating Lemma 3 (left) and Lemma 4 (right)

transitions. The following example reveals both that V ∩ en(s) ⊆ T (s) does not
work and that V yields better reduction than the condition in [2]:

(a u a || u τ v b || τ v) \ {u, v}

6 The Fair Testing Equivalence Preservation Theorem

In this section we assume that Lr = (Sr, Σ,∆r, ŝ) has been constructed with the
trace-preserving strong stubborn set method, that is, obeying D1, D2, V, and S.
We show that Lr is fair testing equivalent to L, where L = (S,Σ,∆, ŝ) denotes
the corresponding full LTS, based on a series of lemmata.

Lemma 3. Assume that n ∈ N, sn ∈ Sr, s
′
n ∈ S, ε 6= σn ∈ V ∗, and there is

an f-path of length n from sn to s′n such that its trace is σn. There are sn−1 ∈
Sr, s′n−1 ∈ S, λn−1 ∈ V ∪ {ε}, and σn−1 ∈ V ∗ such that λn−1σn−1 = σn,

sn =λn−1⇒ sn−1 in Lr, s
′
n =ε⇒ s′n−1 in L, and there is an f-path of length n− 1

from sn−1 to s′n−1 such that its trace is σn−1.

Proof. Let s0,0 = sn and s0,n = s′n. Let the f-path of length n be s0,0 −a1 · · · an→
s0,n. Because σn 6= ε, there is a smallest v such that 1 ≤ v ≤ n and av ∈ V .
By S, there are k ∈ N, s1,0, . . . , sk,0, and b1, . . . , bk such that av ∈ T (sk,0) and
s0,0 −b1→ s1,0 −b2→ . . . −bk→ sk,0 in Lr. Let h be the smallest natural number
such that {a1, . . . , an} ∩ T (sh,0) 6= ∅. Because av ∈ T (sk,0), we have 0 ≤ h ≤ k.
By h applications of D2 at s0,0, . . . , sh−1,0, there are s1,n, . . . , sh,n such that
si,0 −a1 · · ·an→ si,n in L for 1 ≤ i ≤ h and s0,n−b1→ s1,n−b2→ . . . −bh→ sh,n
in L. If bi ∈ V for some 1 ≤ i ≤ h, then V ⊆ T (si−1,0) by V. It yields av ∈
T (si−1,0), which contradicts the choice of h. As a consequence, s0,0 =ε⇒ sh,0 in
Lr and s0,n=ε⇒ sh,n in L.

Because {a1, . . . , an} ∩ T (sh,0) 6= ∅, there is a smallest i such that 1 ≤ i ≤ n
and ai ∈ T (sh,0). By D1 at sh,0, there is sn−1 such that sh,0 −ai→ sn−1 in Lr

and sn−1 −a1 · · · ai−1ai+1 · · ·an→ sh,n in L. We choose s′n−1 = sh,n and let σn−1

be the trace of a1 · · · ai−1ai+1 · · ·an. If ai /∈ V , then we choose λn−1 = ε, yielding
λn−1σn−1 = σn. If ai ∈ V , then V ⊆ T (sh,0) by V, so none of a1, . . . , ai−1 is in V ,
and by choosing λn−1 = ai we obtain λn−1σn−1 = σn. That sn=λn−1⇒ sn−1 in
Lr follows from s0,0 =ε⇒ sh,0−ai→ sn−1 in Lr. The rest of the claim is obtained
by replacing s′n for s0,n and s′n−1 for sh,n in already proven facts. ⊓⊔

Lemma 4. Let n ∈ N. Assume that s ∈ Sr, s
′ ∈ S, σ ∈ V ∗, and s=σ⇒ s′ in L

due to an f-path of length n. Then there are z ∈ Sr and z′ ∈ S such that s=σ⇒ z
in Lr, z=ε⇒ z′ in L, and s′ =ε⇒ z′ in L.

12

σn σn

ε

ε

sn
s0,0

s′n
s0,n

sk,0 sk,n

or
σn

ρn−1 ρn−1

ε

ε
ai

sn
s0,0

sh,0
sn−1

s′n
s0,n

s′n−1

sh,n

sk,0

Fig. 4. Illustrating Lemma 5; ai is invisible

Proof. The proof is by induction on n. We start with the observation that, in
case σ = ε, the claim holds with choosing z = s and z′ = s′. This settles the
base case n = 0 and a subcase of the induction step, and it leaves us with the
case n > 0 and σ 6= ε.

We apply Lemma 3 and get s1 ∈ Sr, s
′
1 ∈ S, σ1 ∈ V ∗, and λ1 ∈ V ∪ {ε} such

that λ1σ1 = σ, s=λ1⇒ s1 in Lr, and s′ =ε⇒ s′1 in L. Furthermore, s1 =σ1⇒ s′1
in L due to an f-path of length n− 1, for which the lemma holds; hence, there
are z ∈ Sr and z′ ∈ S such that s1 =σ1⇒ z in Lr, z=ε⇒ z′ in L, and s′1 =ε⇒ z′

in L. Together, these also give s=λ1⇒ s1 =σ1⇒ z in Lr and s′ =ε⇒ s′1 =ε⇒ z′

in L, so we are done. ⊓⊔

Lemma 5. Assume that n ∈ N, sn ∈ Sr, s
′
n ∈ S, σn ∈ V ∗, sn =σn⇒ in Lr,

and there is an f-path of length n from sn to s′n such that its trace is ε. Either
s′n =σn⇒ in L or there are sn−1 ∈ Sr, s

′
n−1 ∈ S, and ρn−1 such that ρn−1 is

a prefix of σn, sn =ρn−1⇒ sn−1 in Lr, s
′
n =ρn−1⇒ s′n−1 in L, and there is an

f-path of length n− 1 from sn−1 to s′n−1 such that its trace is ε.

Proof. Let s0,0 = sn and s0,n = s′n. Let the f-path of length n be s0,0 −a1 · · · an→
s0,n; obviously, the ai are invisible. By the assumption, there is a path s0,0 −b1→
s1,0 −b2→ . . . −bk→ sk,0 in Lr such that its trace is σn.

If {a1, . . . , an} ∩ T (si,0) = ∅ for 0 ≤ i < k, then k applications of D2 yield
s1,n, . . . , sk,n such that s0,n−b1→ s1,n−b2→ . . . −bk→ sk,n in L. This implies
s′n =σn⇒ in L.

Otherwise, there is a smallest h such that 0 ≤ h < k and {a1, . . . , an} ∩
T (sh,0) 6= ∅. There also is a smallest i such that 1 ≤ i ≤ n and ai ∈ T (sh,0).
Applying D2 h times yields s1,n, . . . , sh,n such that s0,n −b1→ . . . −bh→ sh,n in
L and sh,0 −a1 · · · an→sh,n in L. By D1 there is sn−1 such that sh,0 −ai→ sn−1

in Lr and sn−1 −a1 · · · ai−1ai+1 · · ·an→ sh,n in L. The claim follows by choosing
s′n−1 = sh,n and letting ρn−1 be the trace of s0,0−b1 · · · bh→ sh,0. ⊓⊔

Lemma 6. Let n ∈ N. Assume K ⊆ V ∗, ρ ∈ K, z ∈ Sr, z
′ ∈ S, and z=ε⇒ z′

due to an f-path of length n; assume further that z′ f-refuses K and z=ρ⇒ in

Lr. Then there exist s ∈ Sr and a prefix π of K such that z=π⇒ s in Lr and s
r-refuses π−1K.

Proof. The proof is by induction on n. The case n = 0 holds vacuously, since it
would imply z′=ρ⇒, contradicting ρ ∈ K.

13

L1

a u

L2

u τ

(L1 || L2) \ {u}

a

τ

a
τ

τa

Fig. 5. A counterexample to the preservation of all tree failures. In (L1 ||L2)\{u}, the
solid states and transitions are in the reduced and the dashed ones only in the full LTS

So we assume the lemma to hold for n− 1, and also the assumptions in the
lemma for n. We apply Lemma 5 to z, z′, and ρ. In the first case, we would
again have the impossible z′ =ρ⇒. So according to the second case, we have a
z1, z

′
1, and prefix ρ′ of ρ and thus of K with z=ρ′⇒ z1 in Lr, z

′ =ρ′⇒ z′1 in L,
and z1 =ε⇒ z′1 due to an f-path of length n− 1.

Since z′ f-refuses K, z′1 must f-refuse ρ′−1K. If z1 r-refuses ρ′−1K, we are
done. Otherwise, we can apply the induction hypothesis to z1 =ε⇒ z′1 and ρ′−1K.
This results in an s ∈ Sr and a prefix π′ of ρ′−1K such that z1 =π′⇒ s in Lr and
s r-refuses π′−1ρ′−1K = (ρ′π′)−1K. We also have that ρ′π′ is a prefix of K and
z=ρ′π′⇒ s in Lr, so we are done. ⊓⊔

Theorem 7. The LTS Lr is fair testing equivalent to L.

Proof. Part 1 of Definition 1 is immediate from the construction.
Let (σ,K) be a tree failure of Lr. That is, there is s ∈ Sr such that ŝ=σ⇒ s in

Lr and s r-refuses K. Consider any ρ ∈ V ∗ such that s=ρ⇒ in L. By Lemma 4,
s=ρ⇒ also in Lr. This implies that s refuses K in L and that (σ,K) is a tree
failure of L. In conclusion, Part 2 of Definition 1 holds.

Let (σ,K) be a tree failure of L. That is, there is s′ ∈ S such that ŝ=σ⇒ s′

in L and s′ f-refuses K. By Lemma 4 there are z ∈ Sr and z′ ∈ S such that
ŝ=σ⇒ z in Lr, s

′ =ε⇒ z′ in L, and z=ε⇒ z′ in L. Since s′ f-refuses K, also z′

f-refuses K.
Either z r-refuses K and we are done, or we apply Lemma 6, giving us an

s ∈ Sr and a prefix π of K such that z=π⇒ s in Lr and s r-refuses π−1K. Hence,
(σπ, π−1K) ∈ Tf(Lr) and Part 3 of Definition 1 also holds. ⊓⊔

Let us conclude this section with a counterexample that shows that the
method does not preserve tree failure equivalence.

Consider (L1 || L2) \ {u}, where L1 and L2 are shown in Figure 5 left and
middle. Initially two sets are stubborn: {a} and {a, u, τ2}. If {a} is chosen, then
the LTS is obtained that is shown with solid arrows on the right in Figure 5.
The full LTS also contains the dashed arrows. The full LTS has the tree failure
(ε, {aa}) that the reduced LTS lacks.

7 Example

Figure 6 shows the example system used in the measurements in this section.
It is a variant of the alternating bit protocol [1]. Its purpose is to deliver data

14

sen ok err rec

Sender

Receiver

Dloss

Aloss

D D D· · ·

A A A· · ·

sen f0

err

ā0
ā1

d1

err
senf1

err

ā1
ā0

d0

err
ā0

ā1

ok sen

ā1

ā0

oksen

d̄0 rec

f̄0

a0
d̄0

f̄0
d̄1rec

f̄1

a1d̄1 f̄1

f̄0 f0

f̄1

f1

d̄0d0

d̄1

d1

ā0

a0ā1

a1

f̄0

f̄1

d̄0

d̄1

ā1 ā0

Fig. 6. The example system: architecture, Sender, Receiver, D, A, Dloss, and Aloss. Each
sen, rec, d0, d1, d̄0, and d̄1 carries a parameter that is either N or Y. Each black state
corresponds to two states, one for each parameter value. Each x̄ synchronizes with x

along a line in the architecture picture. The output of the rightmost D is consumed
either by Receiver or Dloss, and similarly with the leftmost A

items from a sending client to a receiving client via unreliable channels that may
lose messages at any time. There are two kinds of data items: N and Y. To avoid
cluttering Figure 6, the data items are not shown in it. In reality, instead of sen,
there are the actions senN and senY, and similarly with rec, d0, d̄0, d1, and d̄1.

Because messages may be lost in the data channel, the alternating bit pro-
tocol has a timeout mechanism. For each message that it receives, the receiver
sends back an acknowledgement message. After sending any message, the sender
waits for the acknowledgement for a while. If it does not arrive in time, then
the sender re-sends the message. To prevent the sender and receiver from being
fooled by outdated messages, the messages carry a number that is 0 or 1.

The alternating bit protocol is impractical in that if either channel is totally
broken, then the sender sends without limit in vain, so the protocol diverges.
The variant in Figure 6 avoids this problem. For each sen action, Sender tries
sending at most a fixed number of times, which we denote with ℓ. (In the figure,
ℓ = 1 for simplicity.) The protocol is expected to behave as follows. For each sen,
it eventually replies with ok or err. If it replies with ok, it has delivered the data
item with rec. If it replies with err, delivery is possible but not guaranteed, and it
may occur before or after the err. There are no unsolicited or double deliveries.
If the channels are not totally broken, the protocol cannot lose the ability to
reply with ok.

After err, Sender does not know whether any data message got through and
therefore it does not know which bit value Receiver expects next. For this rea-
son, initially and after each err, the protocol performs a connection phase before

15

Table 1. Each channel consists of c separate cells. Times are in seconds

full LTS full, with t-transitions stubborn sets
c states edges time states edges time states edges time

1 380 1068 0.0 440 1254 0.1 372 700 0.0
2 1880 6212 0.0 2224 7360 0.1 1234 1992 0.0
3 9200 34934 0.1 10976 41560 0.1 2986 4382 0.0
4 44000 188710 0.2 52672 224928 0.3 6104 8360 0.1
5 205760 983614 0.5 246656 1173536 0.6 11140 14494 0.1
6 944000 4977246 2.3 1132288 5941760 2.7 18726 23432 0.2
7 4263680 24582270 11.4 5115392 29357952 13.8 29578 35906 0.2
8 19013120 119011454 63.4 22813696 142177792 77.2 44496 52732 0.3

10 90150 103124 0.4
20 946520 1005784 3.6
30 4083190 4238144 18.8
40 11854160 12170204 68.2

attempting to deliver data items. It consists of sending a flush message and
expecting an acknowledgement with the same bit value. When the acknowledge-
ment comes, it is certain that there are no remnant messages with the opposite
bit value in the system, so the use of that value for the next data message is
safe. This is true despite the fact that the acknowledgement with the expected
bit value may itself be a remnant message.

Assume that neither channel can lose infinitely many messages in a row. This
is a typical fairness assumption. It guarantees that if there are infinitely many
sen-actions, then infinitely many flush actions go through and infinitely many
acknowledgements come back. However, it does not guarantee that any data
message ever gets through. To guarantee that, it is necessary to further assume
that if the acknowledgement channel delivers infinitely many messages, then
eventually the data channel delivers at least one of the next ℓ messages that have
been sent via it after the acknowledgement channel delivered a message. This
assumption is very unnatural, because it says that the channels must somehow
coordinate the losses of messages.

As a consequence, the traditional approach of proving liveness that is based
on fairness assumptions is not appropriate for this protocol. On the other hand,
fair testing equivalence can be used to prove a weaker but nevertheless useful
property: the protocol cannot lose the ability to deliver data items and reply ok.
This is why the protocol was chosen for the experiments in this section.

To implement Steps 1 and 3 in Section 4, we add to Sender a new state
sd and a transition labelled with t to sd from each state that has an outgoing
transition labelled with senN or senY. Let the resulting LTS be called Sender

′.
Clearly Sender = (Sender′ || Block t) \ {t}, where Block t is the single-state LTS
whose alphabet is {t} and that has no transitions. After computing the reduced
LTS L′

r
using Sender

′ and treating t as visible, the final result is obtained as
(L′

r ||Block t) \ {t}, which is trivial to compute from L′
r. This is correct, because

fair testing equivalence is a congruence.

16

Table 2. Each channel is a single reduced LTS

full LTS full, with t-transitions stubborn sets
c states edges time states edges time states edges time

10 42680 183912 0.3 51128 216300 0.4 16818 29756 0.2
20 287280 1278742 2.1 344568 1502900 2.4 84928 144116 0.7
30 913880 4112572 9.0 1096408 4831900 10.7 236438 391276 2.0
40 2102480 9513402 25.9 2522648 11175300 30.6 503348 819236 4.6
50 4033080 18309232 60.4 4839288 21505100 71.9 917658 1475996 9.3
60 1511368 2409556 17.7
70 2316478 3667916 29.1
80 3364988 5299076 45.9
90 4688898 7351036 70.3

100 6320208 9871796 102.8

Table 1 shows analysis results obtained with the ASSET tool [17, 18]. ASSET
does not input parallel compositions of LTSs, but it allows to mimic their be-
haviour with C++ code. It also allows to express the “❀” relation in C++ and
computes stubborn sets with the esc algorithm. Thus it can be used to compute
Step 2 of Section 4. ASSET verified that each LTS with the t-transitions is in-
deed always may-terminating. To gain confidence that the modelling with C++
is correct, additional runs were conducted where the ASSET model contained
machinery that verified most of the correctness properties listed above, including
that the protocol cannot lose the ability to execute ok (except by executing t).

Table 1 shows spectacular reduction results, but one may argue that the
model of the channels in Figure 6 is unduely favourable to stubborn sets. The
messages travel through the channels step by step. Without stubborn sets, any
combination of empty and full channel slots may be reached, creating an expo-
nential number of states. If a message is ready to move from a cell to the next
one, then the corresponding action constitutes a singleton stubborn set. There-
fore, the stubborn set method has the tendency to quickly move messages to the
front of the channel, dramatically reducing the number of constructed states.

To not give stubborn sets unfair advantage, another series of experiments was
made where the messages are always immediately moved as close to the front of
the channel as possible during construction of the full LTS. The fact about fifo
queues and the “❀” relation that was mentioned in Section 4 is also exploited.
The results are shown in Table 2. Although they are less spectacular, they, too,
show great benefit by the stubborn set method.

Acknowledgements.

References

1. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A Note on Reliable Full-Duplex
Transmission over Half-Duplex Links. Communications of the ACM 12(5) (1969)
260–261

17

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999) 314 p
3. Evangelista, S., Pajault, C.: Solving the Ignoring Problem for Partial Order Re-

duction. Software Tools for Technology Transfer 12(2) (2010) 155–170
4. Eve, J., Kurki-Suonio, R.: On Computing the Transitive Closure of a Relation.

Acta Informatica 8(4) (1977) 303–314
5. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A Partial Order Approach to

Branching Time Logic Model Checking. Proc. Third Israel Symposium on the
Theory of Computing and Systems, IEEE (1995) 130–139

6. Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
In: Proceedings of CAV’90, AMS–ACM DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, Vol. 3, pp. 321–340. (1991)

7. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidel-
berg (1996)

8. Mazurkiewicz, A.: Trace Theory. Petri Nets: Applications and Relationships to
Other Models of Concurrency, LNCS, vol. 255 (1987) 279–324

9. Peled, D.: All from One, One for All: On Model Checking Using Representatives.
In: Courcoubetis, C. (ed.) Proceedings of CAV’93. LNCS, vol. 697, pp. 409–423.
Springer, Heidelberg (1993)

10. Peled, D.: Partial Order Reduction: Linear and Branching Temporal Logics and
Process Algebras. Proc. POMIV’96, Workshop on Partial Order Methods in Verifi-
cation, DIMACS Series in Discrete Mathematics and Theoretical Computer Science
Vol. 29, American Mathematical Society (1997) 233–257

11. Rensink, A., Vogler, W.: Fair Testing. Information and Computation 205(2) (2007)
125–198

12. Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing 1(2) (1972) 146–160

13. Valmari, A.: Error Detection by Reduced Reachability Graph Generation. In: Pro-
ceedings of the 9th European Workshop on Application and Theory of Petri Nets
(1988) 95–122

14. Valmari, A: State Space Generation: Efficiency and Practicality. Dr. Techn. Thesis,
Tampere University of Technology Publications 55, Tampere 1988.

15. Valmari, A.: Stubborn Set Methods for Process Algebras. Peled, D.A., Pratt, V.R.,
Holzmann, G.J. (eds.): Partial Order Methods in Verification: DIMACS Workshop,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science Vol.
29, American Mathematical Society (1997) 213–231

16. Valmari, A.: The State Explosion Problem. In: Reisig, W., Rozenberg, G. (eds.)
Lectures on Petri Nets I: Basic Models, Advances in Petri Nets. LNCS, vol. 1491
(1998) 429–528

17. Valmari, A.: Stop It, and Be Stubborn! In: Haar, S., Meyer, R. (eds.) 15th In-
ternational Conference on Application of Concurrency to System Design, IEEE
Computer Society (2015) 10–19, DOI 10.1109/ACSD.2015.14

18. Valmari, A.: A State Space Tool for Concurrent System Models Expressed In C++.
In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) SPLST 2015, Symposium
on Programming Languages and Software Tools, CEUR Workshop Proceedings
1525 (2015) 91–105

19. Valmari, A., Hansen, H.: Can Stubborn Sets Be Optimal? Fundamenta Informat-
icae 113(3–4) (2011) 377–397

18

