
Combining the Sweep-Line Method with the
use of an External-memory Priority Queue?

Sami Evangelista and Lars Michael Kristensen

1 LIPN — Laboratoire d’Informatique de l’Université Paris Nord
99, av. J-B Clément, 93430 Villetaneuse, France

sami.evangelista@lipn.univ-paris13.fr
2 Department of Computer Engineering, Bergen University College, Norway

Lars.Michael.Kristensen@hib.no

Abstract. The sweep-line method is an explicit-state model checking
technique that uses a notion of progress to delete states from internal
memory during state space exploration and thereby reduce peak mem-
ory usage. The sweep-line algorithm relies on the use of a priority queue
where the progress value assigned to a state determines the priority of the
state. In earlier implementations of the sweep-line method the progress
priority queue is kept in internal memory together with the current layer
of states being explored. In this paper we investigate a scheme where
the current layer is stored in internal memory while the priority queue
is stored in external memory. From the perspective of the sweep-line
method, we show that this combination can yield a significant reduction
in peak memory usage compared to a pure internal memory implemen-
tation. On an average of 60 example instances, this combination reduced
peak memory usage by more than 25% at the cost of an increase execu-
tion time by a factor 2.5. From the perspective of external memory state
space exploration, we demonstrate experimentally that the state deletion
performed by the sweep-line method may reduce the I/O overhead in-
duced by duplicate detection compared to a pure external memory state
space exploration method.

Keywords. Algorithms and storage methods for explicit-state model
checking, Engineering and implementation of software verification tools,
External-memory algorithms, Sweep-line method.

1 Introduction

A large collection of explicit state space-based methods for software verification
has been developed relying on various paradigms to make the approach feasible
in presence of the inherent state explosion problem. Of particular relevance in
the context of this paper are methods that delete states from internal memory
to free storage resources during state space exploration, and methods that use
external memory to increase the storage resources available.
? This work has been supported by an Yggdrasil mobility grant from the Research

Council of Norway.

mailto:sami.evangelista@lipn.univ-paris13.fr
mailto:Lars.Michael.Kristensen@hib.no


Deleting states from memory during state space exploration to free storage
resources is the paradigm underlying state caching [13], the to-store-or-not-store
method [3], and the sweep-line method [5]. The basic idea of the sweep-line
method is to exploit a notion of progress exhibited by many systems. Exploiting
progress makes it possible to explore all reachable states while storing only small
fragments of the state space in internal memory at a time. This means that the
peak memory usage is reduced. Progress in a system can originate from, e.g.,
phases in a transaction protocol, sequence numbers, control flow, and retrans-
mission counters. The foundation of the sweep-line method has been developed
in several papers [5,15,10] and the method has been implemented in the ASAP
verification platform [19] and the LoLA tool [17]. The sweep-line method has
been applied for the software verification, in particular in the domain of proto-
cols [11,12,14,18].

Increasing the resources available for storing the set of visited states is the
paradigm underlying external memory model checking algorithms. Checking
whether a newly encountered state has already been explored (i.e., perform-
ing duplicate detection) then ultimately involves costly I/O operations. Most
external memory algorithms are based on the idea of delayed duplicate detec-
tion: duplicate detections are not interleaved with state explorations but instead
grouped together to reduce I/O overhead. From an I/O perspective this replaces
multiple “random” accesses by a single file scan. Breadth-first search [6] is a
typical exploration algorithm that can be efficiently coupled with that strategy.
Another approach to reducing the I/O overhead of duplicate detection is to use
partitioning [2] and store the set of currently visited states (and unprocessed
states) in a set of files (e.g., one file for each partition). A single partition is
then loaded into memory at a time. When no more processing is possible for the
currently loaded partition, it is moved to disk and another partition is loaded
into memory for processing. Both the breadth-first and partitioning approaches
will be compared to our new algorithm in this paper.

The primary contribution of this paper is the idea of combining the sweep-line
method with the use of external memory, and to conduct an extensive experi-
mental evaluation based on an implementation in the ASAP platform [19]. Our
experimental results show that our approach can be viewed as both an improve-
ment of the sweep-line method (reducing peak memory usage) and of external
memory algorithms (reducing I/O overhead). A secondary contribution is the
identification and experimental evaluation of an external memory priority queue
[4] in the context of explicit state model checking. Our algorithm can also be
viewed as a state space partitioning algorithm that uses the progress notion of
the sweep-line method to partition the state space, but this partitioning is used
internally in the external memory priority queue in contrast to the explicit par-
titioning approach [2]. We thus do not have to deal with it explicit in contrast
to other external memory model checking algorithms.

Outline. In Sect. 2, we introduce the required background on the sweep-line
method and external memory algorithms, and we present some initial experi-
mental results that made us pursue the combination of the sweep-line method

2



with the use of an external memory priority queue. In Sect. 3 we present the
sweep-line algorithm that uses external memory, the data structure used to re-
alise the priority queue in external memory, and we give a theoretical analysis
of the I/O complexity of the algorithm. Section 4 presents the results from the
experimental evaluation of our algorithm. Finally, in Sect. 5, we sum up the
conclusion and discuss future work. The reader is assumed to be familiar with
the basic ideas of explicit state space exploration methods.

2 The Sweep-line Method and Motivation

For the presentation, we assume a universe of system states S, an initial state
s0 ∈ S, and a successor function succ : S → 2S . We want to explore the state
space implied by these parameters, i.e., the triple (R,E, s0) such that R ⊆ S is
the set of reachable states and E ⊆ R×R is the set of edges defined by:

R = {s0} ∪ { s ∈ S | ∃s1, . . . , sn ∈ S with s = sn ∧
∀i ∈ {0, . . . , n− 1} : si+1 ∈ succ(si)}

E = {(s, s′) ∈ R×R | s′ ∈ succ(s)}

The progress exploited by the sweep-line method is formalised by providing
a progress measure as defined below.

Definition 1 (Progress Measure). A progress measure is a tuple P =
(O,v, ψ) such that O is a set of progress values, v is a total order on O, and
ψ : S → O is a progress mapping. P is monotonic if ∀(s, s′) ∈ E : ψ(s) v
ψ(s′). Otherwise, P is non-monotonic ut

A progress mapping implies a partition of edges upon progress edges marking a
system step that increase the progress value (i.e., edges (s, s′) with ψ(s) < ψ(s′));
stationary edges connecting states having the same progress value; and regress
edges that decrease the progress value (i.e., edges (s, s′) with ψ(s′) < ψ(s)).

The progress measure used by the sweep-line method can either be ob-
tained based on a structural analysis of the model or it can be provided by
the user/analyst based on knowledge about the modelled system. It is impor-
tant to note that the sweep-line method can use any mapping from states to
progress values. In particular, there is no proof obligation associated with a
provided progress measure for the sweep-line method to work.

The operation of the sweep-line method is illustrated in Fig. 1 which depicts a
generic snapshot during state space exploration. The progress mapping partitions
the state space into layers where all states in a given layer shares the same
progress values. State space exploration starts from the initial state s0 and states
are processed (i.e., successor states calculated) in a least-progress first-order using
a priority queue to store states that are still to be processed. At any given
moment, the state space being explored is divided into three regions: past layers
(where all states have been processed), current layer , and future layers. The
heuristic assumption underlying the sweep-line method is that the system makes

3



s’

future layerspast layers

s
0

s

layer 2 layer n

current layer

layer 1 layer n+1 progress

Fig. 1. Snapshot illustrating basic principle of sweep-line state space exploration.

progress which means that no states in future layers will have edges going back
to states in the current or past layers. This means that once all states in the
current layer n have been processed, then these can be deleted from memory,
and the states in layer n+ 1 can now be processed. This heuristic assumption is
indeed valid if the progress measure used in monotonic (which can be checked
on-the-fly during the state space exploration). If the progress measure is non-
monotonic, i.e., there exists regess edges leading from a state s to a state s′

such that the progress value of s is larger than the progress value of s′, then
the sweep-line method will mark s′ as persistent which means that it can never
be deleted again. The sweep-line method then uses multiple explorations (called
sweeps) of the state space where new persistent states added in the current sweep
are used as roots in the subsequent sweep. In case of non-monotonic progress
measures, the sweep-line method may therefore explore parts of the state space
multiple times. As proved in [15], complete state space coverage and termination
is guaranteed.

Peak memory usage is reduced with the sweep-line method compared to con-
ventional state space exploration due to the fact that states in past layers are
not stored in memory. The actual peak experienced with the use of the sweep-
line method is influenced by the number of states in each layer, the number of
states generated in future layers, and the number of persistent states. A heuris-
tic for getting a low peak memory usage is to keep the layers small and also
ensure locality so that not too many states are pushed into future layers as these
also need to be stored in memory. The initial hypothesis underlying the work
presented in this paper was that in many cases the individual layers contains
few states, but a substantial number of the states stored in memory are states
in future layers that will not be processed until much later in the state space
exploration. It would therefore be potentially useful to store the states in future
layers in external memory instead of internal memory.

To initially investigate this hypothesis, we report below on some statistics we
collected using the ASAP [19] verification tool. We ran the sweep-line algorithm
on a number of models from the BEEM database [16] and recorded for each run:

4



Fig. 2. Measuring memory usage of the sweep-line algorithm.

– Mc+p+f — The peak memory usage during the state space exploration1.
– Mc+p — The peak memory usage when not counting states in future layers.
– Mc — The peak memory usage when not counting states in future layers

and persistent states in past layers.

Hence, Mc+p is insensitive to the quantity of states in future layers while Mc

is also insensitive to the quantity of persistent states found so far. Obviously it
holds that Mc+p+f > Mc+p > Mc.

We have plotted on Fig. 2, the values Mc+p and Mc for a number of models.
Both values are expressed relatively to Mc+p+f which is given a value of 1.
For instance, for model pgm protocol.8, we have Mc+p ≈ Mc ≈ 0.11 ·Mc+p+f .
Table 1 also gives, for each of these models, the proportion of regress (Reg.),
forward (Fwd.) and stationary (Sta.) edges. Figure 2 shows that there is indeed
some room for improvement. For example, the state space of model needham.4
has 6, 525, 019 states. The progress measure used is very successful in clustering
the state space as attested by the fact that the largest layer only contains 420
states. However, the peak memory usage of the algorithm still reaches 1, 339, 178
states and since the state space does not have any regress edge, this means that
a huge proportion of states memorised by the algorithm are states belonging to
future layers that will not be processed immediately. Moreover, the distribution
of edges indicates that even in the extreme case where we only keep in memory
the states of the current layer (i.e., with a peak memory usage of 420 states),
only 30.5% of the edges will generate an I/O since 69.5% of edges connects states
1 Throughout this paper, we will use as a memory usage measure the number of states

present in memory at a given step rather than actual memory sizes. This is due to
implementation issues that prevent us from easily measuring memory usage during a
run. Moreover, this measure has the advantage of being implementation independent.

5



Table 1. Edge distribution for the models of Fig 2.

Model Edges
Reg. Fwd. Sta.

bopdp.3 0.0 % 27.6 % 72.4 %
brp.3 3.3 % 38.6 % 58.1 %

cambridge.6 3.5 % 39.8 % 56.7 %
extinction.4 0.0 % 22.5 % 77.5 %

firewire link.7 0.0 % 13.4 % 86.6 %
iprotocol.4 0.0 % 2.4 % 97.6 %

lann.5 2.0 % 17.3 % 80.7 %
lamport.5 2.9 % 19.4 % 77.6 %

leader election.5 0.0 % 29.9 % 70.1 %

Model Edges
Reg. Fwd. Sta.

leader filters.5 0.0 % 9.1 % 90.9 %
lifts.7 0.5 % 2.4 % 97.1 %
lup.4 17.3 % 82.7 % 0.0 %
mcs.6 0.0 % 40.2 % 59.8 %

needham.4 0.0 % 30.5 % 69.5 %
peterson.4 1.8 % 46.7 % 51.5 %

pgm protocol.8 0.0 % 27.9 % 72.1 %
rether.6 5.5 % 47.4 % 47.1 %

synapse.6 14.7 % 60.7 % 24.6 %

within the same layer and that should be simultaneously present in memory.
Note that this distribution is somehow surprising since we would expect from
the small layer sizes to instead have a large majority of forward edges.

The initial investigations reported above indicated that states stored in fu-
ture layers can be a main determining factor in terms of peak memory usage
and that storing future layers instead in external memory would be beneficial
(Fig. 2). Furthermore, compared to a pure external memory state space explo-
ration algorithm, the deletion of states in the past layers would potentially be
able to reduce the I/O overhead as there would be fewer states for which dupli-
cate detection needs to be performed (Table 1). The latter is certainly the case
when the progress measure is monotonic, and in case of non-monotonic progress
measure the I/O overhead may be reduced in cases where there are not too many
states being re-explored.

3 Using an External Memory Priority Queue

We introduce in this section a new algorithm that combines the sweep-line
method with the use of external memory. Details are also given on the external
priority queue data structure we use, as this represents a central component of
our algorithm. Moreover, the description of this data structure is required to
have a better insight on the I/O complexity of our algorithm which is examined
in the last part of this section.

3.1 Description of the Algorithm

Algorithm 1 presents a sweep-line algorithm that uses an external priority queue
Q to store future layers and persistent states. The algorithm maintains the fol-
lowing data structures:

– The disk files AP, P, and NP contain, respectively, the set of all persistent
states found so far; the set of persistent states discovered by the current
sweep; and the set of new persistent states obtained by making the difference
of the two first ones.

6



Algorithm 1 A sweep-line algorithm designed for external memory priority queues

1: procedure externalSweep is
2: AP := ∅
3: Q := {s0}
4: while Q 6= ∅ do
5: sweep ()
6: detectNewPersistent ()
7: procedure sweep is
8: P := ∅
9: while Q 6= ∅ do

10: H := ∅
11: U := ∅
12: φ := minProgress (Q)
13: while φ = minProgress (Q) do
14: s := deleteMin (Q)
15: if s /∈ H then
16: H := H ∪ {s′}
17: U := U ∪ {s′}
18: expandLayer ()

19: procedure detectNewPersistent is
20: NP := P \ AP
21: AP := AP ∪NP
22: Q := ∅
23: for s ∈ NP do
24: Q := Q ∪ {s}
25: procedure expandLayer is
26: while U 6= ∅ do
27: pick and delete s from U
28: for s′ ∈ succ(s) do
29: if ψ(s′) = ψ(s) then
30: if s′ /∈ H then
31: H := H ∪ {s′}
32: U := U ∪ {s′}
33: else if ψ(s′) < ψ(s) then
34: P := P ∪ {s′}
35: else
36: Q := Q ∪ {s′}

– An internal memory hash table H contains, during a sweep, states of the
currently processed layer and a set U ⊆ H contains states to be processed
by the algorithm. Both are present in internal memory.

– An external memory priority queue Q stores, during a sweep, states in future
layers. This structure also has some internal memory part as described later
in this section.

The main procedure alternates between sweeps exploring the state space
and detection of new persistent states. A sweep may indeed find new persistent
states through the exploration of regress edges and the purpose of procedure
detectNewPersistent is to determine whether these are actually new or have
already been found during previous sweep(s). This set of new persistent states,
NP, is computed by removing all persistent states found during previous sweeps
(AP) from the set of persistent states discovered during the last sweep (P). It
is then inserted into AP and all its elements put in the priority queue Q to
serve as root states during the next sweep. The difference of the two sets can be
efficiently implemented by first loading P into H, and then reading states from
AP one by one to remove them from the table. If P is too large to fit in memory
an alternative is to first sort the states in P which can be done efficiently in
O(N · log2N) I/O operations [1] and then merge the two files.

An iteration of procedure sweep first loads in an internal memory hash table
H all states of Q sharing the same minimal progress value. These states are also
added to U to be processed by procedure expandLayer. Once this procedure has
finished, sweep can terminate if the priority queue has been emptied or otherwise
move to the next layer.

7



Procedure expandLayer works as a basic exploration algorithm operating on
a queue of unprocessed states U and storing visited in an hash table H. The only
difference is that when a state s′ has a different progress value than the one of
the state s it is generated from, s′ is put in the priority queue Q if it belongs to
a future layer or in the set of persistent set P if it belongs to a past layer.

3.2 External Priority Queue Data Structure

A priority queue is a data structure that must support two operations: an insert
operation; and a deleteMin operation that removes and returns from a queue
the smallest state (i.e., with the smallest progress measure in our case).

We use an external data structure introduced in [4]. The structure is de-
scribed in Section 3.1 of the referenced article. Our choice is mainly motivated
by the simplicity of this data structure and the fact that it achieves a nearly
optimal I/O complexity. This priority queue is a two level data structure with
smallest states being kept in internal memory and others in external memory.
Figure 3 is a graphical representation of its organisation. The internal part can be
implemented with any data structure that efficiently supports insert, deleteMin
and deleteMax operations. For instance, a balanced binary tree matches these
requirements and we will assume this choice hereafter. The internal memory part
is split in two parts: one balanced tree Tins storing states put in the queue via
the insert operation and one balanced tree Tdel used as a buffer to store the last
states read from external memory and filled in by the deleteMin operation. It is
an invariant property that a state stored in external memory cannot be smaller
than a state stored in internal memory (in Tins or Tdel).

Tins = Balanced tree with
new inserted states

Tdel = Balanced tree with
smallest disk states

level 0 level 1 level 2

B
·µ

2
states

B states

O
n

D
iskIn

R
A

M

1

2

3

Fig. 3. Organisation of the external memory priority queue with µ = 3. Dashed
arrows indicate operations triggered when tree Tins reaches the bound of T
states: merging of the 3 files of level 1 in an available slot of level 2 (op. 1), same
operation for level 0 merged into a newly available slot of level 1 (op. 2), and
write of the B largest states of Tins in the first slot of level 0 (op. 3).

8



The insert operation puts the new state in Tins. If the size of Tins exceeds
a specified threshold denoted T , we remove the B largest states from this tree
and write them into a new disk file as described below.

The deleteMin operation removes and returns the smallest state kept in
internal memory in one of the two balanced trees Tins or Tdel. If the state is
taken from Tdel the deletion can then trigger disk accesses as described below.

Let us now describe the organisation of the external memory part of this
data structure. It consists of an array of disk files. Each disk file is a sorted list
of states, the smallest state first. This array is organised in levels. Each level
consists of µ disk files: level 0 contains files 0, . . . , µ − 1, level 1 contains files
µ, . . . , 2 ·µ−1 and so on. Following an insert operation, we may have to write B
sorted states to a disk file of level 0. If there is no free slot at this level, all files
of level 0 are merged resulting in a new sorted list that is written to a disk file of
level 1. If level 1 is also full, we first have to merge level 1 into a new disk file of
level 2 and so on. Hence, a disk file of level l ≥ 0 always contains at most B · µl

states. The next unprocessed K states (i.e., to be removed from the queue via
the deleteMin operation) of every file are kept in internal memory in the binary
tree Tdel. If, following a deleteMin operation, Tdel does not contain anymore any
state of a specific disk file, the K next states of this file are read and inserted in
Tdel. The correctness of deleteMin stems from the fact that (1) files are sorted
and (2) all the smallest unprocessed state stored in external memory are in Tdel.

The dashed arrow of Fig. 3 describes the operation sequence performed after
a state insertion. If the memory tree become full, i.e., contains T states after the
insertion, the largest B states must be sorted and written in a disk file associated
with a slot of level 0. Since this level is full, we first have to merge its slots in
a slot of level 1, which for the same reason implies to merge the slots of level 1
in the last slot of level 2 which is free (arrow 1). We can then merge level 0 in
the first slot freed by the previous operation (arrow 2) and finally write the B
largest states of Tins in the first slot of level 0 (arrow 3).

This data structure occupies at most T + K · f states in internal memory
where f is the maximal number of disk files simultaneously in use (T for Tins and
K · f for Tdel). Although f is theoretically unbounded, it grows logarithmically,
hence it is not a problem in practise.

3.3 I/O complexity

We now examine the I/O complexity of our algorithm.

Theorem 1. Let F be the number of forward edges, P be the number of per-
sistent states computed by Alg. 1 (i.e., set AP) and w be the number of sweeps
performed by the algorithm (i.e., calls to procedure sweep). Algorithm 1 with the
external priority queue data structure presented in Sect. 3.2 and parametrised
by levels of size µ and an internal memory buffer of size B performs at most
P · (w + 2) + w · F · 2 · logµ

(
F
B + 1

)
state I/Os.

9



Proof. A persistent state is read and written once in NP. It is then read from
AP during each subsequent call to procedure detectNewPersistent (invoked once
for every sweep). This procedure thus performs at most P · (w + 2) state I/Os.

Since only forward edges generate states put in the priority queue Q, the size
of this structure is bounded by F . The largest level containing disk files is the
smallest integer lm satisfying: µ ·

∑
i∈[0..lm] µ

i · B ≥ F where µi · B denotes the

number of states stored in each disk file of level i. Since
∑

i∈[0..lm] µ
i = µlm+1−1

µ−1 ,

it follows that µ · µlm+1−1
µ−1 ≥ F

B and that lm ≥ logµ

(
F
B · µ−1

µ + 1
)
− 1. Now let

l = logµ

(
F
B + 1

)
− 1 > lm. The destination state of a forward edge is written

once in a file of level 0 and then due to level merging, it can be moved l times
from any level i ∈ {0, . . . , l − 1} to level i + 1. This implies at most 2 · (l + 1)
I/Os per state. Since each sweep performed by the algorithm can explore all the
F forward edges, it follows that the overall number of state I/Os performed to
maintain the priority queue is bounded by w · F · 2 · logµ

(
F
B + 1

)
. ut

For the sake of comparison, we give in Table 2 the I/O complexity of two
other external memory algorithms: BFSext, the external memory breadth-first
search from [6] and PART, a state space partitioning based algorithm from [2].

Table 2. Comparison of I/Os bound of three external memory algorithms.

Algorithm Source State I/Os bound

BFSext [6] S · (1 + h)
PART [2] S · (1 + Cmax)
SLext This work P · (w + 2) + w · F · 2 · logµ

`
F
B

+ 1
´

S = states in the graph Cm = max. over all partitions p of cross edges
with a destination in p

F = forward edges P = persistent states computed by Alg. 1
h = height of the graph w = sweeps performed by Alg. 1

Using BFSext, a state will be written once in external memory when first met,
and then read once during each of the subsequent duplicate detections. Since the
algorithm performs exactly one duplicate detection per BFS level, a state s will
be read at most h times where h is the height of the graph, i.e., the number of
BFS levels.

An important parameter for the I/O complexity of PART is the number of
cross edges implied by the partitioning function mapping states to partitions. A
cross edge is an edge linking to states belonging to different partitions. To give a
better insight of its complexity we recall that the principle of algorithm PART is
to cluster the state space using a partition function and to store each partition in
a single disk file. During the exploration, only one partition is loaded in memory
at a time. Any cross edge (s, s′) visited by the algorithm is eventually followed by
the reading of the disk file associated with the partition of s′ to check whether
s′ is a new state or not. With this algorithm, a state will be written once in

10



external memory when first met and then read again each time the partition
it is stored in is loaded in memory, hence at most Cm times where Cm is the
maximum over all partitions p of cross edges with a destination in p.

In the case of BFSext, the bound given is usually close to the number of I/Os
actually performed while the practical I/O complexity of PART is in general
much smaller than the theoretical bound we give here. The proportion of cross
edges has nevertheless a large impact on its performance. Similarly, the bound of
Algorithm 1 may seem high at first sight since the number of sweeps performed by
the algorithm is bounded by the number of regress edges. However, in practise,
w is usually low, typically less than 10. This is precisely why the sweep-line
method works well in practise for a wide range of models. First because the
progress measure provided usually generates few regress edges. Second because
it is very seldom that a single sweep identifies only one new persistent state which
in turn means that the number of iterations performed is usually not correlated
to the number of regress edges. Moreover, the upper bound we give here does
not take into account caching effects that might further decrease the amount
of disk accesses. This occurs when the destination state s of a forward edge is
already present in Tins when the edge is explored. Then the queue is unchanged.

4 Experimental Evaluation

We have implemented the external memory algorithm introduced in Sect. 3 in
the ASAP verification platform [19] and experimented with models of the BEEM
database [16]. We followed the procedure described in [8] to automatically derive
a progress measure from the full state space. Our progress measures project the
state vector of the system to a subset of its components. This subset is selected
with a heuristic that aims to limit the proportion of regress edges.

We compared our external algorithm (denoted SLext) to the internal memory
sweep-line algorithm of [15] (denoted SL) and to the external memory algorithms
BFSext [6] and PART [2] combined with the dynamic partitioning strategy we
introduced in previous work [7]. For each model, we first ran SL and SLext,
and then BFSext and PART giving them the same memory amount that was
used by SLext. The priority queue of SLext has been parametrised as follows:
µ = 10, T = 20, 000, B = 10, 000 and K = 1, 000. We recall that the memory
usage of the priority queue data structure is bounded by T + K · f where f is
the maximal number of files simultaneously in use. We also experimented with
different comparable (wrt. memory usage) parameter configurations but since
this had few consequences we selected the configuration above.

The 43 instances we selected all have between 1,000,000 and 50,000,000 states
and each instance has from 1 to 6 progress measures. This selection resulted in
125 pairs (model instance, progress measure) analysed. Out of these 125 pairs
we only kept those for which SLext consumed significantly less memory than SL
(selected to be 5 times less the consumption of SL) and leave out the other pairs.
Keeping instances for which both algorithms consumed a comparable amount of
memory would indeed not be relevant to study the performances of SLext and

11



Table 3. Statistics on selected models with experimental results of SLext.

Results of SLext

Model States Peak Revisit Edges
memory factor Visited Reg. Fwd. Sta.

bakery.6 11,845,035 30,119 1.305 52,406,033 11.3 % 51.0% 37.6%
bopdp.7 15,236,725 32,244 2.566 100,779,572 1.0 % 37.6% 61.4%
brp.4 12,068,447 43,892 1.122 27,752,570 1.1 % 40.3% 58.6%

cambridge.6 3,354,295 39,392 12.360 106,771,249 3.5 % 39.8% 56.7%
elevator2.3 7,667,712 30,811 1.172 64,737,253 0.3 % 88.4% 11.2%
extinction.7 20,769,427 85,764 1.215 92,560,320 1.8 % 35.3% 62.9%

firewire link.5 18,553,032 128,620 1.000 59,782,059 0.0 % 6.9% 93.1%
firewire tree.5 3,807,023 22,837 1.000 18,226,963 0.2 % 80.8% 19.0%

iprotocol.6 41,387,484 89,480 1.724 239,771,446 3.8 % 22.8% 73.5%
leader election.5 4,803,952 32,400 1.000 28,064,092 0.5 % 53.5% 46.0%

needham.4 6,525,019 30,420 1.000 22,203,081 0.0 % 30.5% 69.5%
peterson.4 1,119,560 38,338 5.286 19,974,479 1.8 % 46.7% 51.5%

pgm protocol.10 29,679,589 25,142 1.324 81,985,078 2.5 % 55.7% 41.8%
plc.4 3,763,999 2,447 1.043 6,358,220 1.1 % 11.3% 87.5%

rether.6 5,919,694 31,599 1.496 11,902,295 5.5 % 47.4% 47.1%
synapse.7 10,198,141 203,448 1.333 24,201,729 11.2 % 66.9% 21.9%

may moreover lead to a biased analysis. This second filtering resulted in 60 pairs
of which we picked out a representative set of 16 instances to be presented in
this section. These models are listed in Table 3 together with some experimental
results obtained with algorithm SLext. Peak memory corresponds to the maximal
number of states stored in internal memory during the search (regardless of their
location). Revisit factor is the number of states visited by algorithm SLext relative
to the number of states in the state space (i.e., column States). Columns Visited
gives the number of edges visited by algorithm SLext. It may then be larger than
the number of edges in the state space if the revisit factor is larger than 1.
The last three columns give the distribution of these visited edges upon regress,
forward and stationary edges.

Comparison of memory usage and disk access. Figure 4 compares SLext

to SL with respect to peak memory usage and to PART with respect to state
I/Os. We deliberately left out data of algorithm BFSext in Fig. 4 and Fig. 5. As
attested by Table 4, BFSext was not competitive on these models and including
its results in the figures would have reduced their readability. We gave the data
observed with SLext or PART a reference value of 1. For example, with instance
firewire tree.5, SLext used 5–6% of the internal memory used by SL and performed
10–12% of the state I/Os performed by PART.

The conclusions we can draw from Fig. 4 are rather positive as the general
trend in that SLext consumes significantly less memory than SL while performing
less disk accesses than PART. The comparison of SL and SLext confirm our initial
intuition that SL is sometimes unable to significantly reduce the peak memory

12



ba
ke

ry
.6

bo
pd

p.
7

br
p.

4
ca

m
br

id
ge

.6

el
ev

at
or

2.
3ex

tin
ct

io
n.

7fir
ew

ire
-li

nk
.5

fir
ew

ire
-tr

ee
.5

ip
ro

to
co

l.6le
ad

er
-e

le
ct

io
n.

5

ne
ed

ha
m

.4pe
te

rs
on

.4pg
m

-p
ro

to
co

l.1
0

pl
c.

4
re

th
er

.6
sy

na
ps

e.
7

0.83

0.80

0.
050.
1

0.
2

0.
3

0.
4

0.
5R
A

M
 (

vs
. S

L)
I/O

s 
(v

s.
 P

A
R

T
)

Fig. 4. Peak memory usage of SLext (this work) compared to SL [15] and state
I/Os performed by SLext compared to PART [2] on the instances of Table 3.

13



usage although the progress measure used efficiently divides the state space
upon multiple progress layers. Out of the 16 instances we selected, our algorithm
performed a comparable number of I/Os with respect to PART on 2 instances:
elevator2.3 and synapse.7. The high proportion of forward edges (that increases
disk accesses performed by SLext) combined with the special shape of their state
space (wide and short) which makes them especially suited for PART can explain
this difference. The figure indeed attests that the shape of the graph has an
impact on the disk accesses performed by the two algorithms. The advantage of
SLext over PART is more significant when the state space is long and narrow, e.g.,
for instances plc.4 or rether.6. If we only consider disk accesses, the performances
of PART degrade for these models while SLext is insensitive to that parameter.
For some models like cambrige.6 or, to a lesser extent, bopdp.7, Table 3 shows
that, it is likely that the relatively high amount of state I/Os performed stems
from the revisit factor of algorithm SLext (whereas PART does not revisit states).

Comparison of execution times. Figure 5 gives the execution times of al-
gorithms SL, PART and SLext on the same instances. For each model we gave
to the slowest algorithm a reference value of 1, and the execution times of the
two other algorithms are expressed relatively to this one. We see a correlation
between the disk accesses we previously observed and the execution times of
SLext over PART. For most instances on which SLext performed significantly less
disk accesses it outperformed PART. This is the case for instances brp.4, plc.4
or rether.6. Models firewire link.5 and firewire tree.5 go against this trend for rea-
sons explained below. Nevertheless, the conclusions are somewhat disappointing
in that the clear advantage of SLext over PART with respect to disk accesses is
less significant when it comes to execution times even though we will see be-
low that SLext is, on the average, faster than PART. One reason is that SLext

visits more states that PART and the visit of a state implies some non-trivial
operations like the computation of enabled events and the generation of suc-
cessor states. We also profiled the code of some instances, and found out that
comparing states according to their progress values — operations that are not
performed by PART — contribute to degrade the relative performances of SLext.
This operation is performed not only during state exploration but also during the
merging of files operated for maintaining the priority queue. This explains the
divergence between disk accesses and execution times for models firewire link.5
and firewire tree.5. On these two models, internal memory operations are the
most time consuming operations and disk accesses play a lesser role.

Summary. We conclude this analysis with Table 4 that compares SLext to the
three other algorithms we experimented with. Each cell gives for a specific pa-
rameter (Time, I/Os per state, or Memory usage) the result of a specific algorithm
averaged on our 60 problem instances and with respect to SLext. For instance, on
the average of our 60 problem instances, SLext has been 8.29 times faster than
BFSext. As we previously mentioned, the table shows that BFSext is clearly not
competitive with other algorithms. PART generates significantly more disk ac-

14



ba
ke

ry
.6

bo
pd

p.
7

br
p.

4
ca

m
br

id
ge

.6

el
ev

at
or

2.
3ex

tin
ct

io
n.

7fir
ew

ire
-li

nk
.5

fir
ew

ire
-tr

ee
.5

ip
ro

to
co

l.6le
ad

er
-e

le
ct

io
n.

5

ne
ed

ha
m

.4pe
te

rs
on

.4pg
m

-p
ro

to
co

l.1
0

pl
c.

4
re

th
er

.6
sy

na
ps

e.
7

0.
75 0.
5

0.
25 0.
1

S
L

S
Lex

t

P
A

R
T

Fig. 5. Execution times of algorithms SL [15], SLext (this work) and PART [2] on
the instances of Table 3.

15



cesses than SLext but the latter is only approximately twice faster than PART for
the reasons given above. The table also shows that keeping the priority queue and
the persistent states in external memory does not bring an intolerable increase
of the run time especially if we relate the increase of the execution time to the
important memory usage reduction we observe. This suggests that SLext can be
an interesting alternative when the I/O overhead of PART is too severe and SL
fails to reduce peak memory usage even if the progress measure efficiently splits
the state space upon multiple small layers. Figures 4 and 5 show that models
like brp.4, plc.4 or rether.6 are good application examples for our algorithm.

Table 4. Summary of the performances on 60 problem instances.

SLext SL PART BFSext

Time × 1.00 × 0.40 × 1.88 × 8.29
I/Os per state × 1.00 × 0.00 × 9.27 × 217.50
Memory usage × 1.00 × 27.74 × 1.00 × 1.00

5 Conclusions and Future Work

In this paper we have explored the combination of the sweep-line method and
the use of external memory. The key to this combination is the use of an exter-
nal memory priority queue for storing states that are not in the current layer of
states being processed. Using the benchmark suite of examples from the BEEM
database, we have experimentally demonstrated that the combined approach
significantly reduced peak memory usage (compared to the conventional RAM-
based sweep-line method) and that the combination in many cases also reduces
I/O operation (compared to a conventional external memory state space ex-
ploration). Furthermore, the reduction in peak memory usage comes with an
acceptable run-time penalty caused by the use of the external memory priority
queue. An important property of the combined approach is that it is compatible
with all existing sweep-line based model checking algorithms as none of these
rely on a particular implementation of the progress priority queue. It can there-
fore be used in the context of safety model checking [15] or LTL model checking
[9].

With the use of an external memory priority queue our experiments demon-
strate that we are able to unleash more of the potential of the sweep-line method
and that reduction in peak memory usage can be significant. A follow-up research
question is therefore whether the sweep-line method has more potential mem-
ory reduction that can be leveraged, i.e., how close are the provided progress
measures in terms of being optimal? For progress measures that are monotonic,
the size of the largest strongly connected component is a lower bound on the
reduction that can be obtained since all states belonging to a strongly connected
component must have the same progress measure. For non-monotonic progress

16



measures it is less obvious how to compute a good lower bound since the pres-
ence of regress edges must also be taken into account, and since optimality now
needs to take into account both space (peak memory usage) and time (due to
re-exploration caused by regress edges). Computing optimal progress measure
hence remains an open and highly relevant aspect to explore as part of future
work.

We also observe that for preserving termination, it is only required that
persistent states are identified during a sweep, put in a separate set, and ignored
by the current sweep. The sweep-line can hence move backward and forward, as
long as regress edges are taken care of, the sweep-line will eventually converge and
the sweep will terminate. This means that any form of queue can theoretically be
used although a “strict” priority queue ensures that a sweep cannot revisit states.
Starting from this observation, another research direction is thus to evaluate
whether relaxing the priority queue requirements can further help reduce disk
accesses. This can naturally come at the cost of state revisits meaning that a
tradeoff would thus have to be made.

References

1. A. Aggarwal and J.S. Vitter. The Input/Output Complexity of Sorting and Related
Problems. Commun. ACM, 31(9):1116–1127, 1988.

2. T. Bao and M. Jones. Time-Efficient Model Checking with Magnetic Disk. In
TACAS’2005, volume 3440 of LNCS, pages 526–540. Springer, 2005.

3. G. Behrmann, K.G. Larsen, and R. Pelánek. To Store or Not to Store. In CAV,
volume 2725 of LNCS, pages 433–445. Springer, 2003.

4. K. Brengel, A. Crauser, P. Ferragina, and U. Meyer. An Experimental Study of
Priority Queues in External Memory. In WAE’1999, volume 1668 of LNCS, pages
346–360. Springer, 1999.

5. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In TACAS, volume 2031 of LNCS, pages 450–464. Springer,
2001.

6. D.L. Dill and U. Stern. Using Magnetic Disk Instead of Main Memory in the Murφ
Verifier. In CAV’1998, volume 1427 of LNCS, pages 172–183. Springer, 1998.

7. S. Evangelista and L. M. Kristensen. Dynamic state space partitioning for external
memory state space exploration. Science of Computer Programming, 0(0):–, 2011.

8. S. Evangelista and L.M. Kristensen. Search-Order Independent State Caching.
Transactions on Petri Nets and Other Models of Concurrency IV, 6550:21–41,
2010.

9. S. Evangelista and L.M. Kristensen. Hybrid On-the-fly LTL Model Checking with
the Sweep-Line Method. In Petri Nets, volume ??? of LNCS, page ??? Springer,
2012. To appear.

10. G. E. Gallasch, J. Billington, S. Vanit-Anunchai, and L.M. Kristensen. Checking
Safety Properties On-the-fly with the Sweep-Line Method. STTT, 9(3-4):371–392,
2007.

11. G.E. Gallasch, B. Han, and J. Billington. Sweep-Line Analysis of TCP Connection
Management. In ICFEM, volume 3785 of LNCS, pages 156–172. Springer, 2005.

12. G.E. Gallasch, C. Ouyang, J. Billington, and L.M. Kristensen. Experimenting
with Progress Mappings for the Sweep-Line Analysis of the Internet Open Trading
Protocol. In CPN, pages 19–38, 2004.

17



13. P. Godefroid, G.J. Holzmann, and D. Pirottin. State-Space Caching Revisited. In
CAV’1992, volume 663 of LNCS, pages 178–191. Springer, 1992.

14. S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAP
Wireless Transaction Protocol. In ICATPN, volume 2360 of LNCS, pages 182–
202. Springer, 2002.

15. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety
Properties. In FME, volume 2391 of LNCS, pages 549–567. Springer, 2002.

16. R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In SPIN’2007,
volume 4595 of LNCS, pages 263–267. Springer, 2007. http://anna.fi.muni.cz/
models/.

17. K. Schmidt. LoLA: A Low Level Analyser. In ICATPN, volume 1825 of LNCS,
pages 465–474. Springer, 2000.

18. S. Vanit-Anunchai, J. Billington, and G. E. Gallasch. Analysis of the Data-
gram Congestion Control Protocols Connection Management Procedures using the
Sweep-line Method. STTT, 10(1):29–56, 2008.

19. M. Westergaard, S. Evangelista, and L.M. Kristensen. ASAP: An Extensible Plat-
form for State Space Analysis. In ICATPN, volume 5606 of LNCS, pages 303–312.
Springer, 2009.

18

http://anna.fi.muni.cz/models/
http://anna.fi.muni.cz/models/

	Combining the Sweep-Line Method with the use of an External-memory Priority Queue

