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Abstract. Counterexample-guided abstraction refinement (CEGAR) is
a commonly-used approach for the automatic construction of an abstract
model of a given program. It uses information learned from infeasible error
paths to guide the verification process. We address the problem of selecting
which information to learn from a given infeasible error path. Previously,
we presented a method that can extract a set of sliced path prefixes from
a given infeasible error path, each of which can be used for refining the
abstract model. We showed that the choice which sliced path prefix is
used for refinement significantly impacts effectiveness and efficiency of the
analysis. In this work, we extend existing work in three directions: (1) we
adopt the idea to generate sliced path prefixes to a new domain, namely
one based on predicate abstraction, (2) we define and investigate several
promising heuristics for selecting an appropriate refinement, and (3) we
enable a completely new combination of a value analysis and a predicate
analysis that does not only find out which information to learn from an
infeasible error path, but automatically decides which analysis is best to be
refined. These contributions allow a more systematic refinement strategy
for CEGAR-based analyses. We implemented the new algorithms in the
verification framework CPAchecker and make our work publicly available.
In a thorough experimental study, we show that refinement selection often
avoids state-space explosion in cases where existing approaches diverge,
and that it can be even more powerful if applied on a higher level where
it dictates which analysis of a combination is best to be refined.

1 Introduction
Abstraction has proven as an indispensable technique to enable the verification
of real-world software (cf. [3, 13, 14]) within reasonable time and resource limits.
Slam [4], for example, uses predicate abstraction [20] for creating an abstract
model of the software. The success of abstraction in software verification is
strongly connected with the advent of the counterexample-guided abstraction
refinement (CEGAR) [17] framework, which is nowadays incorporated in many
successful software verification tools like Slam [4], Blast [6], CPAchecker [8],
and others. This automatic technique proposes to iteratively refine an (initially
coarse) abstract model using infeasible error paths. For the refinement step of
the CEGAR framework Craig interpolation [18] is typically used. Interpolation
yields for two contradicting formulas an interpolant formula that contains less
information than the first formula, but is still expressive enough to contradict
the second formula. In verification, we can use information from interpolation
over an infeasible error path to refine the abstract model [21] and iteratively find
a level of abstraction that is strong enough to prove the specification.



1 extern int nondet_int ( ) ;
2 extern int f ( int x ) ;
3 int main ( ) {
4 int b = nondet_int ( ) ;
5 int i = 0 ;
6 i f (b) {
7 while ( i < 1000) {
8 f ( i ++);
9 }

10 }
11 i f ( i != 0) {
12 assert ( ! b ) ;
13 }
14 }
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Fig. 1: From left to right, the input program, an infeasible error path, and a
“good” and a “bad” interpolant sequence for the infeasible error path

In order to avoid state-space explosion and the divergence of the analysis,
care must be taken to keep the precision of the analysis as abstract and concise as
possible. This, however, is not ensured by standard interpolation-based refinement
strategies, as interpolants are not guaranteed to be minimal. Furthermore, an
infeasible error path might contain several reasons of infeasibility, some of which
might be easier to track and be more beneficial for the further progress of the
analysis than others [12].

Figure 1 shows this via an example: For the given program, an analysis based
on CEGAR, with an initially empty precision, will find the shown infeasible error
path. The infeasibility of this path can be explained independently by both the
valuations of the variables i and b, respectively, as shown by the two example
interpolant sequences. In general, and also in this example, it is advisable to track
information about boolean variables, like the variable b, rather than loop-counter
variables, such as variable i, because the latter may have far more valuations, and
tracking loop counters would usually lead to expensive loop unrollings. Existing
work combines a value analysis and a predicate analysis, with refinements always
being tried first for the value analysis and for the predicate analysis only if
necessary [10]. Because the value analysis cannot track the information b 6= 0, the
given error path of the program can —by the value analysis— only be excluded by
tracking the loop-counter variable i, which consequently would force unrolling the
loop. If instead the predicate analysis could explicitly be chosen for refinement,
then it could track the predicate b 6= 0 for ruling out this path without unrolling
the loop. However, note that the predicate analysis could also start tracking
predicates over the loop-counter variable and unroll the loop. Whether this would
happen depends solely on the internal heuristics of the used interpolation engine.

Thus, for the error path in this example, we would like the verifier to refine
using the predicate analysis, and we would like the interpolation engine to return
the interpolant sequence shown on the left, and avoid interpolant sequences such
as the one on the right, which references the loop counter. However, interpolation
engines cannot distinguish between “good” or “bad” interpolant sequences, because
they do not have access to external information such as if a specific variable is



a loop counter and should therefore be avoided. Furthermore, the result of an
arbitrary interpolation query is not directly controllable from the outside, and
thus we might end up with a refinement that leads the analysis to diverge.

It is possible instead to query the interpolation engine multiple times, each
time targeted at a different reason of infeasibility, or reformulate the original
query in such a way that the result is expected to be “good” for the further course
of the verification process. To this end, our previous work introduced the notion
of sliced prefixes [11, 12] and an approach to extract a set of infeasible sliced
prefixes for an infeasible error path. Each of these infeasible sliced prefixes can be
used for refining the abstract model, and the choice influences the effectivity and
the efficiency of the analysis significantly. We extend these concepts and make in
this work the following key contributions:

1. We extend the generation of infeasible sliced prefixes to the domain of
predicate abstraction.

2. We introduce and evaluate several heuristics for refinement selection that
can significantly improve the effectiveness for both the predicate abstraction
and the value domain.

3. We introduce and evaluate a novel combination of program analyses based on
a value analysis and a predicate analysis, where refinement selection decides
which of the two domains to refine.

4. We implement and make publicly available our work in the open-source
software-verification framework CPAchecker.

2 Related Work

Interpolant Strength. The strength of interpolants [19] can be controlled
by combining proof transformations and labeling functions, so that essentially,
from the same proof of infeasibility, different interpolants can be extracted.
However, to the best of our knowledge, it is not clear how to exactly exploit the
strength of interpolants in order to allow performance improvements in software
verification [19, 23]. In contrast to our approach, interpolant strength is not defined
for value domains but is restricted to predicate abstraction. Furthermore, this
approach requires changes to the implementation of the underlying interpolation
engine, and no interpolation engine we know of has this feature implemented.
Exploring Interpolants. Exploring interpolants in interpolant lattices is an-
other technique to systematically extract a set of interpolants for a given inter-
polation problem [23], with the goal of finding the most abstract interpolant.
Similar to our proposed technique, for a single interpolation problem, the input
to the interpolation engine is remodeled to obtain not only a single interpolant for
a query, but a set of interpolants. This technique also does not require changes to
the underlying interpolation engine, but, same as for controlling the interpolant
strength, is restricted to the domain of predicate abstraction, and it can make
the interpolants only more abstract. Exploring interpolants could be applied
together with refinement selection to generate first the most abstract interpolant
for each infeasible sliced prefix and then select the most appropriate refinement.



Unsatisfiability Cores. Current satisfiability modulo theories (SMT) solvers
can extract unsatisfiability cores [16] from a proof of unsatisfiability, and one
might note an analogy between a set of unsatisfiability cores extracted from
a (SMT) formula and a set of infeasible sliced prefixes extracted by Alg. 1.
Note, however, that the concept of infeasible sliced prefixes is more general,
because it is applicable also to domains not based on (SMT) formulae, as,
e.g., value domains [12]. Furthermore, while SMT solvers typically strive for
small unsatisfiability cores [16], this alone does not guarantee a verifier to be
effective, and to the best of our knowledge, we are not aware of any work that
extracts during a single refinement several unsatisfiability cores, with the goal of
performing some kind of refinement selection, as proposed in this work.
Combination of Value Analysis and Predicate Analysis. A CEGAR-based
combination of a value analysis and a predicate analysis, with refinement of the
abstract model in one of the two domains for every found infeasible error path,
has been proposed before [10]. However, so far there was no selection of which
domain should be used for refinement, as the strategy was always to refine, if
possible, the (supposedly cheaper) value analysis first, and only use the predicate
analysis if an infeasible error path is encountered that cannot be ruled out by the
value analysis (and thus no refinement for the value analysis is possible at all).
While this approach improves the power of the analysis, it may still easily lead to
divergence, for example, if an infeasible error path is found that the value analysis
can only rule out by tracking a loop-counter variable. The predicate analysis,
which maybe could rule out this infeasible error path more efficiently than by
unrolling the loop, would not even be considered. With our new approach, we
can systematically select the abstract domain that is the most appropriate one
for refinement for every single infeasible error path.

3 Background
Our approach is based on several existing concepts, and in this section we remind
the reader of some basic definitions and our previous work in this field [9, 10, 12].
Programs, Control-Flow Automata, States, Paths, Precisions. We use
basic definitions from previous work [12]. We restrict the presentation to a simple
imperative programming language, where all operations are either assignments or
assume operations, and all variables range over integers. A program is represented
by a control flow automaton (CFA). A CFA A = (L, l0, G) consists of a set L
of program locations, which model the program counter, an initial program
location l0 ∈ L, which models the program entry, and a set G ⊆ L×Ops× L of
control-flow edges, which model the operations that are executed when control
flows from one program location to the next. The set of program variables that
occur in operations from Ops is denoted by X. A verification problem P = (A, le)
consists of a CFA A, representing the program, and a target program location le ∈
L, which represents the specification, i.e., “the program must not reach location le”.

A concrete data state of a program is a variable assignment cd : X → Z,
which assigns to each program variable an integer value; the set of integer values
is denoted as Z. A concrete state of a program is a pair (l, cd), where l ∈ L is a



program location and cd is a concrete data state. The set of all concrete states
of a program is denoted by C, a subset r ⊆ C is called region. Each edge g ∈ G
defines a labeled transition relation g→ ⊆ C × {g} × C. The complete transition
relation → is the union over all control-flow edges: → =

⋃
g∈G

g→. We write c g→c′
if (c, g, c′) ∈ →, and c→c′ if there exists a g with c g→c′.

An abstract data state represents a region of concrete data states. How an
abstract data state is represented depends on the abstract domain being used.
We write [[s]] for the set of concrete data states represented by an abstract data
state s. The abstract data states that represent the empty set and the full set of
concrete data states are denoted as ⊥ and >, respectively ([[⊥]] = ∅, [[>]] = C).

The semantics of an operation op ∈ Ops is defined by the strongest-post
operator SPop(·): given an abstract data state s, SPop(s) represents the set of
concrete data states that are reachable from the concrete data states in the set [[s]]
by executing op. This operator is defined by the abstract domain being used.

A path σ is a sequence 〈(op1, l1), . . . , (opn, ln)〉 of pairs of an operation and
a location. The path σ is called program path if for every i with 1 ≤ i ≤ n
there exists a CFA edge g = (li−1, opi, li) and l0 is the initial program location,
i.e., the path σ represents a syntactic walk through the CFA. The result of
appending the pair (opn, ln) to a path σ = 〈(op1, l1), . . . , (opm, lm)〉 is defined as
σ ∧ (opn, ln) = 〈(op1, l1), . . . , (opm, lm), (opn, ln)〉.

Every path σ = 〈(op1, l1), . . . , (opn, ln)〉 defines a constraint sequence
γσ = 〈op1, . . . , opn〉. The conjunction γ ∧ γ′ of two constraint sequences
γ = 〈op1, . . . , opn〉 and γ′ = 〈op′1, . . . , op′m〉 is defined as their concatenation,
i.e., γ ∧ γ′ = 〈op1, . . . , opn, op

′
1, . . . , op

′
m〉, and γ is contradicting if SPγ(>) = ⊥.

The semantics of a path σ = 〈(op1, l1), . . . , (opn, ln)〉 is defined as the suc-
cessive application of the strongest-post operator of the abstract domain
being used to each operation of the corresponding constraint sequence γσ:
SPγσ (v) = SPopn(. . . SPop1

(v) . . .). The set of concrete program states that result
from running a program path σ is represented by the pair (ln,SPγσ (>)). A path
σ is feasible if SPγσ (>) is not contradicting, i.e., SPγσ (>) 6= ⊥. A concrete
state (ln, cdn) is reachable, denoted by (ln, cdn) ∈ Reach, if there exists a feasible
program path σ = 〈(op1, l1), . . . , (opn, ln)〉 with cdn ∈ [[SPγσ (>)]]. A location l is
reachable if there exists a concrete data state cd such that (l, cd) is reachable.
A program is safe (the specification is satisfied) if le is not reachable. A program
path σ = 〈(op1, l1), . . . , (opn, le)〉, which ends in le, is called error path.

The precision is a function π : L → 2Π , where Π depends on the abstract
domain used by the analysis. It assigns to each program location some analysis-
dependent information that defines the level of abstraction. For example, if using
predicate abstraction, the set Π is a set of predicates over program variables.

Counterexample-Guided Abstraction Refinement. CEGAR [17] is a suc-
cessful technique used for automatic, iterative refinement of an abstract model
and aims at automatically finding a suitable level of abstraction that is precise
enough to prove the specification and as abstract as possible to enable an effi-
cient analysis. It is based on the following components: a state-space exploration
algorithm, which computes the abstract model, a precision, which determines the



Algorithm 1 ExtractSlicedPrefixes(σ), taken from [12]
Input: an infeasible path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: a non-empty set Σ = {σ1, . . . , σn} of infeasible sliced prefixes of σ
Variables: a path σf that is always feasible
1: Σ := {}
2: σf := 〈〉
3: for each (op, l) ∈ σ do
4: if SPσf∧(op,l)(>) = ⊥ then
5: // add σf ∧ (op, l) to the set of infeasible sliced prefixes
6: Σ := Σ ∪ {σf ∧ (op, l)}
7: σf := σf ∧ ([true], l) // append no-op
8: else
9: σf := σf ∧ (op, l) // append original pair
10: return Σ

current level of abstraction, a feasibility check, which decides if an error path is
feasible, and a refinement procedure to refine the precision of the abstract model.

At first, the state-space exploration algorithm computes the abstract state
space that is reachable according to the current precision, which initially is coarse
or even empty. If all program states have been exhaustively checked, and no error
was found, then the CEGAR algorithm terminates and reports the verdict true,
i.e., the program is safe. Otherwise, i.e., if an error path was found in the abstract
state space, this error path is passed to the feasibility check, and if the path turns
out to be feasible, meaning, there exists a corresponding concrete error path,
then this error path represents an actual violation of the specification and the
CEGAR algorithm terminates, reporting false as verdict for the program. If,
however, the error path is infeasible, i.e., it does not correspond to a concrete
program path, then the precision was too coarse and needs to be refined. The
refinement procedure takes as input the infeasible error path and returns a new
precision that is strong enough that the state-space exploration algorithm will be
able to exclude the current infeasible error path when it continues to build the
abstract state space in the next CEGAR iteration. In practice, the refinement
procedure is typically based on interpolation [18], which was first applied to the
domain of predicate abstraction [21], and later to value-analysis domains [10].

Infeasible Sliced Prefixes for Refinement Selection. A path φ =
〈(op1, l1), . . . , (opw, lw)〉 is a sliced prefix [12] of a program path σ =
〈(op1, l1), . . . , (opn, ln)〉 if w ≤ n and for all 1 ≤ i ≤ w, φ.li = σ.li and
(φ.opi = σ.opi or (φ.opi = [true] and σ.opi is an assume operation)) holds, i. e.,
a sliced prefix results from a program path by omitting pairs of operations and
locations from the end, and possibly replacing some assume operations by no-op
operations. Algorithm 1, extracts from a single infeasible path a set of (more
abstract) infeasible sliced prefixes.

CEGAR-based analyses have to refine the abstract model based on infeasible
error paths. The ability to extract multiple infeasible sliced prefixes from a single
infeasible error path now enables refinement selection [12]: Instead of using an
infeasible error path directly for refinement, and being stuck with the arbitrary
and potentially “bad” interpolants that the heuristics of an interpolation engine



Algorithm 2 Refine+(σ), taken from [12]
Input: an infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: a precision π ∈ L → 2Π

Variables: a set Σ of infeasible sliced prefixes of σ,
a mapping τ from infeasible sliced prefixes to precisions

1: Σ := ExtractSlicedPrefixes(σ)
2: // compute precisions for each infeasible sliced prefix
3: for each φj ∈ Σ do
4: τ(φj) := Refine(φj) // c. f. standard Algorithm Refine, e. g., from [12]
5: // select a refinement based on the sliced prefixes and their respective precision
6: return SelectRefinement(τ)

produces, one can create the infeasible sliced prefixes for the infeasible error path,
calculate the refinement based on each of them (using the regular refinement
procedure), and then select the refinement that is the most promising, i.e., which
will hopefully prevent the analysis from diverging. This is possible because each
refinement for an infeasible sliced prefix is also a valid refinement for the original
infeasible path [12]. Algorithm 2 is a drop-in replacement for the refinement
procedure of CEGAR-based analyses that uses infeasible sliced prefixes and a
heuristic for refinement selection to select an appropriate refinement. First, this
algorithm calls ExtractSlicedPrefixes (Alg. 1) to extract a set of infeasible sliced
prefixes. Second, it computes precisions for each of the infeasible sliced prefixes
using a standard refinement procedure and stores them in the mapping τ . Third,
for refinement of the abstract model, one of the precisions for the infeasible sliced
prefix is selected by a heuristic (in function SelectRefinement). The heuristic can
base its decision on information contained in the infeasible sliced prefixes, as well
as on details about the precisions, e. g., which variables are referenced in there.

Extracting good precisions from the infeasible error paths is key to the CEGAR
technique. Experiments have shown that the heuristic for refinement selection
influences significantly the quality of the precision, and thus, the effectiveness of
the analysis [12]. We are now interested in studying such heuristics.

4 Sliced Prefixes for the Predicate-Abstraction Domain
While refinement selection is a domain-independent technique, previous work [12]
has defined it only for the domain of abstract variable assignments (value analysis).
We extend it here to other domains.

In order to support refinement selection using Alg. 1 (ExtractSlicedPrefixes)
and Alg. 2 (Refine+), an abstract domain must define a lattice E of abstract
data states, which represent sets of concrete states, and states >,⊥ ∈ E, which
represent the full and the empty set of concrete states, respectively ([[>]] = C,
[[⊥]] = ∅). The abstract domain must also define a strongest-post operator SPop(·)
that takes an abstract data state e and returns the strongest abstract data state
that represents the result of applying op on every concrete state represented by e:
SPop(e) = min{e′ ∈ E | ∀c ∈ [[e]] : ∀(l, op, l′) ∈ G : ∃c′ ∈ [[e′]] : (l, c)

g→(l′, c′)}. (In
case the minimum is not unique, the operator may return any of the minimal
abstract states.) Note that the strongest-post operator needs to be as precise as



possible within the abstract domain. The set Π of possible precision elements can
be defined arbitrarily for the abstract domain. Furthermore, a procedure Refine
needs to be defined that takes an infeasible path represented as a constraint
sequence and returns a new precision π : L → 2Π that allows the analysis to
rule out the given infeasible path. These requirements are typically satisfied by
any abstract domain that is used with CEGAR and interpolation. In addition
to using the extended refinement procedure Refine+ inside the CEGAR loop, no
further changes are necessary.

For the domain of predicate abstraction [9, 20], we define the set E of abstract
states as the set of all boolean combinations of all predicates over program
variables. An abstract data state e represents all concrete states that satisfy e.
The abstract data state > is true, and ⊥ is false. Two abstract data states are
considered equal if they are equivalent. The strongest post operator returns the
strongest boolean combination of all predicates over program variables that holds
after executing the given operation. The set Π is the set of all predicates over
program variables. The procedure Refine is typically based on standard SMT
interpolation after converting the given constraint sequence into formulae, and
extracting predicates from the found interpolants.

Note that for a given infeasible path, the set of infeasible sliced prefixes
extracted by the procedure ExtractSlicedPrefixes may differ depending on the
abstract domain. This results from the fact that some abstract domains are
stronger than others. As an example, consider the contradicting constraint
sequence σ = 〈(a < 0), (a = 0), (a = 1)〉 over a program variable a. Using the
strongest-post operator of the predicate analysis, ExtractSlicedPrefixes returns the
set {〈(a < 0), (a = 0)〉, 〈(a < 0), true, (a = 1)〉} with two infeasible sliced prefixes.
However, the value analysis cannot use the fact that a given variable, here a, is
less than zero, and thus, can only extract from σ the single constraint sequence
〈(a < 0), (a = 0), (a = 1)〉, which is equal to the original constraint sequence σ.

Accordingly, a path that is considered infeasible by one analysis might even
be considered feasible by a weaker analysis.

5 Heuristics for Refinement Selection
After computing a number of refinements for a given infeasible error path, Alg. 2
delegates to a heuristic for selecting the most promising refinement (procedure
SelectRefinement). The heuristic receives as input each infeasible sliced prefix
associated with the precision that was computed for the prefix. Heuristics can
be as simple as choosing, for example, the shortest or longest infeasible sliced
prefix, but they can also try to assess the quality of each possible refinement,
for example, by looking at the variables appearing in the new precisions. In the
following, we present several heuristics for refinement selection.
Selection by Domain-Type Score of Precision. One possible heuristic would
be to look at the types of variables in the resulting precisions and preferring
refinements with simpler or smaller types. However, in many cases the type of a
variable is quite coarse and distinguishing variables on a more fine-grained level
can be beneficial for verification. For example, in C the type int is typically



used even for variables with a boolean character. To this end, domain types [2]
have been proposed, which are orthogonal to the type system of a programming
language and allow to classify program variables according to their actual range
or usage in a program. With domain types, one can distinguish for example
between effectively boolean variables, variables that are used in equality relations,
in arithmetic expressions, or in bit-level operations, and variables that share
characteristics of a loop counter.

Loop counters are a class of variables that ideally should be abstracted away
when constructing the abstract model during the verification of a program. Yet,
as loop-counter variables occur in assume operations at the loop exit, they often
relate to a reason of infeasibility of a given infeasible error path, and thus can
easily end up in the interpolant sequence produced by the interpolation engine
and in the following would be tracked by the analysis. So, a promising heuristic
is to avoid precisions with loop counters and prefer precisions with only variables
of “simpler” (e.g., boolean) types. The rationale behind this heuristic is that
variables with only a small number of different valuations have less influence
on the growth of the state-space, and therefore are to be preferred. If, however,
reasoning about the specification demands unrolling a loop, than the termination
of the verification process may be delayed by first refining towards other, irrelevant
properties of the program.

Formally, given a precision π : L 7→ 2Π and a function υ : X 7→ N
that maps each variable to its respective domain-type score (which is low for
boolean variables, but high for loop-counter variables), we define the domain-
type score of a precision as the product of the domain-type scores of ev-
ery variable appearing in the precision for at least one program location:
DomainTypeScoreOfPrecision(π, υ) =

∏
x∈X υ(x) with X ⊆ X defined as the

set of all variables appearing in
⋃
l∈L π(l).

Selection by Depth of Pivot Location of Precision. The structure of a re-
finement, i.e., which parts of the path and the state space are affected, can also be
used for refinement selection. For example, refining locally near the error location
may have a different effect than selecting a refinement close to the initial program
location. We define as pivot location the first location in the current infeasible error
path where the generated precision is not empty. When using lazy abstraction [22],
this is typically the location from which on the reached state space is pruned and
re-explored after the refinement. The depth of this pivot location can be used for
comparing possible refinements and selecting one of them. Formally, for a preci-
sion π produced for a path σ = 〈(op1, l1), . . . , (opn, ln)〉, the depth of the pivot lo-
cation is defined as PivotDepthOfPrecision(π, σ) = min {i ∈ [1, . . . , n] | π(li) 6= ∅}.
Note that the minimum always exists because there is always at least one location
with a non-empty precision.

Selecting a refinement with a deep pivot location (near the end of the path)
is similar to counterexample minimization [1]. It has the advantage that (if
using lazy abstraction) less parts of the state space have to be pruned and
re-explored, which can save time. Furthermore, the precision will specify to track
only information local to the error location and thus avoid blowing up the state



space in other parts of the program. However, preferring a deep pivot location
may have negative effects if some information near the entry point of the program
is necessary for proving program safety (e.g., initialization of global variables).
Refining at the beginning of an error path might also help to rule out a large
number of similar error paths with the same prefix, which might be discovered
and refined individually with the opposite strategy.

Selection by Width of Precision. Another heuristic that is based on the
structure of precisions is to use the number of locations in the infeasible error
path for which the generated precision is not empty, which we define as the width
of a precision. This corresponds to how long the analysis has to track additional
information during the state-space exploration for ruling out this infeasible error
path, and thus may correlate to how much effort is needed. Similarly to the depth
of the pivot location, this heuristic also deals with some form of “locality”, but
instead of using the locality in relation to the error location, it uses the locality
of the information needed to exclude the infeasible error path.

Formally, for a precision π produced for a path σ = 〈(op1, l1), . . . , (opn, ln)〉
the width of the precision is defined as WidthOfPrecision(π, σ) = max I−min I+1,
where I = {i ∈ [1, . . . , n] | π(li) 6= ∅} is the set of indices along the path with a
non-empty precision. (Note that if a precision is non-empty for two locations li
and lk along a path, it will also be non-empty for all locations between li and lk,
else the information tracked at li would not be relevant for ruling out the path.)

While it may seem at first glance that a high locality (i.e., a narrow precision)
is always preferable because it means tracking additional information in a small
part of the state space, note that the locality of loop counters is often high,
because in many loops the statements for assigning to the loop counter are close
to the loop-exit edges. Thus selecting a narrow precision might often lead to the
tracking of loop counters and unrolling of loops.

Selection by Length of Infeasible Sliced Prefix. Two possible heuristics for
refinement selection are to simply select the shortest and longest infeasible sliced
prefixes, respectively. However, while both these heuristics are legitimate and
may work on some benchmarks, we do not regard them as systematical, because
they do not attempt to specifically select a refinement that will be beneficial for
the progress of the analysis, and any success in using them will solely depend on
the internal structure of the analyzed programs.

Further Heuristics. In this section, we presented and motivated several promis-
ing heuristics, and of course one can always define and experiment with further
heuristics. For example, in the RERS challenge 2014, a heuristic specifically
tailored to the characteristics of the event-condition-action systems used in that
competition, improved the effectiveness of our tool CPAchecker and allowed it
to obtain two gold and one bronze medals, as well as two special achievements 1.
This shows that using domain knowledge in the refinement step of the CEGAR
loop is a promising direction, and the definition of an according heuristic for
refinement selection is a suitable place to do so.

1 Results available at http://www.rers-challenge.org/2014Isola/

http://www.rers-challenge.org/2014Isola/


6 Refinement Selection for Combination of Analyses
A combination of two different analyses, such as a value analysis and a predicate
analysis, can be beneficial because different facts necessary to prove program
safety can be tracked by the analysis that can track a fact most easily [7, 10].
The refinement step is a natural place for choosing which of the analyses should
track new information. Thus we extend the idea of refinement selection from an
intra-analysis selection to an inter-analysis selection: After an infeasible error
path has been found, we can extract the infeasible sliced prefixes according to
the semantics of each of the analyses, use the standard refinement procedure of
each analysis to compute a new precision for each of the infeasible sliced prefixes,
and then give all of them to a combined heuristic for refinement selection. This
heuristic can then decide not only which infeasible sliced prefix should be used
for refining the abstract model, but also which of the analyses should be refined.

This can improve the effectiveness of the analysis, for example, if there is an
infeasible error path that forces the analysis to track the information that a certain
variable is within some interval. Refining using the value analysis would mean to
enumerate all possible values of this variable, whereas the predicate analysis could
track this more efficiently using inequality predicates. Previously, combinations
of such analyses statically preferred the (supposedly cheaper) refinement of the
value analysis [10], which can be suboptimal, as shown.

7 Evaluation
In the following, we present the results of applying refinement selection to several
analyses. In order to evaluate the presented heuristics for refinement selection,
we have integrated them into the open-source software-verification framework
CPAchecker [8] 2. We also implemented refinement selection for the predicate-
abstraction domain [9] in CPAchecker, such that it is now supported for both
the value analysis [10] and predicate abstraction.
Setup. For benchmarking we used machines with two Intel Xeon E5-2650v2
eight-core CPUs with 2.6GHz and 135GB of memory. We limited each verification
run to two CPU cores, 15 minutes of CPU time, and 15GB of memory. We
measured CPU time and report it rounded to two significant digits. BenchExec 3

was used as benchmarking framework to ensure precise and reproducible results.
We used the branch refinementSelection in revision 16 781 of CPAchecker
for our experiments, and we make the tool, the benchmarks, and the full results,
available on our supplementary web page 4.
Benchmarks. For evaluation of our novel approach, we use C programs from
SV-COMP’15 [5]. From the 5 803 tasks used in SV-COMP’15, we select those
tasks that deal with reachability properties, and exclude tasks from the categories
“Arrays”, “HeapManipulation”, “Concurrency”, and “Recursion”, because they are
not supported by both analyses we evaluate. Furthermore, we present here only
2 Available under the Apache 2.0 License from http://cpachecker.sosy-lab.org/
3 https://github.com/dbeyer/benchexec
4 http://www.sosy-lab.org/∼dbeyer/cpa-ref-sel/

http://cpachecker.sosy-lab.org/
https://github.com/dbeyer/benchexec
http://www.sosy-lab.org/~dbeyer/cpa-ref-sel/


results for those tasks where a refinement selection is actually possible, i. e., where
at least one refinement with more than one infeasible sliced prefix is performed.
Thus, the set of all verification tasks in our experiments contains 2 827 and
2 638 verification tasks for the predicate and value analysis, respectively.
Configuration. In order to properly evaluate the effect of the precisions that are
chosen by the refinement-selection heuristic, we restart the state-space exploration
with the new precision from the initial program location after each refinement.
Otherwise, i.e., if we were using lazy abstraction and re-exploring only the
necessary part of the state space, not only the new precision but also the amount
of re-explored state space would differ depending on the selected refinement,
which would have an undesired impact on the performance. For the same reason,
we also configure the analysis to interpret the precision globally, i. e., instead of
a mapping from program locations to sets of precision elements, the discovered
precision elements get used at all program locations (note that this does not
change the precision when viewed by the refinement-selection heuristic, but only
the precision usage during the state-space exploration).

The predicate analysis is configured to use single-block encoding [9], because
for larger blocks there is no single error path per refinement, but instead a
sequence of blocks encoding a set of potential error paths, and thus extracting
infeasible sliced prefixes from a single path and using them for refinement selection
is not applicable anymore. As SMT solver and interpolation engine, the predicate
analysis uses SMTInterpol [15].
Refinement-Selection Heuristics. We experiment with implementations of the
procedure SelectRefinement in Alg. 2 based on the heuristics from Sec. 5, specif-
ically such that it returns the precision for a (1) short or (2) long infeasible
sliced prefix, the precision with a (3) good or (4) bad domain-type score 5, a
precision that is (5) narrow or (6) wide, or a precision with a (7) shallow or
(8) deep pivot state. For comparison, we report the results of using random choice
as heuristic for refinement selection. We also experiment with combinations of
heuristics, where at first a primary heuristic is asked, and if this does not lead
to a unique selection, a secondary heuristic is used as a tie breaker to select
one of those refinements that were ranked best by the primary heuristic. We
use the heuristics “good domain-type score” and “narrow precision” for these
combinations. In all configurations of refinement selection, if necessary, we use
the length of the infeasible sliced prefix as a final tie breaker, and select from
equally ranked refinements the one with the shortest infeasible sliced prefix 6.

In the following, we compare the potential of these selection heuristics against
each other, as well as against the case where the finding of a refinement is solely
left to the interpolation engine, i. e., where no refinement selection is performed.
Refinement Selection for Predicate Analysis. We evaluate the presented
heuristics for refinement selection when applied to predicate abstraction. Table 1
5 We do not expect the precision with the worst domain-type score to be actually
useful, we report its results merely for comparison.

6 Experiments showed no relevant difference between selecting the shortest or the
longest infeasible sliced prefix in case of a tie in the primary selection heuristic.



Table 1: Number of solved verification tasks for predicate analysis without and
with refinement selection using different heuristics

```````````Heuristic
Tasks All Tasks ControlFlowInt. DD64 ECA ProductLines Seq.

2 827 35 678 1 140 597 244

— (No Refinement Selection) 1 139 34 472 161 325 42

Length of Prefix Short 1 259 34 427 252 370 78
Long 1 301 18 481 311 330 66

Domain-Type Score Good 1 284 34 491 243 342 75
Bad 1 134 23 399 254 298 64

Width of Precision Narrow 1 289 29 430 314 346 70
Wide 1 253 27 477 281 312 61

Depth of Precision Shallow 1 225 25 464 246 340 57
Deep 1 258 28 418 296 351 64

Random 1 328 34 467 295 345 82

Combinations Good&Narrow 1363 30 494 314 345 81
Narrow&Good 1 339 28 474 314 354 70
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Fig. 2: Quantile plot showing the results for predicate analysis without and with
refinement selection using different heuristics

shows the number of verification tasks that the predicate analysis could solve
without refinement selection, and with refinement selection using the heuristics
and combinations of heuristics listed above. The table lists the results for the full
set of 2 827 verification tasks (column “All Tasks”) that fit the criterion defined
in the previous section, as well as for several subsets corresponding to those
categories of SV-COMP’15 (“ControlFlowInteger”, “DeviceDrivers64”, “ECA“,
“ProductLines“, and “Sequentialized”), where refinement selection has a significant
impact. Numbers written in bold digits highlight the best configuration(s) in
each column. Figure 2 shows a quantile plot with the results on the full set of
tasks for the most interesting refinement-selection heuristics, from which some
performance characteristics can be seen.



Refinement Selection Matters. For the full set of tasks, the analysis without
refinement selection is worse than all heuristics for refinement selection, except
for the intentionally bad heuristic “bad domain-type score”. Additionally, the
analysis without refinement selection is not the best for any of the shown subsets
of tasks, except for “ControlFlowInteger”, where it is tied for first with others.
This shows that the heuristics of the interpolation engine (with which we are
stuck without refinement selection) are not well-suited for verification, and that
practically any deviation away from the heuristics of interpolation engine pays off,
as witnessed by the relatively good results for the random refinement selection.

Discussion. As Table 1 shows, none of the basic heuristics works best for all
classes of programs, but instead in each subset a different heuristic is the best.
In the following, we would like to highlight and explain a few interesting results
for some subsets of tasks and heuristics. Note that the following discussion is
based on the investigation of some program samples and our understanding of
the characteristics of the programs in the SV-COMP categories, and we do not
claim that our explanations are necessarily true for all programs.

The programs of the subset “DeviceDrivers64” contain many functions and
loops, and aspects about the specification are encoded in global boolean variables
that are checked right before the error location. Hence, the heuristic “good
domain-type score” is effective as it successfully selects precisions with the “easy”
and relevant boolean variables. The heuristics “long prefix”, “wide precision” and
“shallow depth” all happen to work well, too, because those relevant variables are
initialized at the beginning and read directly before the error location, meaning
that corresponding infeasible sliced prefixes will be long, and resulting precisions
containing them will be “shallow” and “wide“ (starting to track information close
to the program entry, and all the way to the error location). Their opposing
heuristics tend to prefer precisions about less relevant local variables.

The subset “ECA” contains artificial programs that represent event-condition-
action systems with up to 200 000 lines of code. Most of these programs have only
a few variables, and for the larger part of these programs, all the variables have
the same domain type, and thus the heuristic using the domain-type score cannot
perform a meaningful refinement selection here and degenerates to a heuristic
about the number of distinct variables in the precision. Note also, that relying
on the internal heuristics for interpolant generation of the SMT solver works
particularly bad for these programs.

The programs of the subset “ProductLines” encode state machines and contain
a high amount of global variables. In case they contain a specification violation,
the bug is often rather shallow, although the full state space is quite complex.
This explains why heuristic “short prefix” works especially well here, as this
heuristic leads to exploring the state space as close as possible to the initial
program location, driving the verification towards shallow bugs.

Combination of Refinement-Selection Heuristics. The above results show that it
is worthwhile to experiment with combinations of heuristics in order to find a
configuration that works well for a wide range of programs. We used the two
heuristics “good domain-type score” and “narrow precision”, which are not only



Table 2: Number of solved verification tasks for value analysis without and with
refinement selection using different heuristics

```````````Heuristic
Tasks All Tasks DeviceDrivers64 ECA ProductLines

2 638 578 1 140 597

— (No Refinement Selection) 1 740 407 585 458

Length of Prefix Short 1 656 424 491 456
Long 1 630 484 511 361

Domain-Type Score Good 1 761 494 573 408
Bad 1 524 412 480 359

Width of Precision Narrow 1 689 422 510 471
Wide 1 608 482 494 356

Depth of Precision Shallow 1 663 473 521 383
Deep 1 729 415 536 489

Random 1 626 438 524 379

Combinations Good&Narrow 1774 494 573 421
Narrow&Good 1 718 494 510 427

two of the most successful basic heuristics for the predicate analysis, but are
also somewhat complimentary (one has a weak spot where the other is strong,
and vice versa). Indeed, regardless of in which order the two heuristics are
combined, the combination is the most successful configuration for all tasks. The
combination with “good domain-type score” as primary and “narrow precision”
as secondary heuristic manages to solve 224 (20%) more tasks than without
refinement selection and is best or close to best in most subsets of tasks.

Refinement Selection for Value Analysis. We now compare the different
refinement-selection heuristics when used together with a value analysis. The
results are shown in Table 2, which is structured similarly to Table 1, but contains
only results for the full set of 2 638 tasks and for the subsets corresponding to the
SV-COMP’15 categories “DeviceDrivers64”, “ECA”, and “ProductLines”, because
for the remaining categories there is no relevant difference in the results for the
value analysis. First it can be seen that the configuration without refinement
selection is comparatively good for value analysis, as opposed to predicate analysis,
where it is the second worst configuration. This can be explained with the fact that
the interpolation engine for the value analysis is implemented in CPAchecker
itself and is thus designed and tuned specifically for software verification, whereas
the predicate analysis uses an off-the-shelf SMT solver as interpolation engine,
which is not designed specifically for software verification. However, for specific
subsets of tasks, refinement selection is also effective for the value analysis.

Similarly to the predicate analysis, none of the heuristics is the best for all
classes of programs. Again, the basic heuristic that works best on the set of all
tasks is “good domain-type score”, which is especially well-suited for the subset
“DeviceDrivers64” for the same reasons explained above. In fact, note that for the
basic heuristics and subsets of tasks presented in Tables 1 and 2, the number of
tasks solved by the value analysis often correlates closely to the number of tasks
solved by the predicate analysis. On notable exception is for the subset “ECA”,



Table 3: Number of solved verification tasks for combinations of analyses without
and with refinement selection (PA: predicate analysis; VA: value analysis)

```````````Analysis
Tasks All Tasks DD64 ECA Loops ProductLines Seq.

3 563 1 240 1 140 120 597 261

PA 1 824 1 026 160 80 325 42
VA + PA 2 300 993 503 69 422 118
VARefSel + PARefSel 2384 1072 521 68 404 124
(VARefSel + PARefSel)RefSel 2384 1 065 521 79 403 120

where the heuristic “good domain-type score” works well for the value analysis,
but not for the predicate analysis. The reason why this is different is that the
value analysis anyway solves far more instances than the predicate analysis, and
for some of the harder problems —the ones the predicate analysis cannot solve,
but the value analysis can— there exist variables with different domain-types,
hence, allowing the heuristic “good domain-type score” to be more effective.

Finally, the combination of the refinement-selection heuristics “good domain-
type score” and “narrow precision” is again the most effective configuration for
the set of all tasks, although the increase over the heuristic “good domain-type
score” alone is here not as large as it is for the predicate analysis shown before.
Refinement Selection for Combination of Analyses. We now evaluate
the effectiveness of using refinement selection for a combination of analyses. In
order to do so, we compare four different analyses: (1) an analysis based on
predicate abstraction alone without refinement selection, (2) a combination of
a value analysis and a predicate analysis (both without refinement selection),
where refinements are always tried first with the value analysis and the predicate
analysis is only used if the value analysis cannot rule out an error path, (3) the
same combination of a value analysis and a predicate analysis, but now with
refinement selection used independently in both domains, and (4) our novel
combination presented in Sec. 6 of a value analysis and a predicate analysis,
where refinement selection is not only used within each domain but also to decide
which domain to prefer in a refinement step. For all configurations with refinement
selection here we use the combination of the heuristics “good domain-type score”
and “narrow precision”. We keep the same setup for the experiment as before, but
use a new selection criteria, namely, we only consider verification tasks where an
inter-analysis refinement selection is actually possible, i. e., where the analysis
based on our novel combination needs to perform at least one refinement.
Results. Table 3 shows the results for this comparison. Confirming previous
results [10], even a combination of value analysis and predicate analysis without
refinement selection (row “VA + PA”) is more effective than the predicate analysis
alone (row “PA”). However, this combination also has weak spot, as it fails in
“DeviceDrivers64” due to state-space explosion where the predicate analysis alone
succeeds. Row “VARefSel + PARefSel” shows that using refinement selection is
effective not only when applied to individual analyses, but also for combinations of
analyses. Finally, the fourth configuration (row “(VARefSel + PARefSel)RefSel”)
takes the idea of refinement selection to the next level. While in the other



combinations the value analysis is always refined first, and the predicate analysis
only if the value analysis cannot rule out an infeasible error path, our novel
combination uses refinement selection to decide whether a refinement for the
value or for the predicate analysis is thought to be more effective. On the full
set of tasks, this approach is only tied with the previous approach, but the
encouraging results in the subset “Loops” show that it works as intended. In this
subset the plain predicate analysis is best (row “PA”), and a naive combination is
less suited for such programs (rows “VA + PA” and “VARefSel + PARefSel”). If,
however, we apply inter-analysis refinement selection to decide which analysis to
refine for a given error path, as done by our novel approach, then this does not
only clearly out-perform the plain predicate analysis on “All Tasks”, but it also
matches the effectiveness of the predicate analysis for programs where reasoning
about loops is essential.

8 Conclusion
We have shown that refinement selection has a significant impact on the effec-
tiveness and efficiency of CEGAR-based analyses. We have presented a variety
of heuristics for utilizing this potential and evaluated them on a wide set of
benchmarks, showing that we can improve the performance and the number of
solved tasks significantly by selecting an appropriate refinement without any
further changes to the analysis. This result is valid for the two abstract domains
that are most commonly used with CEGAR (predicate abstraction and value
analysis). Furthermore, if using a combination of both a value and a predicate
analysis, refinement selection can now be used to systematically select the most
appropriate domain for refining the abstract model using an infeasible error path,
as opposed to previous work, which always refines a predefined domain first.

As future work, besides more heuristics and combinations of them, an inter-
esting direction would be to have heuristics that use dynamic information from
the analysis, for example penalizing a variable not if it can be statically detected
as a loop counter, but if the number of values that are found for this variable
during the analysis exceeds a certain bound, as it is done in dynamic precision
adjustment [7]. We intend to extend the support for refinement selection in the
predicate-abstraction domain to adjustable-block encoding [9]. Especially for
predicate abstraction, one could also devise a heuristic that does not only look
at the domain type of variables, but also at how these variables appear in the
precision (for example, an equality predicate for a loop counter usually leads to
loop unrolling, while an inequality predicate can be more efficient).
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