
EMMA: Explicit Model Checking Manager?

Radek Pelánek and Václav Rosecký

Department of Information Technology, Faculty of Informatics
Masaryk University Brno, Czech Republic

pelanek,xrosecky@fi.muni.cz

Abstract. Although model checking is usually described as an auto-
matic technique, the verification process with the use of model checker
is far from being fully automatic. In this paper we elaborate on con-
cept of a verification manager, which contributes to automation of the
verification process by enabling efficient parallel combination of differ-
ent verification techniques. We introduce a tool EMMA (Explicit Model
checking MAnager), which is a practical realization of the concept, and
discuss practical experience with the tool.

1 Introduction

Although model checking algorithms are automatic, the process of using a model
checker can be quite elaborate and far from automatic. In order to successfully
verify a model, it is often necessary to select appropriate techniques and param-
eter values. The selection is difficult, because there is a very large number of
different heuristics and optimization techniques – our review of techniques [5]
identified more than 100 papers just in the area of explicit model checking.
These techniques are often complementary and there are non-trivial trade-offs
which are hard to understand. In general, there is no best technique. Some tech-
niques are more suited for verification, other techniques are better for detection
of errors. Some techniques bring good improvement in a narrow domain of ap-
plicability, whereas in other cases they can worsen the performance [5]. The user
needs a significant experience to choose good techniques.

Moreover, models are usually parametrized and there are several properties
to be checked. Thus the process of verification requires not just experience, but
also a laborious effort, which is itself error prone.

Another motivation for automating the verification process comes from trends
in the development of hardware. Until recently, the performance of model check-
ers was continually improved by increasing processor speed. In last years, how-
ever, the improvement in processors speed has slowed down and processors de-
signers have shifted their efforts towards parallelism [2]. This trend poses a chal-
lenge for further improvement of model checkers. A classic approach to applica-
tion of parallelism in model checking is based on distribution of a state space
among several workstations (processors). This approach, however, involves large

? Partially supported by GA ČR grant no. 201/07/P035.



communication overhead. Given the large number of techniques and hard-to-
understand trade-offs, there is another way to employ parallelism: to run inde-
pendent verification runs on individual workstations (processors) [2,5,8]. This
approach, however, cannot be efficiently performed manually. We need to auto-
mate the verification process.

With the aim of automating the verification process, we elaborate on a gen-
eral concept of a verification manager [6] and we provide its concrete realization
for the domain of explicit model checking. We also describe experience with the
tool and discuss problematic issues concerning fair evaluation.

The most related work is by Holzmann et al.: a tool for automated execution
of verification runs for several model parameters and correctness properties using
one fixed verification technique [3] and ‘swarm verification’ based on parallel
execution of many different techniques [2]; their approach, however, does not
allow any communication among techniques and they do not discuss the selection
of techniques that are used for the verification (verification strategy).

This paper describes the main ideas of our approach and our tool EMMA.
More details are in the technical report [7] (including a more detailed discussion
of related work).

2 Concept and Implementation

Verification manager is a tool which automates the verification process (see
Fig. 1). As an input it takes a (parametrized) model and a list of properties.
Then it employs available resources (hardware, verification techniques) to per-
form verification – the manager distributes the work among individual worksta-
tions, it collects results, and informs the user about progress and final results.
Decisions of the manager (e.g., which technique should be started) are governed
by a ‘verification strategy’. The verification strategy needs to be written by an
expert user, but since it is generic, it can be used on many different models. In
this way even a layman user can exploit experiences of expert users. Long-term
log is used to store all input problems and verification results. It can be used for
evaluation of strategies and for their improvement.

As a proof of concept we introduce a prototype of the verification manager
for the domain of explicit model checking – Explicit Model checking MAnager
(EMMA). The tool is publicly available on the web page:

http://anna.fi.muni.cz/~xrosecky/emma_web

EMMA is based on the Distributed Verification Environment (DiVinE) [1].
All used verification techniques are implemented in C++ with the use of Di-
VinE library. At the moment, we use the following techniques: breadth-first
search, depth-first search, random walk, directed search, bitstate hashing (with
refinement), and under-approximation based on partial order reduction. Other
techniques available in DiVinE can be easily incorporated.

The manager itself is implemented in Java. Currently, the manager supports
as the underlying hardware a network of workstations connected by Ethernet.
Communication is based on SSH and stream socket.

2

http://anna.fi.muni.cz/~xrosecky/emma_web


Fig. 1. Verification manager — context.

We can view the manager as a tool for performing a search in a ‘meta state
space’ of verification techniques and their parameters [6]. To perform this meta-
search we need some heuristic – that is our verification strategy. There are several
possible approaches to realization of a strategy (see [7]). We use the following:
we fix a basic skeleton of the strategy and implement support for this skeleton
into the manager. Specifics of the strategy (e.g., order of techniques, values of
parameters) are specified separately in a simple format – this specification of
strategy can be easily and quickly (re)written by an expert user.

In the implementation the strategy description is given in the XML format.
For the first evaluation we use a simple priority-based strategies. For each tech-
nique we specify priority, timeout, and parameter values; techniques are executed
according to their priorities.

EMMA provides visualizations of executions (Fig. 2). These visualizations
can be used for better understanding of the tool functionality and for improve-
ment of strategies.

3 Experiences

The first experience is that the manager significantly simplifies the use of model
checker for parametrized models even for an experienced user – this contribution
is not easily measurable, but is very important for practical applications of model
checkers.

We also performed comparison of different strategies by running EMMA over
models from BEEM [4] (probably the largest collection of models for explicit
model checkers). We found that results depend very much on selection of input
problems and that it is very difficult to give a fair evaluation. When we use
mainly models without errors, strategies which focus on verification are more
successful than strategies tuned for finding errors (Fig. 2, model Szymanski).
When we use models with easy-to-find errors, there are negligible differences

3



Strategy A: Firewire (58/60) Strategy B: Firewire (45/60)

Strategy A: Szymanski (21/24) Strategy B: Szymanski (23/24)

Fig. 2. Illustration of EMMA executions on 4 workstations for two models and
two strategies. Each line corresponds to one workstation; numbers in boxes are
identifications of model instances. The ratio X/Y means the number of decided
properties (X) to number of all properties to be verified (Y).

among strategies and we can be tempted to conclude that the choice of strat-
egy does not matter. When we use models with hard-to-find errors, there are
significant differences among strategies (Fig. 2, model Firewire); the success of
individual strategies is, however, dependent very much on a choice of particular
models and errors. By suitable selection of input problems we could “demon-
strate” (even using quite large set of inputs) both that “verification manager
brings significant improvement” and “verification manager is rather useless”.

So what are the ‘correct’ input problems? The ideal case, in our opinion,
is to use a large number of realistic case studies from an application domain
of interest; moreover, these case studies should be used not just in their final
correct versions, but also in developmental version with errors. However, this
ideal is not realizable at this moment – although there is already a large number
of available case studies in the domain of explicit model checking, developmental
versions of these case studies are not publicly available.

4



The employment of verification manager could help to overcome this problem.
The long-term log can be used to archive all models and properties for which
verification was performed (with user’s content). Data collected in this way can
be latter used for evaluation.

Due to the above described bias caused by selection of models, we do not
provide numerical evaluation, but only general observations:

– For models with many errors, it is better to use strategy which employs
several different (incomplete) techniques.

– For models, which satisfy most of properties, it is better to use strategy which
calls just one simple state space traversal technique with a large timeout.

– If two strategies are comprised of same techniques (with just different pri-
orities and timeouts), there can be a noticeable difference among them, but
this difference is usually less than order of magnitude. Note that differences
among individual verification techniques are often larger than order of mag-
nitude [8].

Thus even with the use of a manager, we do not have a single universal
approach. Suitable verification strategy depends on the application domain and
also on the “phase of verification” – different strategies are suitable for early
debugging of a model and for final verification. Nevertheless, the usage of a model
checker becomes much more simple, since it suffices to use (and understand) just
few strategies, which can be constructed by an expert user specifically for a given
application domain of interest.

References

1. J. Barnat, L. Brim, I. Černá, P. Moravec, P. Rockai, and P. Šimeček. DiVinE - a
tool for distributed verification. In Proc. of Computer Aided Verification (CAV’06),
volume 4144 of LNCS, pages 278–281. Springer, 2006. The tool is available at
http://anna.fi.muni.cz/divine.

2. G.J. Holzmann, R. Joshi, and A. Groce. Tackling large verification problems with
the swarm tool. In Proc. of Model Checking Software: The SPIN Workshop, volume
5156 of LNCS, pages 134–143. Springer, 2008.

3. G.J. Holzmann and M.H. Smith. Automating software feature verification. Bell
Labs Technical Journal, 5(2):72–87, 2000.

4. R. Pelánek. BEEM: Benchmarks for explicit model checkers. In Proc. of SPIN
Workshop, volume 4595 of LNCS, pages 263–267. Springer, 2007.

5. R. Pelánek. Fighting state space explosion: Review and evaluation. In Proc. of
Formal Methods for Industrial Critical Systems (FMICS’08), 2008. To appear.

6. R. Pelánek. Model classifications and automated verification. In Proc. of Formal
Methods for Industrial Critical Systems (FMICS’07), volume 4916 of LNCS, pages
149–163. Springer, 2008.

7. R. Pelánek and V. Rosecký. Verification manager: Automating the verification
process. Technical Report FIMU-RS-2009-02, Masaryk University Brno, 2009.

8. R. Pelánek, V. Rosecký, and P. Moravec. Complementarity of error detection tech-
niques. In Proc. of Parallel and Distributed Methods in verifiCation (PDMC), 2008.

5



Description of Presentation

EMMA is a tool which is useful for verification runs taking from few minutes
to several hours. Therefore, it is not suitable for ‘on-line’ presentation. We will
rather discuss the general concept of a verification manager, some prepared il-
lustrations of executions, and discuss our experiences.

More specifically, the plan for presentation is the following:

1. Discussion of the general concept of a verification manager and a verification
strategy. (6 minutes)

2. Description of EMMA architecture, concrete examples of inputs and outputs
for selected case studies (Firewire link protocol, Szymanski mutual exclusion
protocol). (6 minutes)

3. Examples of visualizations of runs (see Fig. 2 and tool web page). Visualiza-
tions should serve as aid for better understanding of tool functionality and
also for discussing different verification strategies and practical experiences
with the tool. (7 minutes)

4. Discussion of methodical issues with experimental evaluation. (4 minutes)
5. Conclusion, future work. (2 minutes)

6


	EMMA: Explicit Model Checking Manager

