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Abstract. We describe ASTRA (see http://rw4.cs.uni-saarland.de/

~rtc/astra/), a tool for the static analysis of infinite-state graph trans-
formation systems. It is based on abstract interpretation and implements
cluster abstraction, i.e., it computes a finite overapproximation of the
set of reachable graphs by decomposing them into small, overlapping
clusters of nodes. While related tools lack support for negative application
conditions, accept only a limited class of graph transformation systems,
or su↵er from state-space explosion on models with (even moderate)
concurrency, ASTRA can cope with scenarios that combine these three
challenges. Applications include parameterized verification and shape
analysis of heap structures.
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1 Introduction

Graph transformation is an intuitive formalism: One begins with a start graph
and, by nondeterministic choice, matches and applies transformation rules to
it, based on subgraph replacement. We are mainly interested in analysis of the
graphs reachable by successive application of rules, to verify safety properties,
for example.

One of the applications of graph transformation is modelling parameterized
concurrent systems. Reasoning about such systems is hard because the state
space is infinite. Hence, abstraction methods are required. In this paper, we
present ASTRA, our tool for abstraction of graph transformation systems.

A number of tools are available that use abstract interpretation (each based on
a di↵erent abstraction) to compute a finite over-approximation of the reachable
graphs: AUGUR [7] uses a petri net based abstraction and had success with
interesting examples of concurrent systems; it does not, however, support negative
application conditions. hiralysis [5] is based on partner abstraction. It does
o↵er negative application conditions and can analyze some concurrent systems,
but requires input grammars to satisfy some rather restrictive “friendliness”
properties. GROOVE [9] has an implementation of neighborhood abstraction,
which has no such restriction, supports negative application conditions, but
analysis of systems with concurrency leads to state space explosion.



2 Cluster abstraction

Our tool, ASTRA, implements cluster abstraction [3]: We consider each node in
the graph (to become the core node of a cluster) plus its respective adjacent nodes
(to become the periphery). We merge two or more adjacent nodes into summary
nodes if both their labels and configuration (spoke) of edges to the core node
are equal. If, by this summarization, two merged nodes disagree on to existence
of some edge to a third node, we replace it by a 1

2 edge. After summarization,
we are left with clusters of bounded size, and we eliminate any duplicate cluster
by assuming (as a further overapproximation) that there can be any number
of concrete instances. An example is shown in Figure 1. The initial graph is
abstracted in this way, and then rule application is lifted to the abstraction.

In this paper we describe ASTRA 2.0. An earlier version, ASTRA 1.0 [2],
implemented a less precise precursor to cluster abstraction that assumed all edges
in the periphery to be 1
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Fig. 1. An example of how a cluster is obtained by abstracting the concrete graph with
respect to one specific node (here, the i-labelled one). The tool lifts the application of
graph transformation rules to this abstraction.

3 Architecture and Usage

ASTRA is a command-line program that expects a start graph and graph transfor-
mation rules as input and outputs the clusters from the analysis. When running
the analysis, it abstracts the start graph, then enters its main loop. The main
loop searches for abstract matches; each left hand side node of each rule is
matched against the core node of any cluster from the current working set, and
the remaining nodes are matched to a subset of the respective peripheral nodes. In
addition, one further cluster with unmatched core node, but matched peripheral
nodes is materialized. Those matches are then combined into a partial concretiza-
tion, with several checks done to rule out cases where no full concretization
exists. Not all such cases are detected by the tool; but the result is still a valid
over-approximation.

All clusters produced by rule application are added to a temporary set. After
each iteration, the tool then, optionally, applies a post-pass reduction step to the
temporary set, inspecting it for clusters that can be eliminated or refined. To do
this, the tool searches for all partial materializations bounded to three material
nodes: If a cluster cannot be used in any of them, it is eliminated, and if an edge
is always present or always absent, peripheral 1

2 constraints are refined. Finally,
the temporary set is joined with the working set.



The tool indicates progress as it goes from rule to rule, and from iteration to
iteration. After each iteration, the current working set is dumped to disk, which
is useful for inspecting the current state of the analysis when running the tool on
complex cases that take some time.

The main loop is executed iteratively until the working set remains unchanged,
ie., a fixpoint has been reached. The tool then dumps the output to disk, prints
statistics and exits.

3.1 Input file format

ASTRA uses the same ASCII-based input file format as hiralysis (see [5] Fig.
B.1, p. 160), extended by additional application conditions. For example, the
constraint partner(x1)=neg{(out,p)} restricts rules to apply only if the node
matched by x1 has no outgoing edge with label p.

Consider the following toy case as a running example. The input:

nodelabels n,Error,i; edgelabels e,p;

empty; // start graph

create [{x1:n,x2:n,x3:i},

{(x1,x2):e,(x2,x3):e,(x3,x1):e,(x1,x3):p,(x2,x3):p}];// init

rule [{x1:i,x2:n},{(x1,x2):e}], // insert

[{x1:i,x2:n,x3:n},{(x1,x3):e,(x3,x2):e,(x3,x1):p}];

rule [{x1:n},{},partner(x1)=neg{(out,p)}], [{x1:n,x2:Error},{}];

This example models singly-linked ring bu↵ers into which an unbounded number
of nodes are inserted dynamically. One special node is indicated with the label i.
New nodes are inserted next to it with a back pointer. Here, we want to use astra
to verify the safety property that each node has such a back pointer. We achieve
this with the second rule. It uses a negative application condition to generate an
error label if a node lacks the back pointer.

As can be seen, the input file format is mainly based on graphs, which are
sets of node names, each with a label, and sets of edges (the name being a pair
of node names), each with an edge label. The rules specify the subgraph to be
replaced and the subgraph by which it is replaced. The node names imply a
mapping from the left hand side to the right hand side.

3.2 Command-line interface

For our case study, consider the following tool run:

$ ./astra -Os -Op test023.gts

0 [ 2/ 2] = 100% [+2, +-2]

1 [ 2/ 2] = 100% [+1, +-1]

2 [ 2/ 2] = 100% [+0, +-0]

done.

6 clusters, 5 matches, 1 active rules,

6 rule applications, 2 iterations

The $ indicates the shell prompt; the remaining line is entered by the tool user. In
this case, ASTRA is run on the input file of our running example (test023.gts).



In the example, we specify analysis options -Os and -Op, instructing ASTRA to
apply a simple peripheral constraint satisfiability check and post-pass reduction,
respectively. For our experiments, this proved to be the most practical option set,
providing the best speed/precision trade-o↵. Removing one of the two options
lead to drastic decrease in precision, while adding any other lead to merely
minuscule gains. Only in specific cases where the analysis would otherwise run
into state-space explosion, further analysis options were useful.

Option -n can be used to specify a cuto↵ iteration after which to prematurely
terminate the analysis. This is useful to inspect the intermediate result. Run
ASTRA without arguments for further details about the available options.

3.3 Status report

For each iteration, while running, the current iteration number, current rule, total
number of rules and progress (current rule divided by total number of rules) is
printed. After finishing the iteration, the number of clusters added and modified
(i.e., with peripheral constraints weakened) is printed. Note that clusters added
by the initial graph and by rules with empty left hand side are only accounted
for in the final statistics printed after the fixpoint has been reached.

3.4 Output file formats

ASTRA supports DOT (as used by the graph layout tool Graphviz), GML (as
used by OGDF and the GoVisual Diagram Editor, respectively), GDL (as used
by VCG and its successor aiSee) and GraphML (as used by yEd and yComp,
respectively). In addition, the tool supports its own native output format that is
similar to the input format.

The output can be loaded or processed with any tool supporting any of those
formats. The most common use will be a graph layout tool to inspect the output,
but it can as well provide invariants for other analyses, like hiralysis [4].

For our running example, the tool outputs six clusters, visualized in Figure 2.
In addition to the full analysis, we show the intermediate results obtained by
using option -n.

These drawings were done by METAPOST, based on an experimental output
module built into ASTRA that does primitive circular graph drawing. For common
use, aiSee and yEd have proven most useful, especially the organic and hierarchical
layout engines.

4 Experimental Evaluation

We already ran the tool on various test cases from the literature in [3], including
AVL trees, red-black trees, firewalls, public/private servers, dining philosophers,
resources, mutual exclusion, singly-linked lists, circular bu↵ers, Euler walks, and
the merge protocol. The merge protocol, our main example, is a distributed
car platooning coordination protocol that establishes a logical communication
hierarchy on top of the physical communication medium. Analysis of the protocol
is hard because of its massively distributed nature, caused by the vast range of
topological configurations that may evolve concurrently.



-n 0

n n

i

e

p

epe

n n

i

e
p

e

p
e

i

n

n

e

e
p

ep

-n 1

n n

i

e

p

epe

n n

i

e
p

e

p
e

i

n

n

e

e
p

ep

i

n

n

n

e

e
p

e

p

ep

n n

n

i

e

p

e

p

e p

e

-n 2 = full

n n

i

e

p

epe

n n

i

e
p

e

p
e

i

n

n

e

e
p

ep

i

n

n

n

e

e
p

e

p

ep

n n

n

i

e

p

e

p

e p

e

i

n

n

n

e

e
p

e

p

e

e

p

Fig. 2. Analysis results on running example.

However, all inputs from that case study were written by hand. To demonstrate
the robustness of our tool, we apply it to graph transformation systems generated
automatically from higher level models of the merge protocol, specified in the
DCS formalism [8,6]. We used the tool dcs2gts [1] to translate the DCS models
into graph transformation systems suitable for analysis with ASTRA. We include
two new variants, follower-controlled merge.

Synchronous (leader-controlled) merge in our former case study consisted of
402 rules (plus 3 for checking safety properties), the asynchronous version 313
(plus 2). The large number is caused by the fact that many rules are generated
from templates that iterate over all node labels. The automatically generated
versions use 788 and 835 rules, respectively. In contrast, the number of clusters
in the analysis result increased from 873 to 22509 (factor 26) and from 3069
to 142326 (factor 46). This is because the automatically generated version uses
intermediate steps to model topology changes. While those steps are serialized
by special labels, and thus pose no combinatorial challenge, our analysis shows
that the tool does well with all those intermediate configurations absent in the
manually created inputs. See Table 1 for the full results.

Table 1. Benchmark analysis statistics. cl. = clusters, m. = abstract matches, rule app.
= rule applications, it. = iterations.

Benchmark # cl. # m. # rule app. # it. time

Synchronous, leader-controlled 22509 75359 36685213 135 9m 34.200s
Synchronous, follower-controlled 24957 82569 43679468 144 22m 30.200s
Asynchronous, leader-controlled 142326 850889 1006759383 202 13136m 1.260s
Asynchronous, follower-controlled 58023 296310 83499253 157 3972m 37.560s



5 Conclusions and Future Work

We have seen how ASTRA can be used to analyze a simple graph transforma-
tion system, modelling insertion of elements into ring bu↵ers. In contrast to
related tools, it is not restricted to graph transformation systems of a special
form, it supports negative application conditions and it does well when facing
models involving concurrency. Our experimental evaluation showed that it is ca-
pable of handling very complex inputs generated automatically from higher-level
specifications.

Future work: Our tool already has experimental support for generating an
abstract labelled transition system of clusters, but the theory for actually using
those with a model checker has still to be worked out. We would also like to
provide more powerful application conditions, in particular non-existence of edges
between two specific nodes and restrictions on the periphery of a node.

A promising way to considerably speed up analysis is parallelization. The
structure of the analysis is very well suited for this and we expect a parallelized
version to scale almost linearly.

Acknowledgments. We thank Dmytro Puzhay for assistance with the imple-
mentation work and Jörg Bauer-Kreiker for providing his hiralysis test cases.
Conny Clausen managed copyright clearance with Saarland University to obtain
permission for releasing the tool under a Free Software license. Reinhard Wilhelm
provided valuable comments for a draft version of this paper.

References

1. Backes, P.: dcs2gts – An interface between XML-coded DCS protocols and the
hiralysis representation of graph transformation grammars. Fopra report, Saarland
University (Jan 2007)

2. Backes, P., Reineke, J.: Abstract topology analysis of the join phase of the merge
proto col [using astra]. In: TTC’10. CTIT Workshop Proceedings, vol. WP10-03, pp.
127–133. University of Twente, Enschede (2010)

3. Backes, P., Reineke, J.: Analysis of infinite-state graph transformation systems by
cluster abstraction. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI’15. pp.
135–152. No. 8931 in LNCS (2015)

4. Bauer, J., Schaefer, I., Toben, T., Westphal, B.: Specification and verification of
dynamic communication systems. In: ACSD’06. pp. 189–200 (2006)

5. Bauer, J.: Analysis of Communication Topologies by Partner Abstraction. Ph.D.
thesis, Saarland University (2006)

6. Bauer, J., Toben, T., Westphal, B.: Mind the shapes: Abstraction refinement via
topology invariants. Tech. Rep. 22, SFB/TR 14 AVACS (Jun 2007)

7. König, B., Kozioura, V.: Augur 2—a new version of a tool for the analysis of graph
transformation systems. In: Bruni, R., Varró, D. (eds.) GT-VMT’06. ENTCS, vol.
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Informal Plan for an Oral Presentation of ASTRA

Peter Backes and Jan Reineke

Universität des Saarlandes, Saarbrücken, Germany
{rtc,reineke}@cs.uni-saarland.de

Our oral presentation of ASTRA would consist of two parts:
In the first part, we would give a brief introduction to cluster abstraction, the

abstraction underlying ASTRA. This would be based on slides, and we anticipate
it to take about 5-7 minutes.

The second, larger part of our presentation would be a live tool demonstration,
guided by a simple running example: a singly-linked ring bu↵er. In this demo,
we would walk the audience through all the steps necessary to use ASTRA:

– The definition of a set of graph transformation rules in ASTRA’s textual
input format.

– The use of the command-line interface to invoke ASTRA, touching upon
various parameter options.

– The inspection of ASTRA’s outputs using graph visualization tools.

The live demo should take around 15 minutes. The complexity of the running
example can be adapted to the available time.


