
An Automata-Based Symbolic Approach for
Verifying Programs on Relaxed Memory Models

Alexander Linden and Pierre Wolper

Institut Montefiore, B28
Université de Liège

B-4000 Liège, Belgium
{linden,pw}@montefiore.ulg.ac.be

Abstract. This paper addresses the problem of verifying programs for
the relaxed memory models implemented in modern processors. Specifi-
cally, it considers the TSO (Total Store Order) relaxation, which corre-
sponds to the use of store buffers. The proposed approach proceeds by
using finite automata to symbolically represent the possible contents of
the store buffers. Store, load and commit operations then correspond to
operations on these finite automata.

The advantage of this approach is that it operates on (potentially infinite)
sets of buffer contents, rather than on individual buffer configurations.
This provides a way to tame the explosion of the number of possible
buffer configurations, while preserving the full generality of the analysis.
It is thus possible to check even designs that exploit the relaxed memory
model in unusual ways. An experimental implementation has been used
to validate the feasibility of the approach.

1 Introduction

Modern multiprocessor systems do not implement the traditional Sequential
Consistency [1] (SC) model of memory access. This fact is usually referred to by
describing these processors as implementing relaxed memory models that per-
mit executions not allowed in SC. Thus verification tools such as SPIN that are
based on the SC model do not reliably verify programs to be run on widely
used current processors. It is quite disturbing to observe that even simple mu-
tual exclusion algorithms such as Peterson’s do not run correctly on a standard
modern multicore computer. This situation is nevertheless mostly hidden from
the programmer since process synchronization is done through system provided
functions, which are correctly implemented, forcing memory synchronization if
needed. This is a safe approach, but leads to a suboptimal use of multicores.
Having tools for analyzing programs with respect to the implemented relaxed
memory models would be of great help in designing code that does not unduly
force synchronization. It would also be most useful for checking that code de-
signed for the SC memory model can be safely ported to processors implementing
relaxed memory models or, if needed for minimally correcting such code.

2 Alexander Linden and Pierre Wolper

The exact memory model that is implemented varies and deciphering proces-
sor documentation on this topic is, to put it mildly, quite challenging. However,
the topic is being more and more studied and clear models of memory access
models have been proposed. These models can be either axiomatic, giving con-
straints on possible memory accesses, or operational, giving a program-like de-
scription of the shared memory model. Of these models, one of the most studied
is the Total Store Order (TSO) model. It has a simple axiomatics characteri-
zation and a clear equivalent operational description in terms of store buffers.
In TSO, processor writes are buffered and each processor reads the last value
written to its buffer, while others only see the values committed to main mem-
ory. This model was the one implemented in SPARC processors [2] and [3] and
closely corresponds to the one implemented in X86 processors [4]. Furthermore,
store buffers are an essential ingredient of even more relaxed memory models [5]
and thus being able to analyze TSO is an important stepping stone in developing
verification tools for relaxed memory models. This paper will thus exclusively
focus on TSO.

Since TSO can be modeled by a memory accessed through buffers, an obvious
approach to verifying programs under this memory model is to explicitly include
the store buffers in the program being analyzed. This has of course already been
tried, but requires overcoming two problems. The first is that there is no natural
bound on the size of the buffers, the second is the explosion in the number of
states due to the introduction of store buffers. For the first problem, one can
arbitrarily bound the size of the buffers, which, at best, leads to verification
that is unsatisfactorily hardware dependent. For the second problem, various
techniques such as SAT based bounded model-checking have been tried with
some success [6], but at the cost of limits on what can be verified.

In this paper, we develop an approach inspired by the techniques developed
in [7] for verifying systems with unbounded buffers. The main idea is that, since
a buffer content can be viewed as a word, sets of buffer contents are languages
that can be represented by finite automata. This allows infinite sets of contents
to be represented and manipulated by operations on automata. Of course, in a
step by step exploration of the state space, infinite sets of buffer contents will
never be generated. Acceleration techniques are thus required and these take the
form of algorithms for directly computing the possible contents of buffers after
repeating a program cycle an arbitrary number of times.

Compared to the general problem of analyzing programs using unbounded
buffers, the specific case of TSO buffers offers both simplifications and added
difficulties. The main simplification is that each process only writes to a single
buffer, which makes a separate representation of each buffer the natural choice.
Among the difficulties are the operations on the store buffers, which are not quite
like those on communication buffers. Indeed, if a store is very much like a buffer
write and a commit to memory is similar to a buffer read, a load operation is
special. Indeed, it should retrieve the most recently written value and, when there
is a choice of such values, a repeated read should yield an identical result. One
of our contributions is thus to define these operations precisely when applied to

Symbolic Verification on Relaxed Memory Models 3

sets of store buffer contents and to show how they can be implemented. Another
is adapting the cycle iteration acceleration technique to the specific context of
store buffers.

To validate our approach we have built an experimental implementation to
test the feasibility of the proposed method. Our implementation uses the BRICS
automata manipulation package [8] and has allowed us to fully verify (or find
errors) in simple synchronization protocols. Since each process writes to its own
buffer, the cycle iteration acceleration needs to favor progress by a single process.
Partial-order verification techniques [9], and in particular “sleep sets”, have been
helpful with respect to this. Indeed, it turned out that using sleep sets yielded a
significant performance improvement by avoiding the repeated detection of the
same cycle from different global control points.

The verification problem we consider has already been addressed in several
papers going back at least a decade. In [10] the problem is clearly defined and
it is shown that behaviors possible under TSO but not SC can be detected
by an explicit state model checker. Later work, [6], uses SAT-based bounded
model checking with success for detecting errors with respect to relaxed memory
executions. A more recent paper [11] aims at distinguishing programs that can
safely be analyzed under SC, even if run in a relaxed memory model environment.
Finally, [12] proves decidability and undecidability results for relaxed memory
models considering store buffers to be infinite. In this it is very close to our work,
but its goal is purely theoretical and it proceeds by reducing the problem to lossy
buffer communication. This is very elegant for obtaining decidability results, but
of uncertain value for doing actual verification. Indeed, the reduction to lossy
buffers implies an elaborate coding of buffer contents. In contrast, our approach
works with a direct representation of the store buffer contents and is oriented
towards doing actual verification. To our knowledge, it is the first verification
technique for relaxed memory models allowing the full generality coming from
unbounded store buffer contents.

2 Concurrent Programs and Memory Models

We consider a very simple model of concurrent programs in which a fixed set of
finite-state processes interact through a shared memory. A concurrent program
is thus defined by a finite set P = {p1, . . . , pn} of processes and a finite set
M = {m1, . . . ,mk} of memory locations. The memory locations can hold values
from a data domain D. The initial content of the memory is given by a function
I :M→D.

Each process pi is defined by a finite set L(pi) of control locations, an initial
location `0(pi) ∈ L(pi), and transitions between control locations labeled by
operations from a set O. A transition of a process pi is thus an element of
L(pi)×O×L(pi), usually written as `

op→ `′. The set of operations contains the
following memory operations:

4 Alexander Linden and Pierre Wolper

– store(pi,mj , d), i.e. process pi stores value d ∈ D to memory location mj

(note that since transitions are process specific, mentioning the process in
the operation is redundant, but will turn out to be convenient),

– load(pi,mj , d), i.e. process pi loads the value stored in mj and checks that
its value is d. If the stored value is different from d, the transition is not
possible.

The SC semantics of such a concurrent program is the usual interleaving
semantics in which the possible behaviors are those that are interleavings of the
executions of the various processes and in which stores are immediately visible
to all processes.

In TSO, each process sees the result of its loads and stores exactly in the
order it has performed them, but other processes can see an older value than
the one seen by the process having performed a store. This leads to executions
that are not possible in SC. For instance, in the program given in Table 1, both
processes could terminate their executions, whereas under SC semantics, either
p1 or p2 will find the value 1 when performing the last load operation. TSO is
thus also referred to as the store→ load order relaxation.

initially:
x = y = 0;

Processor 1 Processor 2

store(p1, x, 1) store(p2, y, 1)
load(p1, x, 1) load(p2, y, 1)
load(p1, y, 0) load(p2, x, 0)

Table 1. Intra-processor forwarding, given in [13]

To define TSO formally, one uses the concepts of program order and memory
order [2, 14]. Program order, <p is a partial order in which the instructions
of each process are ordered as executed, but instructions of different processes
are not ordered with respect to each other. Memory order, <m, is a total order
on the memory operations, which is fictitious but characterizes what happens
during relaxed executions.

Let l denote any load operation, s any store operation, la a load operation
on location a, and sa a store operation on location a. Furthermore, let val(l)
or val(s) be the value returned (stored) by a memory operation. A TSO execu-
tion is then one for which there exists a memory order satisfying the following
constraints:

1. ∀la, lb : la <p lb ⇒ la <m lb
2. ∀l, s : l <p s⇒ l <m s

3. ∀sa, sb : sa <p sb ⇒ sa <m sb

Symbolic Verification on Relaxed Memory Models 5

4. val(la) = val(max
<m

(sa)) such that {sa | sa <m la} or {sa | sa <p la}. If

there is no such a sa, val(la) is the initial value of the corresponding memory
location.

The first three rules specify that the memory order has to be compatible with
the program order, except that a store can be postponed after a load, i.e. the
store → load order relaxation. The last rule specifies that the value retrieved
by a load is the one of the last store in memory order that precedes the load in
memory or in program order, the latter ensuring that a process can see the last
value it has stored. If there is no such store, the initial value of that memory
location is loaded.

For example, the following is a valid TSO memory order for the program
of Table 1 that allows the program to terminate: load(p1, x, 1), load(p1, y, 0),
load(p2, y, 1), load(p2, x, 0), store(p1, x, 1), store(p2, y, 1). Note that in SC, mem-
ory order has to be fully compatible with program order, and thus this memory
order is not possible.

The characterization of TSO we have just given is useful in dealing with TSO
axiomatically, but not adapted for applying state-space exploration verification
techniques. Fortunately, there exists a natural equivalent operational description
of TSO. In this description (see Figure 1), stores from each process are buffered
and eventually committed to main memory in an interleaved way. When a pro-
cess executes a load, it reads the most recent value in its store buffer or, if there
is none, the value present in the shared memory.

Switch

P2

Stores

Pn

Stores

P1

Loads Loads Loads
Stores

Single Port Memory

Buffers
Store
FIFO

Fig. 1. Operational definition of TSO of Appendix K of [2]

6 Alexander Linden and Pierre Wolper

This model can be formalized as follows. One introduces a set

B = {bp1 , . . . , bpn}

of store buffers, one for each process1. A global state is thus composed of the
content of the memory, and, for each process, a control location and a store
buffer. The content [bp] of a buffer bp is then a word in (M,D)∗. The program will
then execute load and store operations on these buffers. Furthermore a commit
operations that removes the oldest store operations from a buffer and writes
the corresponding value to memory can nondeterministically be executed at all
times. The precise semantics of these operations can be described as follows.

store operation: store(p,m, d):

[bp]← [bp](m, d).

load operation: load(p,m, d):

Let [bp] = (m1, d1)(m2, d2) . . . (mf , df) and let i = maxi∈{1,...,f}{i | mi =
m}. If i exists, then the result of the load is the test di == d. If not, it is the
result of the test [m] == d, where [m] denotes the content of the memory
location m.

commit operation: commit(p):

Let [bp] = (m1, d1)(m2, d2) . . . (mf , df). Then, if [bp] 6= ε, the result of the
commit operation is

[bp]← (m2, d2) . . . (mf , df)

and
[m1]← d1.

If [bp] = ε, the commit operation has no effect.

Finally, in programs we will also use an operation sync whose effect is to
commit to memory the full content of all buffers.

3 Representing Sets of Buffer Contents

If store buffers are unbounded, introducing them leads to a potentially infinite
state space. Furthermore, even if store buffers are bounded, they very quickly
lead to unmanageably large state spaces, even for very simple programs.

To cope with this problem, we turn to the techniques that have been pro-
posed in [15] and in [7] to represent sets of buffer contents by finite automata. In

1 Note that we introduce a buffer per process rather than by processor. This is a safe
approach for verification since it allows more behaviors than a model in which some
processes share the same buffer. Furthermore, when analyzing a program it is usually
impossible to know which processes will run on the same processor.

Symbolic Verification on Relaxed Memory Models 7

this approach, sets of possible buffer contents are represented by finite automata
and the state-space of the system is explored by manipulating sets of possible
contents for each control location as a single object. It is clear that while explor-
ing the state-space of a system, one can combine into a single representation the
buffer contents corresponding to identical control locations. However, this will
only lead to finite sets of contents being represented as a single object, whereas
real gains can only come from manipulating together infinite sets of buffer con-
tents. For achieving this, acceleration techniques are needed. Similarly to what
is done in the previously cited work, we will focus on cycles in the program code
and provide algorithms for directly computing the effect of iterating a sequence
of operations and unbounded numbers. Before turning to this, we will first intro-
duce the representation of sets of buffer contents by automata and see how load
store and commit operations can be extrapolated to operations on automata
representing sets of buffer content.

We represent the content of each buffer by a separate automaton over the
alphabet M×D and use the following definition.

Definition 1. A buffer automaton associated to a process p is a finite automa-
ton Ap = (S,Σ,∆, S0, F), where

– S is a finite set of states,
– Σ =M×D is the alphabet of buffer elements,
– ∆ ⊆ S × (Σ ∪ {ε})× S is the transition relation,
– S0 ⊆ S is a set of initial states, and
– F is a set of final states.

A buffer automaton Ap represents a set of buffer contents L(Ap), which is the
language of the words accepted by the automaton according to the usual definition.

We have defined buffer automata to be nondeterministic, but for implementa-
tion purposes we will usually work with reduced deterministic automata. In this
case, the transition relation becomes a transition function δ : S × Σ → S and
the set of initial states becomes a single state s0.

Operations on buffers can be extrapolated to operations on buffer automata
as follows.

store operation: store(p,m, d):

The result of the operation is an automaton A′p such that

L(A′p) = L(Ap) · {(m, d)}

One thus simply concatenates that new stored value to all words in the
language of the automaton.

load operation: load(p,m, d):

Load operations are nondeterministic since a buffer automaton can represent
several possible buffer contents. Thus it is possible that a load operation can

8 Alexander Linden and Pierre Wolper

succeed on some represented buffer contents and fail on others. If this is the
case, the load operation must lead to a state in which the set of possible
buffer contents has been restricted to those on which the load operation
succeeds.
For a load operation to succeed, the tested value must be found either in the
store buffer or in main memory. Precisely, a load operation succeeds when
at least one of the following two conditions is satisfied:
1. The language

L1 = L(Ap) ∩ (Σ∗ · (m, d) · (Σ\{(y, v) | y 6= m ∧ v ∈ D})∗)

is nonempty.
2. The language

L2 = L(Ap) ∩ (Σ\{(m, v) | v ∈ D})∗

is nonempty and [m] = d.
The load operation then leads to a state with a modified store buffer au-
tomaton A′p such that

L(A′p) = L1 ∪ L2

if [m] = d and
L(A′p) = L1

otherwise. Of course, if L1∪L2 = ∅, the load operation is simply not possible.

commit operation: commit(p):

For the commit operation, we first extract the stores that can be committed
to memory. These are the stores (m,α) such that

(m,α) ∈ first(L(Ap)),

where first(L) denotes the language of the first symbols of the words of L.
Since there can be more than one such store, we need to modify the store
buffer automaton according to the committed store (m,α). We have

L(A′p((m,α))) = suffix1(L(Ap) ∩ ((m,α) ·Σ∗)),

where suffix1(L) denotes the language obtained by removing the first symbol
of the words of L.

4 State Space Exploration and Cycle Detection

Our state-space exploration algorithm is based on a classical depth-first search.
The major modification we introduce is the detection of cycles and an accel-
eration technique for directly computing the effect of repeatedly executing a
detected cycle. The cycles we detect are those that only modify a single store

Symbolic Verification on Relaxed Memory Models 9

buffer. This might seem restrictive, but notice that the use of store buffers in-
troduces a lot of independence between processes and experiments show that
considering only single process cycles is sufficient. The independence induced by
store buffers has however a drawback, which is that it makes the same cycles
possible from many different global control locations. Proceeding naively thus
results in detecting the same cycle many times over, which is unnecessary and
very wasteful. To avoid this, we used the sleep set partial order reduction of [9].
This reduction avoids re-exploring transitions after executing other independent
transitions. In general, the sleep set reduction does not reduce the number of
states visited, but only the number of transitions followed. This is already very
valuable when working with automata symbolic representations, since these in-
crease the cost of comparing states. Furthermore, the fact that we are working
with sets of states and not individual states does make sleep sets yield a reduc-
tion of the size of the state graph that needs to be explored, as we will illustrate
by an example further down.

In the sleep set exploration algorithm, a set of transitions, called a sleep set,
is associated with each state. Initially, the sleep set is empty. Once a transition
is executed, it is added to the sleep set of the resulting state, but transitions in
the sleep set that are not independent with respect to the executed transition
are removed. Transitions in the sleep set associated to a state are not executed
from that state. The basic depth-first search algorithm using sleep sets is given
in Figure 2. We will use a crude but sufficient notion of independence. In a state
s,

1. transitions of the same process are never independent;
2. transitions of different processes other than commit or sync are always inde-

pendent;
3. a commit(p) transition of a process p is independent with the transitions of

a process p′, provided that, for every memory location m affected by this
commitoperation, either p′ does not use m, or p′ has a value for m in its
store buffer, i.e., all words of the language L(Ap) contain an occurrence of
(m, v) for some v ∈ D.

4. a sync operation is not independent with any other transition.

What we add to this is cycle detection and acceleration. Cycle detection is
done when there is a state on the current search stack that only differs from the
state being generated by the content of one store buffer. The algorithm used is
the one in Figure 3.

First, we need to define when a state is included in another. A state s is
included in another state s′ if

1. s and s′ are identical with respect to control locations and memory content,
and

2. for each process p, L(Ap(s)) is included in L(Ap(s′))

Next, we need to make explicit the cycleCondition(ss,s) predicate. For
this predicate to be true, three conditions have to be satisfied by the pair of

10 Alexander Linden and Pierre Wolper

procedure DFS() {
s = top(Stack)

if (s ∈ H) {
T executed = enabled(s) \ H(s).Sleep
s.Sleep = s.sleep ∩ H(s).Sleep
H(s).Sleep = s.Sleep

}
else {

T executed = ø
}
T = (enabled(s) \ s.Sleep) \ T executed

for all t ∈ T do {
ssucc = succ(s, t)
ssucc.Sleep = {tt | tt ∈ s.Sleep ∧ (t, tt) independent in s}
if (ssucc /∈ H) {
enter ssucc in H

}
push ssucc onto Stack

DFS()

}
pop(Stack)

}

init(Stack)

init(H)

s0 = initial state

s0.Sleep = ø

push s0 onto Stack

insert s0 into H

DFS()

Fig. 2. Basic depth-first search algorithm using sleep sets

Symbolic Verification on Relaxed Memory Models 11

procedure DFS() {
s = top(Stack)

if (∃ sH ∈ H | s ⊆ sH) {
T executed = enabled(s) \ sH.Sleep
s.Sleep = s.sleep ∩ sH.Sleep
sH.Sleep = s.Sleep

}
else {

T executed = ø
}

for all ss in (Stack \ top(Stack)){
/* Go through stack from top to bottom */

if (cycleCondition(ss, s)) {
s = cycle(ss, s)
break;

}
}
T = (enabled(s) \ s.Sleep) \ T executed
for all t ∈ T do {

ssucc = succ(s, t)
ssucc.Sleep = {tt | tt ∈ s.Sleep ∧ (t, tt) independent in s}
if (ssucc /∈ H) {
enter ssucc in H

}
push ssucc onto Stack

DFS()

}
pop(Stack)

}

init(Stack)

init(H)

s0 = initial state

s0.Sleep = ø

push s0 onto Stack

insert s0 into H

DFS()

Fig. 3. Search algorithm with cycle detection

12 Alexander Linden and Pierre Wolper

global states ss, s. Remembering that global states are composed of the control
location of each process, the content of the memory and the buffer automata of
each process, these conditions can be defined as follows.

1. s and ss are identical, except for the store buffer automaton of a single
process p.

2. The languages represented by the store buffer automaton of p in ss can be
extended to match the language of the store buffer automaton of p in s, i.e.
there exists a word w such that (L(Ap(s)) = L(Ap(ss)) · {w}.

3. The store buffer automaton obtained for s is load equivalent to the one of ss,
i.e. the results of loads will be the same, whether starting from s or ss. Since
the only difference between L(Ap(s)), and L(Ap(ss)) is the suffix w, this will
be verified by checking the following condition. For all memory locations m
for which there is a store operation store(p,m, v) in w, let vlast be the value
in the last store operation in w. Then the operation load(p,m, vlast) must
be simultaneously possible in both s and ss and must not modify the store
buffer automata Ap(s) and Ap(ss).

Finally, once a possible cycle content w has been detected and the conditions
for a cycle are satisfied, we need to store the buffer automaton representing the
buffer contents that can be obtained by repeating the cycle. This will simply
be the automaton Acycle

p (ss) accepting L(Ap(ss)) · {w}∗. Thus the operation
cycle(ss, s) of our search algorithm simply replaces the store buffer automaton
for process p in state s by the automaton Acycle

p (ss).

Example 1. We illustrate the state-space reduction that can be obtained by the
use of sleep sets. Figure 4 shows the control graph of two processes p0 and p1.
In Figure 5, part of the global state graph of this system is shown. In state 4, a
cycle has been detected for the store buffer of p0, yielding

(x, 1)((x, 0)(x, 1))∗

as set of possible contents. In state 6, the buffer has become

(x, 1)(x, 0)(x, 1)((x, 0)(x, 1))∗,

and thus, state 6 is included in state 4. In state 5, if we don’t add the transition
st(p0, x, 1) (which led to state 6) to the sleep set of state 7, we will end up
generating states 8 and 9 before detecting any state inclusion and add many
more states to the search graph.

5 Experimental Results

We have implemented our method in a prototype tool. This tool takes as input a
slightly modified Promela model. The prototype has been implemented in Java,
and uses the BRICS automata-package [8] to handle our store-buffers.

Symbolic Verification on Relaxed Memory Models 13

12

st(p1, y, 0)

12

st(p0, x, 0)

st(p0, x, 1)

p0 p1

st(p1, y, 1)

Fig. 4. Control graphs of two processes p0 and p1

st(p0,x,1)

st(p0,x,0)

st(p0,x,1)

2

4

3

1

5

6

st(p0,x,0)

st(p0,x,1)

7

8

9

st(p0,x,1)

st(p0,x,0)

st(p1,y,1)

st(p1,y,0)

st(p0,x,0)

st(p0,x,1)

· · ·

st(p1,y,1)
13

10

11

12

4 ⊃

7 ⊃

10 ⊃

st(p1,y,1)

st(p1,y,1)

st(p1,y,1)

st(p1,y,1)

· · ·

· · ·

· · ·

· · ·

st(p1,y,1)

· · ·

st(p1,y,0)

st(p0,x,1)

st(p1,y,1)

· · ·

Fig. 5. Global exploration graph showing reduction using sleep sets

14 Alexander Linden and Pierre Wolper

We have tested our implementation on several programs and protocols. One
of our test programs is a program (see figure 6)2 where the first process may
cycle indefinitely from the initial state, but where the second depends on the
global memory being modified to be able to move. Indeed, P1 can directly cycle
indefinitely, writing the infinite sequence (x, 1)(x, 0)(x, 1)(x, 0)(x, 1)(x, 0) . . . to
its store buffer. This cycle is detected and all possible contents of P1’s store
buffer represented. Then, the process P2 can, once the cycle in the buffer of P1

is established, “consume” this cycle, which unlocks its own cycle. For example, a
global state such as (1, 1, 0, 0, ((x, 1)(x, 0))∗, ((y, 1)(y, 0))∗) (where the notation
is (p1, p2, m1, m2, b1, b2)) will eventually be reached. Consuming means that
store operations are committed to the global memory, without that the process
itself moving.

1

4

1

4

ld(p2, x, 0)

22

33

ld(p1, y, 1)

st(p2, y, 1)

st(p2, y, 0)st(p1, x, 0)

ld(p1, y, 1)
ld(p2, x, 1)

P1 P2

initially: x = 1; y = 1

st(p1, x, 1)

Fig. 6. Example program unlocking a cycle

Moreover, under SC, if both processes are in state 4, the program is in a
deadlock. In TSO, there is the possibility of deadlock, but it is also possible
that the program may continue (if there are buffered store operations), and thus
the values of x and y may change value. Interestingly, both behaviors have also
been observed while running a C implementation of this program on a dual core
processor.

Another classical algorithm often analyzed in the context of relaxed memory
models is Peterson’s algorithm for mutual exclusion. We have considered single
entry and repeated entry versions of this algorithm. In the single entry version,
the two processes want to enter into the critical section only one time. Verifying
this can be done with our implementation, as well as with other tools, such as
those of [6], [5] or [16]. Verification becomes more difficult when considering the
2 For readability, the operations store and load are changed in st and ld.

Symbolic Verification on Relaxed Memory Models 15

repeated entry version. In this version, both processes want to enter the critical
section an arbitrary number of times. Using our prototype, we could finish the
exploration within 90 seconds, finding the error, or, when adding some memory
fences at the right places, showing the absence of errors.

References

1. Lamport, L.: How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Computers 28(9) (1979) 690–691

2. SPARC International, Inc., C.: The SPARC architecture manual: version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1992)

3. SPARC International, Inc., C.: The SPARC architecture manual (version 9).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1994)

4. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-tso. In
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M., eds.: TPHOLs. Volume 5674
of Lecture Notes in Computer Science., Springer (2009) 391–407

5. Mador-Haim, S., Alur, R., Martin, M.: Plug and play components for the explo-
ration of memory consistency models. Technical report, University of Pennsylvania
(2010)

6. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of
concurrent data types on relaxed memory models. In Ferrante, J., McKinley, K.S.,
eds.: PLDI, ACM (2007) 12–21

7. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs (ex-
tended abstract). In Hentenryck, P.V., ed.: SAS. Volume 1302 of Lecture Notes in
Computer Science., Springer (1997) 172–186

8. Møller, A.: brics/automaton DFA/NFA Java implementation.
9. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems

- An Approach to the State-Explosion Problem. Volume 1032 of Lecture Notes in
Computer Science. Springer (1996)

10. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for rmo
(relaxed memory order). In: SPAA. (1995) 34–41

11. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In Gupta, A., Malik, S., eds.: CAV. Volume 5123 of Lecture Notes in
Computer Science., Springer (2008) 107–120

12. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In Hermenegildo, M.V., Palsberg, J., eds.:
POPL, ACM (2010) 7–18

13. Intel Corporation: Intel R©64 and IA-32 Architec-
tures Software Developer’s Manual. Specification (2007)
http://www.intel.com/products/processor/manuals/index.htm.

14. Loewenstein, P., Chaudhry, S., Cypher, R., Manovit, C.: Multiprocessor memory
model verification. (2008)

15. Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In Dill, D.L., ed.:
CAV. Volume 818 of Lecture Notes in Computer Science., Springer (1994) 55–67

16. Hangal, S., Vahia, D., Manovit, C., Lu, J.Y.J., Narayanan, S.: Tsotool: A program
for verifying memory systems using the memory consistency model. In: ISCA,
IEEE Computer Society (2004) 114–123

