
On Parallel Software Verification using
Boolean Equation Systems

Alexander Ditter1, Milan Češka2, and Gerald Lüttgen1

1 University of Bamberg, 96045 Bamberg, Germany,
{alexander.ditter,gerald.luettgen}@swt-bamberg.de,

2 Masaryk University, 602 00 Brno, Czech Republic
xceska@fi.muni.cz

Abstract. Due to the recent technological developments multi-core and
many-core hardware platforms have become widely accessible. These par-
allel architectures have been used to significantly accelerate many compu-
tationally demanding tasks. In this paper we describe a parallel approach
to solve Boolean Equation Systems (BESs) in the context of model check-
ing. We focus on the applicability of state-of-the-art, shared-memory par-
allel hardware – multi-core CPUs and many-core GPUs – to speed up the
resolution procedure for BESs. For this setting, we experimentally show
the scalability and competitiveness of our parallel approach, compared
to an optimized sequential implementation, based on a large benchmark
suite with examples from industry and academia.

Keywords: formal verification, parallel model checking, boolean equa-
tion systems

1 Introduction

In this paper we propose and evaluate a parallel approach to the resolution
of Boolean Equation Systems (BESs) on parallel, shared memory systems, i.e.,
utilizing state-of-the-art multi-core and many-core processors – though not in
a hybrid setting. Our goals are (i) to evaluate the scalability of our parallel
approach with respect to an increasing number of parallel processing units (PUs),
and (ii) to prove its competitiveness in comparison with an optimized sequential
algorithm, which we implemented analog to the description in [1].

Motivation. Hardware manufacturers no longer increase clock rates, but the
number of available PUs of modern processors. Along with the evolving trend to-
wards massively parallel, throughput oriented hardware architectures [13], these
developments have led to an ever increasing interest in the parallelization of soft-
ware. This trend has already found its way into the field of software verification
and model checking years ago [4, 16, 17] and must to be considered further in
order to be able to push the limits of verification techniques further towards
industrial strength, allowing one to deal with larger state spaces and providing
rapid feedback to developers.

2

Today’s processors can be divided into two main branches: (i) CPU-based
multi-core processors with up to tens of cores and (ii) GPU-based many-core
processors with up to several hundreds of cores. The key differences are, (i)
the ability to efficiently deal with control flow at the expense of lower data
throughput, and (ii) the ability to provide high data throughput rates at the
expense of a lack of efficient, control flow guided execution.

We assume the current trend to continue – see e.g., Intel’s “Terra Scale Com-
puting”3 project – suggesting future hardware to consist of more, yet simpler
PUs. With respect to parallel algorithms this hardware development favors ap-
proaches that are geared towards the single instruction multiple data (SIMD)
paradigm, as they can most easily take advantage of this type of parallel hard-
ware. Therefore it is inevitable to consider the applicability of massively parallel,
SIMD-based (i.e., many-core) systems in our experiments.

Background. The standard model checking problem [8], M |= ϕ, can be en-
coded by a BES [23], where the solution of the BES is equivalent to the solution
of the underlying model checking problem. The BES is obtained by the combina-
tion of a Labeled Transition System (LTS), corresponding to M , and a property
ϕ (e.g., deadlock freedom) that is to be checked for this LTS. Consequently, the
data dependencies within the resulting BES are closely related to the structure
of the LTS from which it was generated from. For our evaluation we rely on the
well established VLTS benchmark,4 which provides 40 LTSs – originating from
academia and industry – that can be checked for deadlocks and livelocks, i.e.,
our resulting benchmark suite consists of a total of 80 BESs.

The average branching factor, i.e., the average number of outgoing edges per
vertex, over all 40 LTSs in the benchmark is 5.73. With respect to parallelization,
this number can be interpreted as an upper bound for the potential parallelism
that is inherent to an LTS, as in our setting information needs to be propagated
along edges. For work-set-based producer-consumer parallelizations this means
that (i) for each work item processed only few new work items are expected
to be added to the work-set, and (ii) synchronization is needed for concurrent
operations on the dynamic data structure used to store the work items.

Due to this, our approach is not based on the producer-consumer paradigm,
but on a fixed point iteration. This promises a much higher potential for the
utilization of parallel hardware as it does not require dynamic data structures.
In our particular setting, data operations can even be implemented lock-free,
as the fixed point iteration is used to solve a monotonic function. Furthermore
we do not have to populate a work-set as we propagate all possible changes
during an iteration, at the price of computational overhead, which is negligible
considering the ever growing number of parallel PUs.

Cilk Plus and CUDA. Our approach is based on data-parallelization, which
is commonly referred to as “fine grained” parallelization (in contrast to task-
parallelization, i.e., “coarse grained” parallelization). In order to efficiently par-

3 http://techresearch.intel.com/ResearchAreaDetails.aspx?Id=27
4 http://www.inrialpes.fr//vasy/cadp/resources/benchmark bcg.html

3

allelize this type of problem the choice of framework is very important, as it
most significantly influences the overhead connected to context switches. In case
of our multi-core parallelization the overhead of manual thread maintenance is
not negligible, since the amount of productive work per thread invocation is
very limited. Therefore, the direct use of multi-threading environments, such as
PThreads [26], is very likely to nullify the gain we expect from the paralleliza-
tion itself. For this reason we chose Intel’s Cilk Plus framework,5 which offers a
work stealing based thread-pool and internally employs efficient scheduling and
load balancing mechanisms. The scheduling of workers is not explicit and more
lightweight than the manual management of threads.

For general purpose programming on GPUs, NVIDIA’s Compute Unified De-
vice Architecture (CUDA)6 is the de facto standard framework for parallel com-
putation. It provides an Application Programming Interface (API), allowing the
utilization of NVIDIA’s GPUs for massively parallel, throughput oriented ap-
plications beyond the scope of rendering graphics. As the CUDA framework is
tailored to applications with many data-parallel threads, light-weight compu-
tations per thread and frequent context switches [13], it is well suited for our
application.

Contributions and Related Work. In the area of model checking the sizes of
input problems become exceptionally large. For this reason, a lot of research has
been put into the development of techniques that can reduce the problem sizes
by, e.g., applying abstractions, using efficient data structures such as Binary
Decision Diagrams (BDDs), or limiting the exploration of the problem domain
only to relevant parts.

In contrast to this, our approach does not aim at a reduction of the problem
size, but even favors large problems in order to exploit modern parallel hardware
and thereby increasing the performance of model checking. In the context of
this paper we want to restrict ourselves to algorithms and tools related to the
solution of the (alternation-free) µ-calculus [19], along with their parallelization
and/or the resolution of BESs. For completeness sake we want to mention two
sequential tools, namely “evaluator”, which we used to generate random BESs
and the BESs from the benchmark suite, and “bes solve”, which we used to
verify our results – both tools are part of the CADP tool set [24].

Furthermore, we restrict the scope of this paper to the evaluation of the
solution step in the model checking process, as there exist several efficient and
even parallel approaches for the construction of compact data representations in
our setting [3, 4, 20], which can be used for the preprocessing of the input data.

Only two approaches based on the parallel resolution of BESs, are known to
us. The first one [28] is based on a multi-core parallelization of the “Gaussian
Elimination” as proposed in [23], which turns out not to be viable in practice, due
to its exponential space complexity. The second one [18], is tailored to distributed
systems aiming at the resolution of extremely large BES instances. There exists
5 http://software.intel.com/en-us/articles/intel-cilk-plus/
6 http://developer.download.nvidia.com/compute/cuda/4 0/toolkit/docs/

CUDA C Programming Guide.pdf

4

further distributed implementations in the general context [6, 14, 16, 22], but
their general goal, in contrast to our approach, is to increase the total amount of
memory in order to deal with larger problem instances, rather than to improve
on their run-time performance, as network latency generally degrades the overall
performance significantly.

The experimental evaluation of the parity game based approach presented
in [27], which performs a parallel resolution of µ-formulae on shared-memory
multi-core systems, provides scalability results for up to eight workers. Yet, the
range of examples is restricted to three Sliding Window Protocol (SWP) and
two randomly generated instances and their run-times are not related to ex-
isting sequential algorithms. We, however, present a parallel, shared-memory
model checking approach that is based on a fixed point iteration used for the
parallel resolution of BESs (cf. Sec. 3). Even though this approach is targeted
at large BES instances, we are not only concerned about the capability to check
large models, but also the improvement of run-time performance. The evalua-
tion of our multi-core implementation confirms the scalability results presented
in [27], extends them to a much larger set of different benchmark examples and,
most importantly, puts them in relation to an optimized sequential BES solver
(cf. Sec. 2). In addition, we show that our approach also scales on many-core
architectures, boosting the run-time performance by one order of magnitude,
outperforming the optimized sequential baseline significantly (cf. Sec. 4).

2 Fixed Points and Boolean Equation Systems

Fixed Points and the µ-calculus. Fixed points may be used to express tem-
poral properties, such as liveness (i.e., something good will eventually happen)
and safety (i.e., something bad will never happen). The following intuition de-
scribes the meaning of the least (µ) and greatest (ν) fixed point operators in
the context of temporal logic based model checking: µ is used to express liveness
properties with the initial assumption that every state violates this property and
ν is used to express safety properties with the initial assumption that every state
satisfies this property.

The µ-calculus [19] is a powerful formalism, e.g., subsuming the temporal
logics LTL, CTL and CTL* [11], for expressing temporal properties. It is defined
by the following grammar:

ϕ ::= >|⊥|X|¬ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|[a]ϕ|〈a〉ϕ|νX.ϕ|µX.ϕ

where V ar is a set of propositional variables with X ∈ V ar and Act is a set
of actions with a ∈ Act. In our setting µ-formulae are used to express properties
over LTSs as exemplary depicted in Fig. 1.

Boolean Equation Systems. BESs are sets of equations, resembling mono-
tonic functions over the Boolean lattice {false < true}, of the form: σX = ϕ.

Here, the left hand side (LHS) X is a Boolean variable from the set of propo-
sitional variables χ, σ ∈ {µ, ν} are the least and greatest fixed point operators,
and the right hand side (RHS) is of the form ϕ ::= >|⊥|X|ϕ ∧ ϕ|ϕ ∨ ϕ.

5

Property - Deadlock freedom: νX.([−]X ∧ 〈−〉true)

LTSunsat

X1 X2 X3

Resulting BES

νX1 =X2 ∧ > =X2

νX2 =X1 ∧X3 ∧ > =X2 ∧X3

νX3 = > ∧ ⊥ = ⊥

LTSsat

X1 X2 X3

Resulting BES

νX1 =X2 ∧ > =X2

νX2 =X1 ∧X3 ∧ > =X2 ∧X3

νX3 =X1 ∧ > =X1

Fig. 1. Interpretation of µ-formula over LTSs.

In the context of model checking, BESs are the result of the interpretation
of a µ-formula over an LTS (cf. Fig. 1). Since the formula has to be verified
for every state of the LTS, the resulting BES is of size |LTS| x |ϕ|k, i.e., the
size of the BES is proportional to the size of the LTS and exponential in the
complexity of the µ-formula, where k is the number of alternations of different
fixed point operator types binding the same variables. Each fixed point operator
of the formula is resembled by a so called block in the resulting BES, containing
the set of equations associated with this operator.

While equations may be reordered arbitrarily within a block this is not the
case for the ordering of blocks as it may lead to the computation of a wrong
fixed point. The order in which blocks have to be processed is defined by their
nesting within the µ-formula, namely they have to be solved “from inside out”.
In practice this is not of importance, as – even though with increasing nesting
depth µ-formulae become strictly more expressive – it often suffices to consider
formulae up to an alternation depth of two [7], which are equally expressive as
and may be translated into CTL* [10].

Optimized Sequential Resolution of BESs. To be able to conduct a fair
evaluation of our parallel implementations in terms of run-time competitiveness,
we have implemented an optimized, sequential CPU-based algorithm, in style of
the “chasing ones” as proposed in [1]. This approach is work-set-based, using a
queue to store work items, where a work item is equivalent to one equation of
the BES. The computation in this algorithm starts at those equations, where the
LHS is directly assigned the value true or false, and propagates this information
to all equations relying on the value of these particular LHSs. For this purpose
equations must be enriched with information about such backward dependencies.
As space and time complexity of this approach are linear in the size of the BES,
it is well suited as a baseline for comparison with our parallel implementations.

6

3 Basic Algorithm and Parallelization

While a lot of effort has been put into the development and optimization of se-
quential model checking algorithms in order to fight computational complexity
and state space explosion, our aim is to investigate whether a parallel approach
can be more efficient and provide scalability not only on multi-core (CPU) archi-
tectures but also on many-core (GPU) architectures. For this purpose, we chose
a fixed point iteration based algorithm, which we show to be well suited for such
a parallelization. In this section we first present the algorithmic background of
our approach, followed by the concepts of our parallel implementations.

Basic Fixed Point Algorithm. The listing of Algorithm 1 illustrates the
fundamental idea of the fixed point computation we employ for the resolution
of BESs in our multi-core and many-core implementations.

Algorithm 1: FixedPoint algorithm

Input : BES
Output: Solution of BES

1 Initialization of LHSs // true for σ = ν; false for σ = µ

2 foreach block B do // block order matters
3 do
4 variablesChanged← false
5 foreach equation E ∈ B do // equation order does not matter
6 LHS← evalRHS(E)
7 if LHSChanged then
8 variablesChanged← true

9 while variablesChanged

It consists of two nested loops, the outer one over the BES blocks (line 2) and
the inner one over all equations within a block (line 5). The inner loop computes
the value of the LHS of an equation according to the evaluation of its respective
RHS, where the RHS either consists of a terminal value (i.e., true or false) or
LHS variables connected by Boolean operators. In the beginning, all LHSs are
initialized depending on their associated fixed point operator σ, as false in case
σ = µ and true in case σ = ν (line 1). This initial approximation is derived from
the Knaster-Tarksi fixed point theorem [29], where µf =

⊔
{f i(false) : i ∈ N}

and νf =
d
{f i(true) : i ∈ N}. The termination of the fixed point computation

is detected by a marker variable, indicating whether one or more LHSs have
changed during an iteration (line 9).

Parallel Fixed Point Computation. The core idea for the parallelization
of the basic fixed point algorithm is the parallel execution of the inner loop of
Algorithm 1 (line 5), computing the LHS value of an equation. It is important
to note that the order in which equations are evaluated does not matter within

7

the loop, as our parallel frameworks are not aimed at the explicit scheduling
of threads. Considering the fact that this operation needs be executed for all
equations during each iteration step, this approach exposes much potential for
parallel computation, even within one iteration step, as we expect the number
of equations to be very large, e.g., the largest LTS in the benchmark contains
33,949,609 states. The soundness of the approach is guaranteed by the fact that
BESs resemble monotonic functions, i.e., even if the evaluation of a RHS depends
on several other LHS variables – which in a parallel setting are potentially mod-
ified concurrently – the updated value of each LHS is available and thus can be
propagated in the subsequent iteration.

Multi-Core Data Structure. Data structures for multi-core systems have
to follow two main objectives. On one hand they have to provide good data
locality, i.e., data necessary for a computation should be closely grouped so it
can, ideally, be stored in the same cache line of a CPU. On the other hand,
unrelated data should be separated in such a way that it does not interfere with
each other in order to avoid harmful effects, such as cache thrashing, where
independent data sets depend on and thus compete for the same cache lines.
Due to these two factors and the structure of our input data (variable(s) ∈
equation(s) ∈ block(s) ∈ BES) we have decided to use a nested data structure,
where each aforementioned component is modeled by a structured type. In this
layout, all data needed to evaluate one equation – the most frequent operation
in our algorithm – is stored in a single structure resembling an equation, thus,
accounting for good data locality. Clearly, this also provides good separation and
any further improvement would require machine dependent optimization.

Multi-Core Parallelization. For the parallelization of Algorithm 1 on CPUs
we employ the Cilk Plus framework provided by the Intel C/C++ compiler. We
chose Cilk Plus because it is well suited for problems with fine grained data-
parallelism and irregular structure, as shown in [12], which also is the case in
our setting. Cilk Plus maintains a pool of workers, each of which is mapped to a
thread during execution, that supports work stealing, i.e., taking over work that
was initially assigns to another worker. This is in contrast to having to create,
manage and delete threads manually, inducing a much higher overhead.

The key idea of our multi-core implementation is the parallelization of the
inner for loop, iterating over the equations, by employing Cilk Plus’ parallel
version of a for-loop, cilk for. The reasons why we do not require any locking
and further modifications are (i) the monotonicity of the Boolean function, as
mentioned before, and (ii) the fact that the variable variablesChanged indicating
a change of LHSs is only reset outside the parallel loop (Algorithm 1, line 4) and
set uniformly (only to true) inside the parallel loop (Algorithm 1, line 8), i.e.,
any worker that has observed a changing variable assigns this value, and thus
the value cannot become inconsistent.

Many-Core Data Structure. Data structures used for CUDA accelerated
computation must be specially designed for this purpose. They must support
independent thread-local data processing, and, at the same time, they must

8

also be compact enough to enable good data locality. This is to avoid high
latency device-memory access and generally reduce the usage of device-memory
bandwidth, which may otherwise become a performance bottleneck [21].

BES

x0 = x1 ∧ x3

x1 = x3 ∨ x2

x2 = false

x3 = x4 ∧ x1

x4 = x1 ∨ x2

Adjacency Matrix0BBBB@
0 1 0 1 0
0 0 1 1 0
0 0 0 0 0
1 0 0 0 1
0 1 1 0 0

1CCCCA

CSR Vector

Ai

Ae

0 2 4 4 6 8

1 3 3 2 4 0 1 2

Fig. 2. Generation of adjacency list representation from BES.

A BES may be interpreted as a directed graph where the LHSs are vertices
and the dependencies on the RHSs are edges. Such a graph can be encoded as an
adjacency matrix and stored using two vectors in compressed sparse row (CSR)
format, as depicted in Fig. 2. Sine this data structure has been demonstrated
to be efficient for graph based algorithms in the context of CUDA accelerated
computation [2, 5, 15] we employ it to store BESs. Each vertex stores the follow-
ing information: a unique index, its Boolean value along with a flag indicating
whether the Boolean value is already computed, and the type of Boolean operator
(conjunction or disjunction).

In more detail, our representation uses two one-dimensional arrays Ai and
Ae to encode the directed graph. For all vertices v0 to vn, the sum of outgoing
edges is stored in Ai, such that the number of outgoing edges from a particular
vertex vj can be computed by Ai[j+ 1]−Ai[j]. The idea of this encoding is that
the value of an element Ai[j] serves as an index to the second array Ae. The
array Ae is a concatenation of ordered lists of target vertices of outgoing edges
from individual graph vertices.

The sizes of the arrays Ai and Ae correspond to the sizes of the vertex set
and edge set of the graph, respectively. The array Ai not only stores the indices
to the array Ae but also the aforementioned information (index, Boolean value,
flag and type). As the on-board memory of GPUs is very limited, we store this
additional information in unused bits of Ai, reducing the space requirement to
4 bytes per vertex.

Many-Core Parallelization. For our many-core parallelization we employ the
CUDA framework, in which programs consist of two parts (i) host code running
on the CPU and (ii) device code running on the GPU, the so called kernels.
A kernel is executed concurrently in many independent data-parallel threads,
where a group of threads, called a warp, executes on the same processor in a
lock-step manner. When several warps are scheduled on a processor, memory
latencies and pipeline stalls are hidden by switching to the execution of another

9

Algorithm 2: FixedPoint kernel – run in parallel for every LHS variable

Input : g(lobal)Ae, g(lobal)Ai, fixedPointFound

1 tid← blockId.x ∗ blockDim.x+ threadId.x
2 myVertex← gAi[tid]
3 if myVertex.solved then
4 return

5 first← myVertex.index
6 last← gAi[tid + 1].index
7 foreach index ∈ first, . . . , last do
8 targetVertex← gAe[index]
9 mySucc← gAi[targetVertex]

10 if mySucc.value 6= myVertex.type then // type ∨ ≡ 0 and type ∧ ≡ 1
11 break

12 if myVertex.value 6= mySucc.value then
13 myVertex.solved← true
14 myVertex.value← mySucc.value
15 gAi[tid]← myVertex
16 fixedPointFound← false

warp. The CUDA framework is optimized for large numbers of simple parallel
computations without explicit scheduling of threads.

For this reason the work-flow of our CUDA accelerated fixed point computa-
tion is divided into two parts. The host code, executing on the CPU, iterates over
the outer loop, i.e., the loop over all BES blocks, and calls the CUDA kernels
executing on the GPU from within this loop. Each of the kernels is computing
the solution for one LHS, i.e., evaluating one RHS. The CUDA kernel is invoked
as long as LHSs change. Its pseudo code is provided in Algorithm 2.

This approach exposes fine grained data-parallelism, requiring a dedicated
thread to be executed for every vertex (LHS) of the graph (each item of Array
Ai). Each thread first loads the data of a vertex from Array Ai (stored in global
memory) into a local copy (line 2) and checks if the corresponding LHS has
already been solved (line 3). Then, it processes all immediate successors (loop
on line 7), representing the RHS of the corresponding equation. The algorithm
employs a lazy evaluation of the equations. In case that a value within a RHS
immediately determines the value of the LHS (i.e., the RHS is a purely disjunc-
tive term where at least one variable is true, or a purely conjunctive term and
at least one variable is false), the loop is broken (line 11). Finally, the Boolean
value of the evaluation of the RHS (stored in mySucc.value) is compared to the
Boolean value stored in the corresponding LHS (line 12). If the two values differ
the result of the evaluation is assigned to the respective LHS, written back to
Array Ai (line 15), and the fixed point flag is set to false indicating that the
fixed point is not yet reached.

Many-Core Optimizations. For the GPU-based implementation we have ex-
perimented with two optimizations.

10

The first one is the so called “intra-warp fixed point iteration.” It is based
on the observation that all threads within a warp have to load the required data
from global memory into local copies. All operations are performed on the local
copies, which are written back to global memory at the end of the execution
of the warp. This means that updated LHSs do not become visible to other
threads until the next iteration step and, thus, changes can only be propagated
one step per iteration. The intra-warp fixed point iteration is intended to increase
the number of propagations by performing multiple iterations on the equations
bundled in a warp and thereby propagating changes of LHSs within this warp.

The second optimization is an extension to the aforementioned intra-warp
fixed point iteration. It utilizes the GPU’s shared memory, which provides a
fast local memory for single thread or warp, allowing the intermediate storage
of data. We use this shared memory to optimize the execution of the kernel by
copying the LHS variables contained in a RHS from global memory to shared
memory. When the data of a LHS is required by the kernel, the copy in shared
memory is utilized instead of the one in global memory. When the kernel returns,
the copy is written back from shared to global memory. However, the indirection
on line 9 potentially requires further LHSs; this data can either be read from
global memory as before or also be copied to shared memory. This reduces access
to global memory but requires additional load and store operations before and
after each thread invocation.

4 Experimental Evaluation

In this section we experimentally evaluate the scalability of our parallel approach
in its CPU and GPU variants and demonstrate the competitiveness of the GPU
version when compared to the optimized sequential algorithm, using the VLTS
benchmark suite.7 In order to provide an outlook on the generality of our re-
sults, extend this evaluation using randomly generated BESs. Furthermore, we
evaluate the structure and density of the BESs generated from the benchmark
suite. Besides the run-time based comparison we provide important insights to
the specifics of BESs in the context of model checking, i.e., we present heuristics
for the order in which equations are to be solved that yield significant speed-ups
for BESs resolution in this context.

Benchmark Suite. Our experiments were conducted using the VLTS bench-
mark suite that was compiled within a joint project of CWI8 and INRIA9. It
consists of 40 examples from academia and industry, provided as LTSs with
numbers of states ranging from 289 up to 33,949,609. The four largest examples
of the benchmark were solved for the first time in 2005 [16].

The background of the benchmark examples varies greatly; thus, different
properties could be checked for individual examples. For our evaluation we use

7 http://www.inrialpes.fr//vasy/cadp/resources/benchmark bcg.html
8 http://www.cwi.nl/
9 http://vasy.inria.fr/

11

Table 1. µ-Formulae of Properties

Property µ-formula

Deadlock freedom νX.([−]X ∧ 〈−〉true)
Livelock µX.(〈−〉X ∨ νY.(〈τ〉Y))

two representative properties, namely deadlock freedom and livelock, which can
be checked for all examples of the benchmark suite (cf. Table 1 for their for-
malization). For these properties results are also provided by the authors of the
benchmark, thus allowing a direct verification of the correctness of the results
of our implementations.

The images of some exemplary BESs, as depicted in Fig. 3, show the signifi-
cant variance in structure and density of the LTSs provided in the benchmark.
The images are visualizations of the adjacency matrices of the respective BESs,
with the origin, i.e., the LTSs initial state, on the top left.

In contrast to intuition, our experiments suggest that this information about
structure and density does not usefully correlate with the scalability and/or run-
time performance of our approach. This is the case for the following reasons:
(i) the run-time generally depends on the question whether the property, which
the LTS is checked for, is fulfilled or violated; (ii) the fact that our approach
does not favor local propagation of changing variables, but globally propagates
all possible changes during an iteration; (iii) the fact that our approach performs
best in cases that expose large numbers of concurrent changes rather than se-
quential chains of changes. Unfortunately, none of these factors can be estimated
sensibly and extracted from a BES’s structure.

(a) Example 10 (b) Example 22 (c) Example 34 (d) Rnd2

Fig. 3. Visualization of benchmark examples as adjacency matrices.

Hardware. Our experiments were carried out on different hardware platforms
for (i) the CPU and (ii) the GPU version of the implementation: (i) Two intercon-
nected Intel XEON E7-4830 Processors @ 2,13 GHz, each with 8 physical cores
and Hyper-Threading enabled (i.e., a total of 32 logical PUs) and 64 GB DDR3
RAM @ 1333 MHz, running Windows 7 64-bit, and (ii) one AMD Phenom II X4
940 Processor @ 3,0 GHz, 8 GB DDR2 RAM @ 1066 MHz along with (a) one

12

NVIDIA GeForce GTX 280 GPU with 1 GB of global memory, 16KB of shared
memory per multiprocessor, providing 240 CUDA cores, and (b) one NVIDIA
GeForce GTX 480 GPU with 1.5 GB of global memory, 48KB of shared memory
per multiprocessor, providing 480 CUDA cores, running Debian 6.0 64-bit on
kernel 2.6.39.

Although the systems use different CPU types this fact does not affect our
results as we did not evaluate a hybrid approach, but only pure CPU and GPU
versions of the respective algorithms.

Table 2. Overview of Run-Times for CPU- and GPU-based implementations [ms]

Algorithm
Benchmark Example Random

10 21 22 31 32 33 34 35 39 Rnd1 Rnd2

CPU
(i) sequential 1 19 18 573 475 737 1 704 901 3891 7801

(ii) parallel 2538 77 611 1564 1786 2764 279 4325 8170 7966 40576

GPU (iii) unoptimized 1336 17 68 217 113 359 51 242 290 350 1840

GTX 280 (iv) intra-warp 104 22 69 320 149 528 52 404 344 493 2594

GPU
GTX 480

(iii) unoptimized 703 6 33 75 46 105 6 98 125 178 992

(iv) intra-warp 40 7 28 109 63 157 6 152 158 248 1391

(v) shared mem 38 40 59 659 341 862 48 190 227 315 1800

Overview. Table 2 provides an overview of the run-times of the following al-
gorithms: (i) the optimized sequential work-set-based CPU implementation (the
baseline for our comparison), (ii) the parallel Cilk Plus based CPU implementa-
tion, (iii) the unoptimized GPU implementation without any optimization, (iv)
the GPU implementation with intra-warp iteration, and (v) the GPU implemen-
tation utilizing shared memory. In case of the GTX 280 GPU, we omitted the
results for (iv), the shared memory implementation, since this GPU does not
provide a sufficient amount of shared memory for this optimization. Note that
in the case of parallel CPU implementation we list the best runtimes available
among the numbers of cores that have been utilize.

Because of space limitations, we restrict selection of benchmark examples in
Table 2 to those for which the run-time of the GPU implementation is sensi-
bly measurable, i.e., larger than 5 [ms]; nonetheless we conducted our exper-
iments for the entire benchmark suite. The numbering of the benchmark ex-
amples refers to their position in the table provided on the VLTS website10,
which is sorted in ascending order relative to the number of states of the LTS,
thus, Example 10 is vasy 25 25, Example 21 is vasy 166 651, Example 22 is
cwi 214 684, Example 31 is vasy 2581 11442, Example 32 is vasy 4220 13944,
Example 33 is vasy 4338 15666, Example 34 is vasy 6020 19353, Example 35 is
vasy 6120 11031 and Example 39 is vasy 12323 27667. In this naming scheme
10 http://cadp.inria.fr/resources/benchmark bcg.html#section-5

13

the first number is the number of states divided by 1000, and the second number
is the number of transitions divided by 1000.

Furthermore, all examples in Table 2 are checked for the deadlock freedom
property as only eight of the 40 LTSs contain livelocks. Nonetheless, our general
statements about scalability and competitiveness have been evaluated and are
valid for the entire benchmark suite. In order to extrapolate our results and
obtain more insight to the specific structure of the benchmark’s LTSs, we extend
our evaluation to randomly generated BESs. We evaluate a total of five examples
with the number of states ranging from 1 to 10 million; Rnd1 and Rnd2 are two
representatives illustrating our observations for this class of BESs.

We omit memory consumptions of our implementations in the table, as (i)
our parallel versions operate on a static data structure that is linear in the size
of the input BES (ranging from approximately 90 KB up to 4.5 GB) and (ii)
it is not our aim to evaluate or optimize memory efficiency in the scope of this
paper, especially since all benchmark examples easily fit our systems memory.

Multi-Core Performance. The results in Table 2 clearly show that our multi-
core implementation is outperformed significantly by the optimized sequential
baseline. The reason for this is the low total number of parallel PUs (32 logical
cores) and thus, the computational overhead of the fixed point iteration is too
large compared to the amount of productive work and cannot be compensated
by parallel processing power. This observation is supported by the two graphs
in Fig. 4, which show the overall scalability of our CPU-based approach for an
increasing number of parallel workers. This result is in accordance with [27] and
extends their results to our much larger benchmark suite.

The data for the two graphs in Fig. 4 is averaged over all 40 benchmark
examples, but separately evaluated for the two properties: deadlock freedom
(Fig. 4(a)) and livelock (Fig. 4(b)). It shows that the average scalability is be-
low linear for both properties, but observable for up to eight workers, which
corresponds to the number of physical cores of one CPU in our system. It is
important to remark that the shape of the two graphs, suggesting better scala-
bility for LTSs that have been checked for the no deadlock property, is affected
by the fact that there are 20 examples containing deadlocks, while only 8 exam-
ples contain livelocks. In the case of the trivial examples, i.e., those that do not
contain deadlocks/livelocks, the algorithm needs to perform only one iteration,
which has the significant impact on the scalability.

The super-linear speed-up in Fig. 4(a) can be explained by the parallel ex-
ecution of workers. As the Cilk Plus framework may schedule the evaluation
order of equations differently from the original one in the BES, this may lead to
a faster propagation of updated LHSs, requiring less iterations and thus result
in the seemingly above linear boost in performance.

Many-Core Performance. The evaluation of our many-core implementation
is aimed more at the competitiveness of our approach when compared to the
optimized sequential baseline than at its scalability. The scalability analysis of
our many-core implementation is much more difficult than for the multi-core
implementation as we had to use different GPU devices that are not comparable

14

 0.5

 1

 2

 4

 8

 16

 32

 2 4 8 16 32

sp
ee

d-
up

number of workers

avg
max
min

linear

 0.5

 1

 2

 4

 8

 16

 32

 2 4 8 16 32

sp
ee

d-
up

number of workers

avg
max
min

linear

(a) Deadlock freedom (b) Livelock

Fig. 4. Scalability of our multi-core implementation.

with respect to some important specifications. Not only did the number of CUDA
cores double from the GTX 280 to the GTX 480, but also the clock rate and
the available amount of memory increased significantly. For this reason we did
not evaluate the scalability aspect beyond the scope provided in Table 2, which
shows a significant boost in performance for the GTX 480. Further evaluations
of scalability, e.g., on clusters of GPUs, are subject to future work.

The main limitation of the GPU parallelization is the length of the chain of
propagations of LHS values. The example 10 in the benchmark suite contains an
artificially long chain of dependencies from the initial state to the last state (cf.
Fig. 3(a)). For this example, the number of iterations is equal to the number of
states for the unoptimized version of our many-core implementation, yet it is a
prime candidate to benefit from the intra-warp iteration as the changes can be
propagated ideally within the equations of a warp.

However, the remaining benchmark examples do not have such an extreme
structure and therefore the intra-warp iteration, on average, does not provide
any advantage, but rather induces overhead as the comparison of run-times in
Table 2 shows.

Since the efficiency of our shared memory optimization is tightly coupled to
the intra-warp iteration, it can only improve the performance of the many-core
implementation in those cases in which the intra-warp iteration actually works.
Due to this reason, the results for this optimization in Table 2 are, not surpris-
ingly, even worse than for the intra-warp iteration because the transfer times
from and to shared memory degrade the run-time performance even further.
Moreover, in order to use the shared memory, the required data (the part of a
BES corresponding to a block) has to fit the limited size of the GPUs shared
memory. The size of the data that has to be stored in the shared memory is
given by the block size - a number of vertices in one block and by the number

15

of their successors. In the case the average out-degree (the average number of
RHS variables per equations) is high, we have to decrease the group size. This
can lead to underutilization or low occupancy of the individual multiprocessors
and thus significantly reduces the performance of the algorithm.

As documented in Table 2 we have shown that our GPU-based implementa-
tion of the resolution of BESs provide significant speed-ups for most cases of the
benchmark examples and especially for the randomly generated BESs. Surpris-
ingly, the GPU implementation with no optimizations yields the best results,
since in most of cases the structure of the inspected BESs does not allow to
benefit from the designed optimizations.

Impact of Ordering Heuristics on the Number of Iterations.

Table 3. Impact of Heuristics [Total Number of Iterations]

Heuristic
Benchmark Example

4 5 7 10 15 16 18 19 21 22 25 27 30 31 32 33 35 37 38 39

Forward 64 19 7 25219 19 33 23 18 33 208 24 7 56 32 23 34 33 20 29 29

Vectorized 64 19 7 25219 23 37 23 19 37 213 24 7 56 37 25 37 34 20 29 29

Reverse 2 4 3 2 7 8 8 5 8 8 10 2 3 7 4 6 4 5 5 5

Random 20 9 5 25219 10 12 6 11 11 63 7 3 6 8 5 8 16 10 9 9

Table 3 provides a comprehensive overview of the total number of iterations
for those examples of the benchmark, that have been checked for deadlocks, and
for which the initial approximation is not equal to the final solution, i.e., the
total number of iterations is larger than one. Even though the available number
of PUs continuously increases with each hardware generation, it is still far from
the point where a full iteration step can be computed completely in parallel.
Thus, the order of equations processing within a block has a significant influence
on the total number of iterations needed to compute the fixed point. Yet, our
evaluation yields an interesting insight for an ideal “vectorized” parallelization,
assuming that a fully parallel iteration step is possible; we model this by delay-
ing the visibility of a changed LHSs until the next iteration step. Our evaluation
shows that this limitation does not increase the total number of iterations signifi-
cantly, when compared to the “original” ordering, where equations are evaluated
in their initial order and changes of LHSs are directly visible in the following
computations of the iteration (cf. Table 3). This result shows that the penalty
for a fully parallel computation is negligible, with respect to the total number
of iterations needed to reach the fixed point.

As the application of advanced heuristics would require preprocessing of the
data – causing a potentially high computational overhead – we restrict our evalu-
ation to two simple cases that do not introduce any overhead. The first heuristic
to carry out the evaluation of equations within a BES-block, namely taking the
reverse order as proposed in [27], yields a significant improvement with respect

16

to the total number of iteration needed to compute the fixed point (cf. Table 3).
Yet, according to our observations, this heuristic only works for the examples
generated from the benchmark’s LTSs, but not for randomly generated BESs.

The second heuristic is the randomized evaluation of equations within a BES-
block. In our observations this heuristic leads to a decrease in the number of
iterations needed to solve a BESs when compared to the “original” ordering.
This result is of practical relevance as our parallel implementations rely on par-
allelizations in which the order of RHS evaluations is not under our control, but
it is determined by the runtime environment of CUDA and Cilk Plus. Thus, we
expect an additional performance boost rather than a degradation, due to the
parallelization frameworks.

5 Conclusions and Future Work

We have implemented and evaluated an approach to the parallel resolution of
BESs on multi- and many-core systems, with respect to scalability and run-time
performance in comparison to an optimized sequential algorithm. Our results
of the experimental evaluation confirm the scalability results from [27] for the
multi-core implementation, yet its overall performance is not competitive, com-
pared to our optimized sequential implementation. The utilization of many-core
hardware yields a significant speed-up and can outperform the optimized sequen-
tial implementation for most instances of the benchmark by almost an order of
magnitude. Furthermore, the scalability of our approach, with respect to in-
creasing numbers of PUs, has been shown in our evaluation by (i) comparing
the multi-core and many-core implementations and (ii) evaluating the many-core
implementation for two GPU cards with 240 and 480 CUDA cores, respectively.

Future work will include further evaluation of the scalability results of the
many-core implementation, e.g., by its distribution over a cluster of GPUs. Since
BESs are not restricted to model checking, it is also promising to evaluate input
BESs from other applications, such as data-flow analysis [9]. Furthermore, the
recently proposed many-core parallelization of graph algorithms [25] should be
evaluated with respect to its suitability and potential impact on our work.

References

1. H. R. Andersen. Model Checking and Boolean Graphs. Theoretical Computer
Science, 126(1):3–30, 1994.

2. J. Barnat, P. Bauch, L. Brim, and M. Češka. Computing Strongly Connected
Components in Parallel on CUDA. In IPDPS, pages 544 –555. IEEE, 2011.

3. J. Barnat, P. Bauch, L. Brim, and M. Češka. Designing Fast LTL Model Checking
Algorithms for Many-Core GPUs. To app. in J. of Par. and Distrib. Comp., 2012.

4. J. Barnat, L. Brim, and P. Ročkai. Scalable Multi-core LTL Model-Checking. In
SPIN, volume 4595 of LNCS, pages 187–203. Springer, 2007.

5. J. Barnat, L. Brim, M. Češka, and T. Lamr. CUDA Accelerated LTL Model
Checking. In ICPADS, pages 34–41. IEEE, 2009.

6. B. Bollig, M. Leucker, and M. Weber. Local Parallel Model Checking for the
Alternation-Free µ-Calculus. In SPIN, volume 2318 of LNCS, pages 128–147.
Springer, 2002.

17

7. J.C. Bradfield. The Modal mu-Calculus Alternation Hierarchy Is Strict. Theoret.
Comp. Sc., 195(2):133 – 153, 1998.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-
bridge, MA, USA, 1999.

9. M. d. M. Gallardo, C. Joubert, and P. Merino. On-the-Fly Data Flow Analysis
Based on Verification Technology. In COCV, volume 190 of ENTCS, pages 33–48,
2007.

10. M. Dam. CTL* and ECTL* as Fragments of the Modal mu-Calculus. Theoret.
Comp. Sc., 126(1):77–96, 1994.

11. E. A. Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 995–1072. Elsevier
Science, 1990.

12. J. Ezekiel, G. Lüttgen, and R. Siminiceanu. To Parallelize or to Optimize? J.of
Log. and Comput., 21:85–120, 2011.

13. M. Garland and D. B. Kirk. Understanding Throughput-Oriented Architectures.
Commun. ACM, 53:58–66, 2010.

14. O. Grumberg, T. Heyman, and A. Schuster. Distributed Symbolic Model Checking
for µ-Calculus. Form. Methods Syst. Des., 26:197–219, 2005.

15. P. Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU
Using CUDA. In HiPC, volume 4873 of LNCS, pages 197–208. Springer, 2007.

16. F. Holmén, M. Leucker, and M. Lindström. UppDMC: A Distributed Model
Checker for Fragments of the mu-Calculus. In PDMC, volume 128 of ENTCS,
pages 91–105, 2005.

17. G. J. Holzmann and D. Bosnacki. Multi-Core Model Checking with SPIN. In
IPDPS, pages 1–8, 2007.

18. C. Joubert and R. Mateescu. Distributed Local Resolution of Boolean Equation
Systems. In PDP, pages 264–271. IEEE, 2005.

19. D. Kozen. Results on the Propositional mu-Calculus. Theoret. Comp. Sc., 27:333–
354, 1983.

20. A. Laarman, J. van de Pol, and M. Weber. Boosting Multi-Core Reachability
Performance with Shared Hash Tables. In FMCAD. IEEE, 2010.

21. A. Lefohn, J. M. Kniss, and J. D. Owens. Implementing Efficient Parallel Data
Structures on GPUs. In GPU Gems 2, pages 521–545. Addison-Wesley, 2005.

22. M. Leucker, R. Somla, and M. Weber. Parallel Model Checking for LTL, CTL*,
and L2

µ. In PDMC, volume 89 of ENTCS, pages 4–16, 2003.
23. A. H. Mader. Verification of Modal Properties Using Boolean Equation Systems.

PhD thesis, Technische Universität München, Bertz Verlag, Berlin, 1997.
24. R. Mateescu. CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of

Alternation-free Boolean Equation Systems. STTT, 8(1):37–56, 2006.
25. D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU Graph Traversal. In

PPoPP, pages 117–128. ACM, 2012.
26. B. Nichols and D. Buttlar J. P. Farrell. Pthreads programming. O’Reilly, 1996.
27. J. van de Pol and M. Weber. A Multi-Core Solver for Parity Games. In PDMC,

volume 220 of ENTCS, pages 19–34, 2008.
28. A. Sailer. Utilizing And-Inverter Graphs in the Gaussian Elimination for Boolean

Equation Systems. Master’s thesis, Hochschule Regensburg, 2011.
29. A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific

J. of Math, 5(2):285–309, 1955.

