
Improving GPU Sparse Matrix-Vector
Multiplication for Probabilistic Model Checking

Anton Wijs and Dragan Bošnački

Eindhoven University of Technology, The Netherlands

Abstract. We present several methods to improve the run times of
probabilistic model checking on general-purpose graphics processing units
(GPUs). The methods enhance sparse matrix-vector multiplications, which
are in the core of the probabilistic model checking algorithms. The im-
provement is based on the analysis of the transition matrix structures
corresponding to state spaces of different examples from the literature.
Our first method defines an enumeration of the matrix elements (states
of the Markov chains), based on breadth-first search which can lead to a
more regular representation of the matrices. We introduce two additional
methods that adjust the execution paths and memory access patterns of
the individual processors of the GPU. They exploit the specific features
of the transition matrices arising from probabilistic/stochastic models as
well as the logical and physical architectures of the device.
We implemented the matrix reindexing and the efficient memory access
methods in GPU-PRISM, an extension of the probabilistic model checker
PRISM. The experiments with the prototype implementation show that
each of the methods can bring a significant run time improvement -
more than four times compared to the previous version of GPU-PRISM.
Moreover, in some cases, the methods are orthogonal and can be used in
combination to achieve even greater speed ups.

1 Introduction

Probabilistic model checking(e.g. [18, 2, 3]) was introduced for the analysis of
systems that contain inherently probabilistic components. It has been applied
to a broad spectrum of systems, ranging from communication protocols, like
FireWire and Bluetooth, to various biological networks.

Unlike in standard model checking, in probabilistic model checking the cor-
rectness of the verified properties is quantified with some probabilities. Such
properties are expressed in special logics which are extensions of the traditional
temporal logics. As a result, probabilistic model checking algorithms overlap
with the conventional ones in the sense that they require computing reachability
of the underlying transition systems. Still, there are also important differences
because numerical methods are used to compute the probabilities.

Modern General Purpose Graphics Processing Units (GPUs) are no longer
dedicated only to graphics applications. Instead a GPU can be seen as a general
purpose manycore processor. The idea to use GPUs for model checking in gen-
eral, and for for probabilistic model checking, in particular, was developed in [8,

9]. The main goal was to speed up the numerical components of the algorithms.
More precisely, it turns out that one can harness the massively parallel processing
power of the GPUs to accelerate linear algebraic operations, like sparse matrix
vector multiplication (SpMV) and its derivatives, which are in the core of the
algorithms. Significant speed ups, often of more than ten times in comparison
to the sequential analogues, can easily be achieved.

In this paper we describe three novel methods to improve the sparse vec-
tor multiplication and the related algorithms. The methods exploit the specific
structures of the matrices that arise in probabilistic model checking. The matri-
ces contain transition probabilities for the underlying Markov chains, which are
actually the state spaces of the probabilistic models. Therefore we first present
an overview of the transition matrices/state spaces based on the examples that
occur in the standard distribution of the model checker PRISM [17].

The efficiency of the GPU computations crucially depends on the usage of
the various types of memories that are on the device. The difference in speed
between various memories can be up to 100 times. Therefore we strive to achieve
so called coalesced memory access to the memory, when the active processors of
the GPUs fetch data from addresses which are physically close to one another. It
turns out that to obtain such efficient memory access patterns it is advantageous
to have elements of the matrix grouped as close as possible to the main diagonal.
To achieve this we develop a heuristics that assigns indices to the states of the
Markov Chains based on breadth-first search. This preprocessing of the matrix
is already sufficient to produce significant speed ups (up to five times) with the
standard versions of the sparse matrix-vector multiplication algorithms.

We also present two additional algorithms that are based on the so-called co-
alesced access to the memory, when threads which are performed simultaneously
request data from memory locations which are sufficiently close to each other.

In the first of these algorithms each thread processes one row of the matrix.
The algorithm groups the threads in segments of rows that conform nicely with
the logical and physical architecture of the GPU. This ensures efficient access
to contiguous memory locations. The second method also groups the rows in
segments, with the difference that each row is processed by two threads working
in parallel.

We implemented our methods in GPU-PRISM [10], an extension of the prob-
abilistic model checker PRISM. Each of the efficient memory access methods can
achieve runtime improvements up to factor 4.5.

2 GPU Preliminaries

Harnessing the power of GPUs is facilitated by the new APIs. In this paper
we assume a concrete NVIDA GPU architecture and its Compute Unified De-
vice Architecture (CUDA) interface [13]. Nevertheless, the algorithms that we
present here can be straightforwardly extended to a more general context, i.e.,
for an architecture which provides massive hardware multithreading, supports

2

the single instruction multiple thread (SIMT) model, and relies on coalesced
access to the memory.

CUDA is an interface by NVIDIA which is used to program GPUs. CUDA
programs are basically extended C programs. To this end CUDA features ex-
tensions like: special declarations to explicitly place variables in some of the
memories (e.g., shared, global, local), predefined keywords (variables) containing
the block and thread IDs, synchronization statements for cooperation between
threads, run time API for memory management (allocation, deallocation), and
statements to launch functions on GPU. In this section we give only a brief
overview of CUDA. More details can be found in, for instance, [8].

CUDA Programming Model. A CUDA program consists of a host program which
runs on the CPU and a set of CUDA kernels. The kernels, which are the parallel
parts of the program, are launched on the GPU device from the host program,
which comprises the sequential parts. The CUDA kernel is a parallel kernel that
is executed on a set of threads. Each thread of the kernel executes the same
code. Threads of a kernel are grouped in blocks. Each thread block is uniquely
identified by its block ID and analogously each thread is uniquely identified by
its thread ID within its block. The dimensions of the thread and the thread
block are specified at the time of launching the kernel. The grid can be one- or
two-dimensional and the blocks are at most three-dimensional.

CUDA Memory Model. Threads have access to different kind of memories. Each
thread has its own on-chip registers and off-chip local memory, which is quite
slow. Threads within a block cooperate via shared memory which is on-chip
and very fast. If more than one block are executed in parallel then the shared
memory is equally split between them. All blocks have access to the device
memory which is large (up to 6GB), but slow since, like the local memory,
it is not cached. The host (CPU program) has read and write access to the
global memory (Video RAM, or VRAM), but cannot access the other memories
(registers, local, shared). Thus, the global memory is used for communication
between the host and the kernel.

CUDA Excution Model. GPU performs computations in SIMT (Single Instruc-
tion Multiple Threads) manner, which means that each thread is executed inde-
pendently with its own instruction address and local state (registers and local
memory). The threads of a block are executed in groups of 32 called warps. All
threads of the warp execute a single (not necessarily the same) instruction. Thus,
each thread of the warp can basically execute its own program. However, our
goal is to avoid such an execution divergence, i.e., to make the threads perform
the same execution as long as possible. Also with regard to the memory access
threads can also use different addresses which leads to a memory divergence.
This should also be avoided and this is actually our main objective throughout
this paper. We develop algorithms that request sufficiently close memory loca-
tions, such that requests of the same warp can be grouped together (coalesced)
for a more efficient memory access.

3

3 Structures of Transition Probability Matrices and BFS
reindexing

To exploit the specifics of the transition matrices that arise in probabilistic model
checking, we analyze some case studies from the literature. In particular, we
consider the examples of probabilistic and stochastic models that are part of
the standard distribution of PRISM. Since PRISM is probably the most widely
applied probabilistic model checker, these examples give a good overview about
the kinds of models that are used in applications. There are models from different
areas, like probabilistic algorithms, queuing theory, chemistry, and biology. (We
do not consider models of the Markov decision processes type.)

Our first goal is to qualitatively examine the state spaces. Therefore, we
make plots of the corresponding transition probability matrices. The existence
of the probability greater than zero, i.e., a transition in the underlying Markov
chain represented by the matrix element, is represented with a dot. The plots
of the transition matrices are given on the left hand side of each pair of plots in
Figures 2 and 3. Such plots can help identifying patterns in the elements which
could possibly be exploited in the algorithms.

In PRISM each state is given a number between 0 and n − 1, where n is
the number of states in the underlying Markov chain. The plots on the left-
hand side are based on the original indexing of the states as it is produced by
(GPU-)PRISM. We explain below the plots on the right-hand side.

One can observe that there is often some regularity in the distribution of the
non-zero elements. In most of the examples one can notice diagonal grouping
of the elements. The diagonals are either parallel to the main matrix diagonal
or they close some angle with it. The most notable in that regard are cluster,
tandem, cell, and molecules, but also in the other examples (except herman)
the diagonal structure is prevailing. The most remarkable of all is the matrix for
herman which has some sort of “fractal” structure, reminiscent of the Sierpinski
carpet or similar examples.1

3.1 Breadth-first search reindexing of the states

A diagonal grouping, similar to the one exhibited by the PRISM examples, has
been exploited before in algorithms for sparse matrix-vector multiplication to
improve the run-times [6, 7, 20]. This was based on the advantageous memory
access pattern which arises from the distribution of the non-zero elements. Be-
cause of the diagonal structure, threads that belong to the same block access
locations in the main memory which are close to each other. In the coalesced
access the threads (preferably of the same block) access consecutive memory lo-
cations. This minimizes the number of accesses that are needed to provide data

1 It would be worth exploiting where this structure comes from and if there are also
other examples of Markov chains, not necessarily in probabilistic model checking,
that have this kind of a “fractal” structure. Considering that the fractals have been
used for image compression, maybe one could develop an efficient compact represen-
tation of the transition matrices.

4

to all threads in the block. In the ideal case, all necessary data can be fetched
simultaneously for all threads in the block.

For illustration, consider matrix M given in Fig. 1a in which the non-null
and null elements are denoted with • and ◦, respectively.

0
1
2
3
4
5

0 1 2 3 4 5
• • ◦ ◦ ◦ ◦
• • • ◦ ◦ ◦
◦ • • • ◦ ◦
◦ ◦ • • • ◦
◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ • •

thread ID 0 1 2 3 4 5
iteration 0 [0 0 1 2 3 4]
iteration 1 [1 1 2 3 4 5]
iteration 2 [∗ 2 3 4 5 ∗]

(a) (b)

Fig. 1. (a) An example of a diagonally shaped matrix. (b) A memory access pattern
corresponding to the matrix.

We want to multiply M with a vector x. For simplicity, suppose that we
use to this end a kernel with one dimensional grid. The grid consists of one
block that contains six threads. Further, let one thread processes one row in the
multiplication algorithm by performing the inner product of the row with the
vector. We assume that thread IDs range from 0 to 5 and that thread i processes
row i, for 0 ≤ i ≤ 5.

During the execution we can observe the memory access pattern given in
Fig. 1b. The top row of the pattern contains the thread IDs. The rest of the
rows represent the access to the vector elements during the computation of the
matrix vector product. Each of these rows corresponds to an iteration. In each
row, the entry in a column corresponding to thread i contains the index of the
vector element that is accessed in the iteration corresponding to the row. The
special entry “*” denotes that the corresponding thread accesses no element
during the iteration. Which element of vector x is accessed by the thread is
determined by the column index of the non-null element of the matrix which is
processed by the thread during the corresponding iteration. Therefore, during
iteration 0, both thread 0 and thread 1 access x[1], for 2 ≤ i ≤ 5, thread i
uses x[i − 1]. Element x[5] is not used during iteration 0. The other rows of
the pattern are interpreted in an analogous way. One can see that in most of
the cases threads with consecutive ID numbers access consecutive indices and
therefore to consecutive memory locations that correspond to the elements of
vector x.

The access to the memory locations corresponding to the matrix elements
is not contiguous though. However, as we show in Section 4, this can also be
achieved to a significant extent, by using an appropriate memory storage format
for the matrix.

Considering the potential benefits of the diagonal structure, a natural idea
is to try to permute the indices of the matrix such that a diagonal structure

5

Fig. 2. Plots of transition matrices of models from the PRISM standard distribution.
For each model two plots are given: the transition matrix produced by PRISM (left)
and the transition matrix after the BFS reindexing (right). The numbers in the model
names denote the values of the model parameters in the order they are asked by
PRISM. The model names are (from left two right and top to botom, respectively):
cluster, tandem, cell, molecules knac, polling, dice, firewire imple, and embedded.

is obtained. The approach that we use for that purpose is to re-enumerate the
states of the underlying graph of the Markov chain in breadth-first search (BFS)
order. The rational behind this is to exploit the locality of the Markov chains,
i.e., the fact that most of the states are connected to their immediate neighbors
and that there are not too big transition “jumps” between states. This would
ensure that the differences between the row and column indices of the non-zero
elements of the matrix stay within a predefined interval, i.e., that they stay
within some relatively narrow strip around the main diagonal.

The plots of the matrices after the BFS reindexing are given on the right-
hand sides in Figs. 2 and 3. At least in two cases (brp and leader) the structure
of the matrix has been “diagonalized”, in the sense that different lines/diagonals
are brought closer to each other. In the case of leader the original “staircase”
structure is transformed into a line parallel to the main diagonal. The matrices
of kanban and two dice have become more compact, in the sense that there are
less “islands” in the state space. One can benefit also from such a grouping of the
indices like for the clustering around the main diagonal, for analogous reasons.
Moreover, in the matrices that had already a “nice” diagonal structure, like
cluster, tandem, cell, and polling, the structure is preserved. The “fractal”
example, herman, stays the same under reindexing as well as the small example
dice.

6

Fig. 3. (continued) Plots of transition matrices of models from the PRISM standard
distribution. For each model two plots are given: the transition matrix produced by
PRISM (left) and the transition matrix after the BFS reindexing (right). The numbers
in the model names denote the values of the model parameters in the order they
are asked by PRISM. The model names are (from left two right and top to botom,
respectively): kanban, brp, two dice, leader sych, fms, and herman.

4 Coalescing Matrix Data Access

As we saw in the previous section, by grouping the non-zero elements of the
matrix in diagonal shapes, a contiguous access to the elements of the vector
is made possible. To also achieve the same for the non-zero elements of the
matrix, special care should be taken of the format in which the matrix is stored
in the memory of the GPU. Also, once we have the convenient storage formats
corresponding algorithms should be developed that can efficiently exploit the
new data structure. In the sequel we present two new storage methods and their
corresponding algorithms.

4.1 Sparse Matrix Representation

Although in theory the size of the matrix is in general Θ(n2), where n is the
number of rows, for sparse models that usually appear in practice the matrices
can be significantly compressed. Such matrix compression is a standard technique
used for probabilistic model checking and to this end special structures are used.
In the algorithms that we present in the sequel we use the so called modified
sparse row/column format (MSR) [16, 5] or its modifications. We illustrate this
format on the example in Fig. 4.

The non-zero elements of the matrix are linearly stored in the array non-zeros.
Elements belonging to the same row are stored in consecutive cells. The begin-
ning of each row is given by the array row-starts. Array colscontains the column
indices of the corresponding elements in non-zeros.

Algorithm 1 is the basic kernel of an SpMV algorithm that is executed by each
of the threads. This kernel was developed based on the sequential implementation
of PRISM(cf. [8, 9]).

7

0
1
2
3
4
5
6

0 1 2 3 4 5 6

0 a b 0 0 0 0
0 0 c d 0 0 0
0 0 0 0 e 0 0
f 0 0 g 0 0 0
0 0 0 0 h 0 0
i j 0 0 0 0 0
0 0 k 0 0 0 0

row-starts 0 2 4 5 7 8 10 11

cols 1 2 2 3 4 0 3 4 0 1 2
non-zeros a b c d e f g h i j k

Fig. 4. An example of MSR storage format. The lettters denote the non-zero elements
of the matrix. On the right-hand side is the MSR representation of the matrix.

In the sequel we give only the kernels, i.e., the parts of the algorithms that
are executed on the GPUs, since the host program, the CPU parts, are fairly
standard. (A generic host program can be found in its integral form in our
previous papers on GPU model checking [8]. A host program, which is essentially
the same, can be used for all algorithms presented in this section.)

Algorithm 1 Standard SpMV Kernel for MSR Matrices.

Require: row-starts, cols, non-zeros, n, x, x′, BlockId, BlockSize, ThreadId
1: i := BlockId · BlockSize + ThreadId;
2: if (i < n) then
3: d := 0;
4: l := row-startsi; // start of row
5: h := row-startsi+1; // end of row
6: for (j = l; j < h; j + +) do
7: d := d + non-zerosj · xcolsj

;

8: x′
i := d;

Algorithm 1 assumes an MSR memory storage format. Therefore, input of
the algorithm is an MSR representation (as a three separate arrays), followed by
the matrix size n, vector x, as well as the GPU bookkeeping IDs. Vector x′, which
is the output of the algorithm, is the result of the matrix-vector multiplication.

In line 1 the ‘absolute’ thread ID is computed since ThreadIdis relative to
the block. Variable i also gives the number of the row that is processed by the
thread. Line 2 is just a check if the row number is within the matrix bounds.
Variable d contains the temporary value of the inner product sum of the row i
with vector x. In lines 4 and 5 we determine the start and the end, respectively,
in the MSR representation of the segment which contains the elements of row i.
The iteration in lines 6 and 7 computes the inner product which is stored in d
and eventually assigned, in line 8, to i-th element of the result x′.

A drawback of Alg. 1 in combination with the MSR format is that, when the
former is executed by the threads of a given block in parallel, the elements of

8

array non-zeros, which are required by the threads, are not stored on consecutive
memory locations. In the above example, assume a block size 4. Threads 0, 1, 2,
and 3 of block 0, in their first iteration need access to the elements of non-zeros
which are the first elements of the corresponding rows. These are the elements
a, c, e, and f , (at positions 0, 2, 4, and 5), respectively. As a result of such a
non-contiguous access, several cycles might be needed to fetch all elements of
non-zeros. In contrast, if the elements were on a consecutive positions, i.e., if
they could have been accessed in a coalesced way, just one access cycle would
have been sufficient.

Note that this problem occurs also with the diagonally shaped matrices dis-
cussed in the previous section. Although the elements of x, which are processed
in the same iteration by the threads of the same block, can be accessed in a
coalesced way, this is still not the case with the non-zeroselements.

4.2 A Full-Warp SpMV Algorithm

The parallel execution of the different row-vector multiplications can be further
improved. For this, we exploit the fact that the GPU groups the launched threads
into warps. If threads in the same warp can access the memory in a coalesced
way, data fetching will be done for all those threads in a single cycle.

To achieve coalesced access of the elements in a matrix within a warp of
threads, we reorder its MSR representation such that the elements accessed in
a warp are next to each other. First of all, to explicitly group the threads in
warps, we introduce a new array named seg-starts, which partitions the matrix
into segments, each containing as many consecutive rows as the warp size (apart
from the last segment, possibly). Say the warp size is 4, then the example given
earlier will now be rewritten as given below. The double vertical lines indicate
the warp boundaries. Note that some “dummy” elements need to be added to
keep the elements of the same row on equidistant intervals. However, as we
will see also later in the experiments, this increase of memory is usually of no
significance and it is amply compensated by the improved run times.

seg-starts 0 8 14
cols 1 2 4 0 2 3 - 3 4 0 2 - 1 -

non-zeros a c e f b d 0.0 g h i k 0.0 j 0.0

To exploit the modified matrix storage format, we introduce Algorithm 2.
The new algorithm is a modification of Alg. 1 and features the same input
and output, except for the fact that the matrix dimension n is replaced by two
numbers ns and nrem . The former is the predefined number of segments, whereas
nrem is the number of rows in a possibly “incomplete” block, i.e., if the number
of rows n is not divisible by the warp size. The latter is assumed to be given. If
we assume for our running example matrix that we have just one block and a
warp size 4, then this will result in ns = 2 and nrem = 3.

Like in Alg. 1, we begin by computing the ‘absolute’ thread ID, which also
determines the index of the processed row. Besides that, in line 2 the segment

9

Algorithm 2 SpMV Kernel for MSR Matrices reordered into warp segments.

Require: seg-starts, non-zeros, ns, nrem , x, x′, BlockId, BlockSize, ThreadId
1: i := BlockId · BlockSize + ThreadId;
2: segid := i/WarpSize; // segment index
3: lane := ThreadId & (WarpSize − 1); // thread index in warp
4: n = (ns − 1) · WarpSize + nrem ;
5: if (i < n) then
6: d := 0;
7: if segid < ns − 1 then // determine segment size
8: skip := WarpSize;
9: else

10: skip := nrem ;
11: l := seg-startssegid; // start of segment

12: h := seg-startssegid+1
; // end of segment

13: for (j = l + lane; j < h; j = j + skip) do
14: d := d + non-zerosj · xcolsj

;

15: x′
i := d;

ID segid is computed. As mentioned above, for our running example we will have
two segments. In line 3 lane is computed which is an index of the thread within
the warp, or in our case, since the warp and segment size are the same, it is also
an index within the segment. In line 4 the matrix dimension n is recovered from
the input values ns and nrem . The next difference compared to Alg. 1 is in lines
7-10. This is because, unlike in the original MSR format, in the new format the
non-zeros elements, belonging to the same row (and therefor em, accessed by the
same thread), are not stored contiguously. Instead they are dispersed regularly
in the non-zeros array, i.e., separated by equal skip intervals. Not that in line 8
the skip for the last block is set to nrem . The start and end of the for iteration
are computed in lines 11 and 12, respectively, and they coincide with the start
and end of the segment which contains thread (row) i. The for iteration in line
13 is started with an offset lane to take into account the relative position of the
thread within the segment and the loop counter j is increased with step skip to
ensure that each thread fetches the elements of row i.

One can see that for our running example with one block and two segments
of size 4, threads 0, 1, 2, and 3 of the first segment will access the first iteration
the first four elements of non-zeros, a, b, c, and d, respectively.

4.3 A Half-Warp SpMV Algorithm

The same coalescing approach can be used to obtain a matrix representation
supporting the use of segments whose number of rows is at most half the warp
size. In that setting, assigning a warp of threads to each segment allows to use
two threads per row. When rewriting the MSR representation of a matrix, we
ensure that the elements of rows in a warp are grouped in pairs, as shown in the
following example:

10

seg-starts 0 4 8 12 14
cols 1 2 2 3 4 - 0 3 4 - 0 1 2 -

non-zeros a b c d e 0.0 f g h 0.0 i j k 0.0

Algorithm 3 SpMV Kernel for MSR Matrices reordered into half warp seg-
ments.
Require: seg-starts, non-zeros, ns, nrem , x, x′, BlockId, BlockSize, ThreadId
1: shared volatile double shared[ThreadsPerBlock/2]; // to store results
2: i := BlockId · BlockSize + ThreadId;
3: segid := i/WarpSize; // segment index
4: lane := ThreadId & (WarpSize − 1); // thread index in warp
5: row := i/2 // row id
6: n = (ns − 1) · (WarpSize/2) + nrem ;
7: if (row < n) then
8: d := 0;
9: if segid < ns − 1 then // determine segment size

10: skip := WarpSize;
11: else
12: skip := nrem · 2;
13: l := seg-startssegid; // start of segment

14: h := seg-startssegid+1
; // end of segment

15: for (j = l + lane; j < h; j = j + skip) do
16: d := d + non-zerosj · xcolsj

;

17: if lane % 2 then // determine thread id in row
18: shared[ThreadId/2] := d;
19: if !(lane % 2) then // accumulate results
20: x′

row := d + shared[ThreadId/2];

Corresponding to the new storage format is the half-warp based Algorithm 3.
This algorithm requires the same data as its full-warp counterpart Alg. 2. In line
1 array shared, which resides in the shared memory, is defined. Recall that the
shared memory is accessible by all threads that belong to the same block and it
is around two orders of magnitude faster than the main GPU memory in which
both the matrix and the vector are stored. In this algorithm the inner product
of one row with the vector is done by two threads. So, the final result should be
a sum of the two partial sums produced by each of the thread. Thus each thread
sets its end sum in a corresponding element of shared. The assignments in lines
2-4 are the same as in Alg. 2. Only this time, since two threads are processing
one row, i does not correspond to the row index. So, we compute the latter in
line 5. The lines 6-16 are like in Alg. 2. The only subtlety is that the segment
size is halved, the skip for the last block is set to nrem · 2. The main difference
with Alg. 2 is in lines 17-20. This piece of code actually checks if lane, the index
of the thread within the segment is even or odd. In the ID is odd, then the end
result (partial sum of the inner product) is saved in the corresponding element of

11

shared. Otherwise, the end result for the row is produced by adding the partial
result from shared by the other thread which processes the same row.

Again, one can see that the algorithm in combination with the matrix storage
ensures a coalesced access of the threads within a segment and block to the
matrix elements.

5 Experimental Results

The BFS reindexing as well as the half and full-warp methods were implemented
in GPU-PRISM 4.0 [10],2 an extension of the model checker PRISM version 4.0.
We conducted a number of experiments with our implementations on a 64-bit
computer running Ubuntu 10.10 with CUDA version 4.1, both the Software
Development Kit and the driver. It runs on an AMD Athlon(tm) 64 X2 Dual-
Core Processor 3800+ running at 2 GHz with 4 GB RAM, and has an NVIDIA
GPU GeForce GTX 480 with 1.5 GB global memory and 480 cores running at
1.4 GHz. As block size, we used 512 threads.

The data of the experiments were both represented in MSR format, and in
the special compact MSR (CMSR) format [16], which was specifically designed
to efficiently store matrices representing probabilistic models. These matrices
tend to be not only sparse, but also contain a relatively small number of distinct
values. This is exploited in CMSR by keeping these values in a separate array,
and storing pointers to these values, instead of the values themselves, in the
non-zeros array. In [16], it is remarked that besides memory benefits, CMSR
also tends to speed up the computations, due to caching effects. Intuitively, in
the GPU setting, the use of the CMSR format instead of the MSR format reduces
the potential for coalesced memory access; the best one can do is reorder the
pointers to the values, not the values themselves. Since CMSR is used by default
in PRISM, and SpMV on a CPU with the CMSR format usually outperforms
SpMV with MSR, it is crucial that we test the efficiency of the half- and full-warp
methods with CMSR, as well.

All models that we used in our experiments were taken from the standard
distribution of PRISM. Table 1 shows the common characteristics of the exper-
iments. The first and the second column, respectively, contain the name of the
instance (depending on the parameter values) of the model. The third column
denotes the number of the property in the property file that comes with each
model. The last two columns give the number of reachable states and the number
of iterations required to solve the system of linear equations represented by the
combination of the model and the property to check, using the Jacobi method.

Table 2 presents the results obtained when using standard GPU SpMV on
both the original MSR matrices, as produced by PRISM, and the BFS-reindexed
ones. As in the previous table, the first two columns give the name and instance
of the model. The next column gives the consumed memory which is the same in
both cases, since the data storage format is unchanged. Columns 4 and 5 contain

2 http://www.win.tue.nl/~awijs/software.html

12

Table 1. Information on the protocol properties.

Model Inst. Prop. n Iterations

herman 15/5 3 32,768 245

cluster 320 1 3,704,340 5,107

cluster 464 1 7,776,660 23,932

tandem 1,023 1 2,096,128 16,326

tandem 2,047 1 8,386,560 24,141

kanban 5 1 2,546,432 663

fms 7 1 1,639,440 1,258

fms 8 1 4,459,455 1,438

polling 17 4 3,342,336 4,732

polling 18 4 7,077,888 4,880

the times with the PRISM and reindexed matrix, respectively. The last column
gives the speed up factor which is obtained by dividing the original time with
the time obtained with the reindexed matrix.

Table 2. Performance of standard SpMV on MSR and BFS-reindexed MSR data.

Model Inst. mem. orig. time +BFS time Factor

herman 15 165 15.50 12.46 1.24

cluster 320 305 45.45 44.79 1.01

cluster 464 642 440.16 443.06 0.99

tandem 1,023 139 39.56 43.91 0.90

tandem 2,047 559 228.18 255.57 0.89

kanban 5 347 14.78 15.34 0.96

fms 7 198 15.18 15.08 1.01

fms 8 560 52.14 50.28 1.04

polling 17 295 77.25 66.21 1.17

polling 18 646 184.12 160.77 1.15

In most of the cases there is some speed up which is probably due to the
coalesced access to the vector elements. On the other hand, the best result is
achieved for an instance of herman, which has the ‘fractal’ structure and it is
invariant under the reindexing. This could be due to the fact that during the
reindexing, the matrix and the correspondingly permuted vector are copied to
a new data structure. Although the new structures are conceptually identical
to the original MSR-based structures of PRISM, they might provide a faster
memory access. Obviously, a more thorough analysis is needed to explain this
phenomenon. In general, although the results are not conclusive, it seems that
the reindexing itself is able to produce some speed up.

13

Table 3 shows the results when applying the new algorithms using row seg-
ments to coalesce memory access. SpMV(WL) and SpMV(HWL) denote the
algorithms with full- and half-warp segment size, respectively. For both algo-
rithms the memory use in megabytes, and run time in seconds are shown. The
last column contains the maximal speed up factor with respect to the standard
GPU-PRISM (without BFS reindexing), which can be found in Table 2.

Table 3. Performance of SpMV(WL) and SpMV(HWL) on MSR data.

Model Inst. Original matrix BFS reindexed matrix

SpMV(WL) SpMV(HWL) Factor SpMV(WL) SpMV(HWL) Factor

mem. time mem. time (max.) mem. time mem. time (max.)

herman 15 692 9.90 520 3.43 4.51 692 5.60 520 3.43 4.52

cluster 320 372 21.47 386 26.52 2.12 320 18.35 434 25.50 2.48

cluster 464 781 211.65 811 259.69 2.08 669 178.94 909 247.81 2.46

tandem 1,023 132 27.18 144 24.73 1.60 144 29.90 192 41.00 1.32

tandem 2,047 528 159.38 577 96.15 2.37 576 172.07 769 234.40 1.32

kanban 5 384 2.98 390 3.29 4.99 406 3.25 467 3.52 4.55

fms 7 248 3.88 242 4.30 3.91 261 3.93 261 4.30 3.86

fms 8 700 12.87 684 13.82 4.05 746 12.73 745 13.43 4.10

polling 17 329 20.43 329 23.31 3.78 496 25.86 505 30.42 2.99

polling 18 717 46.62 718 51.77 3.95 1,090 58.63 1,110 67.79 3.14

For the original matrices, again the best speed up of 4.51 is obtained with
herman, but this time this is paid with around the same factor of memory in-
crease. The speed ups with the other models though are achieved with quite
acceptable price in memory. It is important to note that the half-warp algorithm
produces the best results only for the herman case; in all other cases the full-warp
algorithm is the fastest. The herman matrices are relatively dense compared to
the others, which supports the observation in related work, e.g. [6], that fur-
ther parallelisation of individual row-vector multiplications, i.e. using multiple
threads per row, often does not pay off for sparse matrices. In [6], this is related
to assigning warps to rows, but here, even two threads per row does not outper-
form one thread per row, when typical sparse matrices of probabilistic models
are used.

Table 3 also contains the results when using combinations of the new algo-
rithms, i.e. first reindexing the matrix using BFS, and then partitioning the rows
into segments. One can see that the results with herman are unaffected by the
reindexing. This is in accord with our intuition since the transition matrix of this
model is virtually invariant under the BFS reindexing. The results for cluster

show that with the full-warp version of the algorithm, the BFS reindexing results
in some gain in memory. Also the reindexing results in some additional speedup.
For the other examples though, the reindexing causes deterioration of both the

14

speed ups and the memory usage, suggesting that BFS reindexing is a technique
which does not combine well with the improved SpMV methods.

Table 4. Performance of standard SpMV on CMSR and BFS-reindexed CMSR data.

Model Inst. mem. orig. time +BFS time Factor

herman 15 55 8.70 8.62 1.01

cluster 320 146 20.81 19.66 1.06

cluster 464 308 203.05 197.19 1.03

tandem 1,023 71 22.77 23.77 0.98

tandem 2,047 287 124.17 135.17 0.92

kanban 5 146 4.81 5.20 0.93

fms 7 86 5.75 5.76 1.00

fms 8 240 19.70 19.13 1.03

polling 17 189 35.65 41.44 0.86

polling 18 414 80.43 96.29 0.84

Tables 4 and 5 show the results for the same model instances as Tables 2
and 3, but now using the CMSR data storage format. As expected, overall, the
achieved speedups are not as high as when using MSR. BFS reindexing even
shows a negative effect in combination with standard SpMV. It seems that the
reindexing disturbs the optimization introduced by the CMSR storage format.
Further research is required to determine the exact cause. The full-warp algo-
rithm, however, still produces in most cases a speedup of two times. For the
models cluster and tandem, it does not result in a speedup, which seems to be
related to the fact that their matrices are perfect diagonals, and therefore prob-
ably already lead to relatively coalesced data access in SpMV. Finally, as when
using MSR, the half-warp algorithm only outperforms the full-warp algorithm
for the herman case.

6 Conclusions, Prospects and Related Work

We gave an overview and analysis of the state spaces that arise in probabilistic
model checking, as represented by their corresponding transition probability
matrices. Most of them show regular patterns and diagonally shaped matrices
are prevailing. Based on this analysis, we suggested three methods for improving
the run times of the model checking algorithms. All methods were implemented
in GPU-PRISM, an extension of the probabilistic model checker PRISM.

Our first method performs a BFS-based reindexing of the states, which poten-
tially leads to more compact representations of the matrices. The experiments
with our implementation show that for some models the BFS reindexing can
accelerate the model checking algorithms on GPUs.

15

Table 5. Performance of SpMV(WL) and SpMV(HWL) on CMSR data.

Model Inst. Original matrix BFS reindexed matrix

SpMV(WL) SpMV(HWL) Factor SpMV(WL) SpMV(HWL) Factor

mem. time mem. time (max.) mem. time mem. time (max.)

herman 15 231 5.48 173 3.56 2.44 692 5.60 520 3.43 2.54

cluster 320 159 17.05 164 24.57 1.22 142 15.09 152 23.93 1,38

cluster 464 335 175.40 346 255.72 1.16 298 162.17 319 253.89 1.25

tandem 1,023 64 23.77 68 39.34 0.96 68 25.22 68 39.85 0.90

tandem 2,047 256 139.42 273 230.46 0.89 272 146.78 273 231.25 0.85

kanban 5 152 2.18 154 2.84 2.21 159 2.37 161 3.05 2.03

fms 7 98 3.03 96 3.89 1.90 102 3.08 102 3.87 1.87

fms 8 276 9.92 271 12.64 1.99 291 9.69 291 12.06 2.03

polling 17 208 18.32 209 26.63 1.95 204 19.37 207 27.50 1.84

polling 18 455 37.89 456 58.48 2.12 447 42.89 453 58.16 1.88

Additionally, we proposed two methods that group the threads in segments.
By choosing the segment size to coincide with a full or half-warp size, together
with appropriate modifications of the data representation, one can achieve a
coalesced access to the main GPU memory. The experiments showed that in
some cases the model checking algorithms can be accelerated more than four
times. Also combinations of the two coalescing methods with the BFS reindexing
can produce some additional speed ups.

We intend to perform more experiments with different models from the
PRISM set of examples as well as from other sources. Also it would be worth
to explore further the structure of the state spaces. A special challenge in that
direction could be the fractal-like structures which were observed in one of the
examples. This can be potentially used to optimize the storage of the state spaces
as well as the run times of the algorithms.

Related work. GPU model checking was a logical continuation of the concept of
multi-core model checking [15]. Besides the above mentioned introductory pa-
pers on GPU (probabilistic) model checking [8–10], several algorithms for sparse
matrix vector multiplication, which exist in the literature, were recently tested
in the context of probabilistic model checking [12]. This work to a significant
extent complements our previous work in [8, 9]. The paper seems to confirm
our hypothesis presented there that our algorithms for GPU probabilistic model
checking from [8] are superior to the class of Krylov methods, representatives of
which were tested in [12].

An overview of algorithms for sparse matrix-vector multiplication can be
found in [20]. Several methods for sparse vector matrix multiplication were dis-
cussed in [6, 7]. Among them are also methods for diagonally shaped sparse
matrices, which could play an important role in probabilistic model checking.
They consider algorithms which are analogous with our half-warp algorithm, in

16

which several threads process one row. They conclude that this really gives re-
sults only if the matrices are dense. In a sense this is confirmed with our results
with the half-warp algorithm. Often we do not get any improvement although
a row is processed with only two threads. Compared to our work, they do not
consider BFS reindexing, but the most important difference is that we group the
rows in segments of one- and half-warp sizes, which is not the case in their work.
Also our matrix and vector memory storage differs from the ones used by them.

In [19] the authors propose to speed up probabilistic model checking, by ex-
ploiting the structure of the underlying Markov chains, for sequential algorithms.
It might be interesting to investigate a combination of the findings about the
structure of the state spaces presented in this paper and their in the GPU con-
text.

Previous algorithms for probabilistic model checking were almost exclusively
designed for distributed architectures, i.e., clusters [5, 11]. They were focused on
increasing the state spaces of the models instead of the runtimes and minimiz-
ing the communication overhead between instead of the the memory latency.
In [1] a shared memory algorithm is introduced for CTMC construction, but the
algorithms employed there are quite different from our approach.

There are other publications that deal with different kinds of model checking
on GPUs that do not involve probabilities (e.g.,[14, 4]). They use algorithms
which are quite different from the ones presented in this paper.

References

1. S.C. Allmaier, M. Kowarschik, G. Horton, State Space Construction and Steady-
state Solution of GSPNs on a Shared-Memory Multiprocessor, Proc. 7th Intt. Work-
shop on Petri Nets and Performance Models (PNPM’97), pp. 112-121, IEEE Comp.
Soc. Press, 1997.

2. C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 950 pp, 2008.
3. C. Baier, J.-P. Katoen, H. Hermanns, B. Haverkort, Model-Checking Algorithms

for Contiuous-Time Markov Chains, IEEE Transactions on Software Engineering,
29(6):524-541, 2003.

4. J. Barnat, L. Brim, M. Ceska, T. Lamr, CUDA Accelerated LTL Model Checking,
IEEE 15th International Conference on Parallel and Distributed Systems, ICPADS
2009, pp. 34-41, IEEE, 2009.

5. A. Bell, B.R. Haverkort, Distribute Disk-based Algorithms for Model Checking Very
Large Markov Chains, Formal Methods in System Design 29:177-196, Springer,
2006.

6. N. Bell, M. Garland, Efficient Sparse Matrix-Vector Multiplication on CUDA
NVIDIA Technical Report NVR-2008-004, December 2008.

7. N. Bell, M. Garland, Implementing sparse matrix-vector multiplication on
throughput-oriented processors, Proceedings of the ACM/IEEE Conference on High
Performance Computing, SC 2009, ACM, 2009.

8. D. Bošnački, S. Edelkamp, D. Sulewski, Efficient Probabilistic Model Checking on
General Purpose Graphics Processors Proc. 16th International SPIN Workshop,
LNCS 5578, pp. 32–49, Springer, 2009.

9. D. Bošnački, S. Edelkamp, D. Sulewski, A.J. Wijs, Parallel probabilistic model
checking on general purpose graphics processors, STTT, 13:1,21-35, 2011.

17

10. D. Bošnački, S. Edelkamp, D. Sulewski, A.J. Wijs, GPU-PRISM: An Extension of
PRISM for General Purpose Graphics Processing Units (tool paper), Proc. Joint
HiBi/PDMC Workshop (HiBi/PDMC’10), Enschede, pp. 17-19, IEEE Computer
Society Press, 2010.

11. G. Ciardo, Distributed and Structured Analysis Approaches to Study Large and
Complex Systems, European Educational Forum: School on Formal Methods and
Performance Analysis 2000: 344-374, 2000.

12. E. Cormie-Bowins, A Comparison of Sequential and GPU Implementations of
Iterative Methods to Compute Reachability Probabilities, Proc. of Workshop on
GRAPH Inspection and Traversal Engineering (GRAPHITE 2012), Tallinn, Esto-
nia, April 1, 2012. (to appear)

13. http://www.nvidia.com/object/cuda_home.html#

14. S. Edelkamp, D. Sulewski, Model Checking via Delayed Duplicate Detection on the
GPU, Technical Report 821, Universität Dortmund, Fachberich Informatik, ISSN
0933-6192, 2008.

15. G.J. Holzmann, D. Bošnački, The Design of a multi-core extension of the Spin
Model Checker IEEE Trans. on Software Engineering, 33 (10), pp. 659-674, October
2007. (first presented at: Formal Methods in Computer Aided Design (FMCAD),
San Jose, November 2006.)

16. M.Z. Kwiatkowska, R. Mehmood, Out-of-Core Solution of Large Linear Systems of
Equations arising from Stochastic Modelling, Proc. PAPM / PROBMIV’02 LNCS
2399, pp.135-151, Springer, 2002.

17. M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM: Probabilistic Symbolic Model
Checker, Computer Performance Evaluation, Modelling Techniques and Tools 12th
International Conference, TOOLS 2002, LNCS 2324, pp.200-204, Springer, 2005.

18. M. Kwiatkowska, G. Norman, D. Parker. Stochastic Model Checking, Formal Meth-
ods for the Design of Computer, Communication and Software Systems: Perfor-
mance Evaluation, LNCS 4486, pp. 220-270, Springer, 2007.

19. M.Z. Kwiatkowska, D. Parker, H. Qu, Incremental Quantitative Verification for
Markov Decision Processes, Proceedings of the IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, pp. 359370, IEEE, 2011.

20. R.W. Vuduc, Automatic Performance Tuning of Sparse Matrix Kernels, Ph.D.
thesis, University of California, Berkeley, 2003.

18

