
A Tool Integrating Model Checking Into a C

Verification Toolset

Subash Shankar and Gilbert Pajela

City University of New York (CUNY)
subash.shankar@hunter.cuny.edu gpajela@gradcenter.cuny.edu

Abstract. Frama-C is an extensible C verification framework that in-
cludes support for abstract interpretation and deductive verification. We
have extended it with model checking based on counterexample guided
refinement. This paper discusses our tool and outlines the major chal-
lenges faced here, and likely to be faced in other similar tools.

1 Introduction and Motivation

Program verification has a long history with a more recent growth in tools for
semi-automatic and automatic verification, even though the general problem is
undecidable. Three major underlying approaches are abstract interpretation [8],
Floyd-Hoare logic along with its weakest precondition interpretation [10, 11, 9],
and model checking. Unfortunately, no one approach can verify all programs
in practice, with major tradeoffs including automatability, generality, scalabil-
ity, and efficiency. In particular, while deductive verification techniques require
manual guidance (e.g., to identify loop invariants) but can be used for all pro-
grams (given a suitably powerful theorem prover), model checking is automatic
but suffers from state space explosion.

The Frama-C toolset is an extensible framework that integrates multiple
static analysis techniques including abstract interpretation and deductive verifi-
cation, for C programs. We have implemented a prototype model checking plugin
to Frama-C that allows the user to mix-and-match all of these verification tech-
niques. The end goal is to provide a software verification system that can exploit
the benefits of all three underlying approaches in a convenient and integrated
manner so program parts can be verified using the most appropriate approach.
We believe this is the first tool to combine these approaches.

2 Frama-C Overview

Frama-C is a platform for static analysis of C programs, and we outline the
relevant parts in this section though the reader is referred to [12] for a more
extensive discussion. It is extensible through plugins that may share information
and interact through a common interface. The plugins will typically interface
with C Intermediate Language (CIL) and other tool results, as supported by the
Frama-C kernel. All code is open-source and written in OCaml.

Frama-C analyses generally act on specifications written using the ANSI/ISO
C Specification Language (ACSL) [1]. ACSL allows for specification of contracts
on functions/statements, with requires, ensures, and assigns clauses to ex-
press pre-conditions, post-conditions, and the set of variables potentially modi-
fied by the function/statement, respectively. Clauses are standard C expressions
extended with auxiliary variables \result and \old(var) corresponding to a
function return value and the pre-state value of var, respectively.

Frama-C comes with a number of plugins, and we are primarily interested
in interfacing with two of these: value and wp. Value analysis applies forward
dataflow analysis on domain-dependent abstract interpretation lattices to com-
pute conservative approximations to all variable values. Some typical abstrac-
tions include intervals and mod fields for integers, intervals for reals, offsets
into memory regions for pointers, etc. Loops must be unrolled by a constant
user-selected number of iterations, which unfortunately may not be efficient for
large iteration counts. It is possible (through an undocumented/unrecommended
option) to perform unbounded loop unrolling, but this results in a potentially
non-terminating fixed point computation. The wp plugin performs deductive ver-
ification based on Dijkstra’s weakest precondition calculus. As with all deductive
verification techniques, there are limitations imposed by undecidability and the
capabilities of underlying backend engines (SMT solvers and/or proof assistants).
Additionally, loops are problematic since they require the manual identification
of loop invariants, and it is generally recognized that software developers are not
typically adept at identifying sufficiently strong invariants.

3 Model Checking for Software Verification

Traditional model checking automatically verifies liveness/reachability and safety
properties expressed in temporal logic on a state machine representing the sys-
tem being verified. Since an explicit representation of the state machine is often
impractical, symbolic model checking uses a symbolic representation and has
been used to verify very large systems [4]. However, even small programs lead
to huge state spaces, and its use is thus limited.

Counter-example guided refinement (CEGAR) alleviates this problem by ap-
plying predicate abstraction to construct and verify a Boolean program abstract-
ing the original program [6]. Initially, the predicates used for abstraction are
typically either null (thus, abstracting the program into its control flow graph)
or a subset of conditions in the program/contract. If the property is verifiable in
the abstraction, it must be true; otherwise, the produced counterexample is val-
idated on the original program. If validation fails (i.e., the counterexample was
spurious), the counterexample is analyzed to produce additional new predicates
for refining the abstraction. This verify-validate-refine cycle is iterated until the
property is proven, hopefully within a reasonable number of iterations.

Two common CEGAR-based tools for C program verification are SATABS
[5] and Blast [2] which is now extended and embodied in the CPAchecker tool
[3]. Both augment C with a VERIFIER assume(expr) statement that restricts

the state space to paths in which expr is true (at the point of the statement),
and both can be used to verify C assertions. CPAchecker is a configurable tool
that allows for multiple analysis techniques, mostly related to reachability anal-
ysis. Configurations differ on underlying assumptions such as the approxima-
tion of C data types with mathematical types. CEGAR tool performances vary
due largely to differing refinement strategies, and the approach in our plugin
is to allow multiple user-selectable CEGAR backends. Since we wish to inter-
act with other Frama-C tools that may be strict, we use a conservative con-
figuration that does reachability analysis on bit-precise approximations (named
predicateAnalysis-bitprecise), and all further mentions of CPAchecker in
this paper should be understood to refer to this configuration.

4 The cegarmc Plugin

Our plugin, called cegarmc1, verifies statements (which may of course contain
arbitrarily nested statements) using SATABS and CPAchecker backends called
through the Frama-C GUI. Cegarmc currently supports the following C-99 and
ACSL constructs:

– Variables/Types: Scalars including standard variations of integers and floats,
arrays, structs/unions, and pointers (to these). Automatic and static storage
classes are both supported, but type attributes (e.g., for alignment, storage)
are not supported.

– Statements: all constructs excluding exceptions. This includes function calls.
– ACSL: Statement contracts containing ensures and requires calls. For

inter-procedural verification (discussed later), we also support function con-
tracts in called functions along with assigns clauses.

These form a fairly complete C subset, though there is in principle no reason
why other constructs can’t be supported (if supported by a CEGAR tool).

Cegarmc functions by translating the CIL representation of the statement be-
ing verified along with its ACSL contract into an equivalent well-formed single-
function C program that can be verified by SATABS or CPAchecker. Figure 1
illustrates the resulting architecture. Frama-C includes a mechanism for main-
taining/combining validity statuses for contracts (possibly from multiple analy-
ses) along with dependencies between contracts [7], and cegarmc emits a ’true’
or ’dont know’ status depending on results.

Figure 2 illustrates an abstract statement and its translation, where S’ is
essentially the CIL version of S. Each variable that appears in S is declared in
the same order (thus ensuring parsability), though not necessarily contiguously
(see Section 4.1 for a discussion of resulting ramifications with respect to mem-
ory models). The labels CMCGOODEND and CMCBADEND capture normal
and abnormal termination of S respectively, and S’ also replaces abnormal ter-
minations with branches to CMCBADEND (since ACSL statement contracts

1 The tool is open-source, under standard GPG License, and available at http://www.
compsci.hunter.cuny.edu/~sshankar/cegarmc.html

Fig. 1: System Architecture

Original Statement

/*@ requires R;

ensures E;

*/

S;

Translation

Declarations

__VERIFIER_assume(R);

S’;

CMCGOODEND:

assert(E);

CMCBADEND: return;

Fig. 2: Translation

don’t apply to abnormal terminations). Multiple requires clauses are translated
to multiple assumes clauses. If there are multiple ensures clauses, this translation
is repeated for each one, calling the CEGAR checker once per clause. It is easy
to see that this simple translation is sound.

Inter-procedural verification is substantially more complicated. Model check-
ers require callee expansion, resulting in state space explosion. Assuming a con-
tract can be written for the callee, our approach exploits this contract to im-
plement a form of assume-guarantee reasoning, thus avoiding state space explo-
sion. Our basic approach is to automatically replace function calls with assumes
clauses capturing the corresponding contract. Figure 3 illustrates an abstract ex-
ample of this translation for the non-void 1-argument side-effect-free case, where
P[x:=y] is the substitution operator that replaces all free occurrences of x in P
with y. If there are multiple [syntactic] instances of calls to foo in S, distinct
Program Fragment

// S’s body:

...

S1 // calls foo(actual);

...

/*@

requires R2;

assigns A2;

ensures E2;

*/

SomeType foo(formal) {

...

};

Translation (of S1)
...

SomeType CMCfoo;

VERIFIER assume(

!R2[formals:=actuals] ||

E2[\result:=CMCfoo][\old(formal):=actual])
S1’[foo(actual):=CMCfoo]

...

Fig. 3: Inter-Procedural Translation Example

identifiers are given to each call variable (e.g., CMCfoo1, CMCfoo2, . . .) – note
that multiple calls themselves (e.g., in a loop) are only given one variable since
they are declared in a local scope/lifetime. The extensions to multi-argument
and void functions are simple to see. Any proofs of S’s contract are marked as
conditional on foo’s contract; thus, vacuous local proofs of S are possible, though
the global proof would still fail since foo’s contract would be false.

However, this is complicated by side-effects arising from interference between
the statement and called function (e.g., assigning of a static global variable).
Cegarmc also checks for such interferences using ACSL assigns clauses to identify
potentially modified variables, and proceeds with the proof only if no potential
interference is found. Additionally, if no assigns clause is present, cegarmc at-
tempts to determine modified variables and marks resulting proofs conditional
on independence (which may be proven separately).

4.1 Cegarmc Issues:

There are numerous complicating issues addressed in the engineering of cegarmc.
We believe these issues are also likely to be faced by other such tools. The major
such issues are highlighted below.

Tool Philosophy: Verification tools differ on whether analyses are guaranteed
correct or merely approximations, and combination techniques additionally may
be based on confidences/probabilities assigned to the tools. Frama-C’s combi-
nation algorithm assumes all analyses are correct, and its analyses combination
algorithms result in inconsistent statuses if, for example, two plugins emit dif-
ferent statuses for the same contract. In contrast, many CPAchecker analyses
use approximations (e.g., rationals for integers) for improved efficiency. Since
cegarmc is intended to perform seamlessly in the Frama-C platform, it uses
only sound tools/configurations where possible and provides feedback otherwise
(though constrained by information available in tool documentation).

Language Semantics: Whereas Frama-C supports C-99, SATABS and CPAchecker
are based on ANSI C and C-11, respectively. Cegarmc does not account for any
resulting semantic issues, and is thus not suitable for verifying any program re-
lying on a the intricacies of a particular C standard. Syntactically, cegarmc only
supports C-99 constructs. This [typically unstated] issue is faced by all verifi-
cation tools, and even within the CEGAR tools themselves since they may use
other C-targeted tools.

Memory Model: Any analysis of programs with pointers (or more precisely,
pointer arithmetic) is dependent on the underlying memory model. Cegarmc
is by its nature restricted to supporting the most restrictive memory model of
tools that it interfaces with. Thus, it uses the memory model of Frama-C’s value
analysis, which assumes that each declared variable defines exactly one distinct
base address, and a pointer is not allowed to ’jump’ across base addresses (though
it may, of course, still point to different elements in the same array or struct/u-
nion). Value analysis also generates proof obligations capturing such conditions,
which may be independently proven. CEGAR tools also make such assumptions,

though they may simply produce unsound results or be unable to prove a valid
contract instead of producing a proof conditional on the obligations. Note that
with this memory model, cegarmc need not preserve relative memory addresses
(as discussed in Section 4).

Efficiency: Our goal in cegarmc (at least in the initial prototype) is to inte-
grate existing CEGAR-based model checkers into a verification toolset, enabling
further research in integrated multi-technique verification. Since model checking
efficiency is determined primarily by the backend CEGAR tools, the appropriate
measure of efficiency is the number of extra variables added by our translation.
Cegarmc adds extra variables only for auxiliary ACSL variables and function
calls (see Sections 2 and 4, respectively), and is thus unlikely to significantly
aggravate state space explosion.

Contextual Verification: Strictly speaking, a statement contract is a standalone
entity, and all information about the statement’s initial state should be reflected
in its requires clauses. However, this complicates the verification process in prac-
tice as users may wish to write statement contracts without detailing all initial
state information. Cegarmc optionally supports such a model, with the caveat
that any changes in the program may invalidate existing cegarmc proofs.

5 Conclusions and Further Research

As mentioned earlier, the cegarmc prototype covers a fairly complete C subset.
Its performance is almost completely dependent on that of the CEGAR model
checker (which is in general highly variable), and cegarmc does not add inefficien-
cies. Although our primary goal is to enable the convenience of model checking
in a powerful multi-approach system, we believe that we have also increased
the power of CEGAR tools. In particular, contextual verification allows for CE-
GAR verification of program parts within procedures, while our inter-procedural
approach enables verification without the typical state space explosion.

Cegarmc is also a framework for much further research. In particular, we
plan on integrating different verification approaches to: 1) more fully automate
the integration of deductive verification and model checking, 2) exploit abstract
interpretation and deductive verification techniques to configure CEGAR tools
for better performance, and 3) combine partial results from different techniques
for more complete verification.

Acknowledgements

This project was partially supported by a Foreign Guest Researcher grant from
the Digiteo Foundation in Saclay, France, and a PSC-CUNY research grant.
Much thanks is due to Zachary Hutchinson, who contributed to some parts of
the code. We would also like to thank the entire Frama-C team for invaluable
guidance without which this tool would not have been possible.

References

1. P. Baudin, P. Cuoq, J.-C. q Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Pre-
vosto. ACSL: ANSI/ISO C specification language, version 1.8.

2. D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software verification:
Concretizing the convergence of model checking and program analysis. In Computer
Aided Verification (CAV), pages 504–518, 2007.

3. D. Beyer and M. E. Keremoglu. CPAChecker: A tool for configurable software
verification. In Computer Aided Verification (CAV), pages 184–190, 2011.

4. J. Burch, E. M. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model
checking: 10e20 states and beyond. In Proceedings of the Fifth Annual IEEE Sym-
posium on Logic in Computer Science (LICS), pages 428–439, 1990.

5. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based predi-
cate abstraction for ANSI-C. In Tools and Algorithms for Construction and Anal-
ysis of Systems (TACAS), pages 570–574, 2005.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Computer Aided Verification (CAV), pages 154–169,
2000.

7. L. Correnson and J. Signoles. Combining analyses for c program verification. In In-
ternational Workshop on Formal Methods for Industrial Critical Systems (FMICS),
pages 108–130, 2012.

8. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Fourth
ACM Symposium on Principles of Programming Languages (POPL), pages 238–
252, 1977.

9. E. W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of
program. Communications of the ACM (CACM), 18(8):453–457, August 1975.

10. R. Floyd. Assigning meanings to programs. Proceedings of Symposia in Applied
Mathematics, 19:19–32, 1967.

11. C. Hoare. An axiomatic basic for computer programming. Communications of the
ACM, 12(10):576–580, October 1969.

12. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-c,
a software analysis perspective. Formal Aspects of Computing, 27:573–609, March
2015.

A Tool Integrating Model Checking Into a C

Verification Toolset
Oral Presentation Plan

Subash Shankar and Gilbert Pajela

City University of New York (CUNY)
subash.shankar@hunter.cuny.edu gpajela@gradcenter.cuny.edu

Abstract. This discusses an informal plan for oral presentation of the
tool as requested in the call for papers.

Outline of Presentation

The presentation consists of the following parts with estimated time in paren-
theses:

1. (15%) An outline of major verification approaches along with the pros/cons
of each to motivate the need for model checking. This includes a brief de-
scription of the tools Frama-C/ACSL, CPAchecker, and SATABS, focusing
on portions used in our approach.

2. (30%) The implementation of our tool, including the translations, especially
for the interprocedural case.

3. (40%) Examples that illustrate the basics as well as some of the issues dis-
cussed in the paper. In particular, this includes contextual verification and
interprocedural verification. These examples will be run live using the tool,
and are listed below.

4. (15%) Outline of ongoing and future research by us. We also want to empha-
size that the tool provides a framework for others to research the integration
of multiple verification approaches, and will mention helpful usage informa-
tion.

Examples

The examples alluded to above are:

1. A simple nested loop example. The goal of this example is to show the
tool interface. The properties to be proven are simple with CEGAR, while
value analysis would require unrealistically many unrollings and weakest
preconditions would require the manual identification of loop invariants.

2. An example that illustrates the verification of a multi-statement program
using multiple approaches. One loop would be proven with our tool, while
some straight-line arithmetic code would be proven using deductive verifi-
cation. The resulting proofs are interdependent (and marked so), and the
demo would also show these dependences and how they are automatically
discharged after all proofs are complete. For example, Figure 1 illustrates a
program with 3 statements, where the second contract is proven by cegarmc

while the others are proven by wp. The resulting proof dependence tree is
shown in Figure 2.

3. An example that illustrates the use of contextual verification. This example
will be a statement that is false by itself but true in the context of the
program. Value analysis will be used to generate a context, and the statement
will be proven using cegarmc. Of course, the statement may be something
that isn’t provable using value or wp (as shown above).

4. An example that illustrates how our compositional approach to interproce-
dural verification is more powerful than what model checkers can do by them-
selves. Figure 3 shows one such example. The verification of the statement
contract in main requires .503 s. and 8 CEGAR iterations using CPAchecker,
while it would have taken 25.097 s. and 16 CEGAR iterations for the en-
tire program (both on the same machine/settings). The proof is of course
conditional on foo’s proof, but that is easy to verify by either wp (if a loop
invariant is supplied) or cegarmc (if an equivalent statement contract on
the function’s body is stated). While this 50-fold improvement should not
be surprising (and can be made arbitrarily larger depending on n’s value),
it illustrates the convenience of automatically breaking down a complicated
inter-procedural verification into manageable smaller verification tasks.

Depending on the allotted time, some of these examples may be combined.

Fig. 1: Example

Fig. 2: Proof Dependence Tree

/∗@ requ i r e s k>=1;
ensures \ r e s u l t == 2∗k ;

@∗/
int foo (int k) {

int i , s ;
s = 0 ;
for (i =1; i <= k ; i++)

s += 2 ;
return s ;

}

void main () {
int i , n , s ;
//@ ensures s == n∗(n+1);
{

n = 5 ;
s = 0 ;
for (i =1; i <= n ; i++)

s += foo (i) ;
}

}

Fig. 3: Example - Interprocedural Verification

