
Reduction of Verification Conditions for Concurrent
System using Mutually Atomic Transactions

Malay K. Ganai1 and Sudipta Kundu2
1NEC Labs America, Princeton, NJ, USA

2University of California, San Diego, CA, USA

Abstract. We present a new symbolic method based on partial order reduction
to reduce verification problem size and state space of a multi-threaded concurrent
system with shared variables and locks. We combine our method with a pre-
vious token-based approach that generates verification conditions directly with-
out a scheduler. For a bounded unrolling of threads, the previous approach adds
concurrency constraints between all pairs of global accesses. We introduce the
notion of Mutually Atomic Transactions (MAT), i.e., two transactions are mutu-
ally atomic when there exists exactly one conflicting shared-access pair between
them. We propose to reduce the verification conditions by adding concurrency
constraintsonly between MATs. Such an approach removesall redundant inter-
leavings, thereby, achieves state reduction as well. We guarantee that our MAT-
based reduction is both adequate (preserves all the necessary interleavings) and
optimal (no redundant interleaving), for a bounded depth analysis. Our experi-
mental results show the efficacy of our approach in reducing the state space and
the verification problem sizes by orders of magnitude, and thereby, improving the
overall performance, compared with the state-of-the-art approaches.

1 Introduction
Verification of multi-threaded programs is hard due to complex and un-expected in-
terleaving between the threads [1]. In practice, the verification efforts often usein-
completemethods, orimprecisemodels, or sometimes both, to address the scalability
of the problem. The verification model is typically obtainedby composing individual
thread models using interleaving semantics, and model checkers are applied to system-
atically explore the global state space. To combat the stateexplosion problem, most
methods employ partial-order reduction techniques to restrict the state-traversal to only
a representative subset of all interleavings, thereby, avoiding exploring the redundant
interleaving among independent transitions [2–4]. Explicit model checkers [5–9] ex-
plore the states and transitions of concurrent system by explicit enumeration, while
symbolic model checkers [10–17] uses symbolic methods. We focus on symbolic ap-
proaches based on SMT (Satifiability Modulo Theory) to generate efficient verification
conditions. Based on how verifications models are built, symbolic approaches can be
broadly classified into:synchronous(i.e., with scheduler) andasynchronous(i.e., with-
out scheduler) modeling.

Synchronous modeling: In this category of symbolic approaches [10–12], a syn-
chronous model of concurrent programs is constructed with ascheduler. The scheduler
is then constrained—by adding guard strengthening—to explore only a subset of in-
terleaving. To guarantee correctness (i.e., cover all necessary interleavings), the sched-
uler must allow context-switch between accesses that are conflicting (i.e. dependent).
One determines statically (i.e., conservatively) which pair-wise locations require con-
text switches, using persistent [4]/ample [18] set computations. One can further use

2 Malay K. Ganai1 and Sudipta Kundu2

lock-set and/or lock-acquisition history analysis [11, 19–21], and conditional depen-
dency [16, 22] to reduce the set of interleavings need to be explored (i.e., remove re-
dundant interleavings). Even with these state reduction methods, the scalability prob-
lem remains. To overcome that, researchers have employed sound abstraction [7] with
bounded number of context switches [23] (i.e., under-approximation), while some oth-
ers have used finite-state model abstractions [13], combined with proof-guided method
to discover the context switches [14].

Asynchronous Modeling:In this category, the symbolic approaches such as TCBMC [15]
and token-based [17] generate verification conditions directly without constructing a
synchronous model of concurrent programs, i.e., without using a scheduler. These veri-
fication conditions are then solved by satisfiability solvers. To our knowledge so far, the
state-reduction based on partial-order hashardly been exploited in the asynchronous
modeling approaches [15,17]. We will focus primarily in that direction.

Our Approach: We present a new SMT-based method—combining partial-order re-
duction with the previous token-based approach [17]—to reduce verification problem
size and state-space for multi-threaded concurrent systemwith shared variables and
locks. For a bounded unrolling of threads, the previous approach adds concurrency con-
straints between all pairs of global accesses, thereby allowing redundant interleavings.
Our goal is to reduce the verification conditions by removingall redundant interleavings
(i.e., guarantee optimality) but keeping the necessary ones (i.e., guarantee adequacy).
We first introduce the notion ofMutually Atomic Transactions(MAT), i.e., two transac-
tions are mutually atomic when there exists exactly one conflicting shared-access pair
between them. We then propose an algorithm to identify an optimal and adequate set
of MATs. For each MAT in the set, we add concurrency constraints only between the
first and last accesses of the transactions, and not in-between. Our MAT-based approach
achieves reduction both in state-space as well as in the sizeof verification conditions.
We guarantee that our MAT-based reduction is both adequate (preserves all the neces-
sary interleavings) and optimal (no redundant interleaving), for a bounded depth anal-
ysis. We implemented our approach in a SMT-based prototype framework, and demon-
strated the efficacy of our approach against the state-of-the-art SMT-based approaches
based on asynchronous modeling [17], and synchronous modeling [16], respectively.

Outline: We provide an informal overview of our MAT-based reduction approach
in Section 2, followed by formal definitions and notations inSection 3. In Section 4, we
present a flow diagram of our new SMT-based method. We give an algorithm for iden-
tifying an adequate and optimal set of MATs in Section 5, followed by a presentation
of adequacy and optimality theorems in Section 6. We presentour experimental results
in Section 7, and conclusions in Section 8.

2 An Overview
We motivate our readers with a following example, which we use to guide the rest of
our discussion. Consider a two-threaded concurrent systemcomprising threadsM1 and
M2 with local variablesai andbi, respectively, and shared (global) variablesx, y, z.
This is shown in Figure 1(a), as a concurrent control flow graph (CCFG) with a fork-
join structure. Each shared statement associated with a node is atomic, i.e., it cannot
be interrupted. Further, each node is associated with at most one shared access. A node
with a shared write/read access of variablex is identified asW (x)/R(x). We use the
notation? to denote a non-deterministic input to a variable.

Given such a concurrent system, the goal of the token-based approach [17] is to
generate verification conditions that capture necessary interleaving for some bounded

Title Suppressed Due to Excessive Length 3

unrolling of the threads, aimed at detecting reachability properties such as data races
and assertion violations. These verification conditions together with the property con-
straints are encoded and solved by an SMT solver. A satisfiable result is typically ac-
companied by a trace—comprising data input valuations, anda total-ordered thread
interleaving—that is witness to the reachability property. On the other hand, an un-
satisfiable result is followed by these steps (a)—(c): (a) increase unroll depths of the
threads, (b) generate verification conditions for increased depths, and (c) invoke SMT
solver on these conditions. Typically, the search process (i.e., to find witnesses) is ter-
minated when a resource—such as time, memory or bound depth—reaches its limit.
For effective implementation, these verifications constraints are added on-the-fly, lazily
and incrementally at each unrolled depth. Though the approach captures all necessary
interleaving, it however does not prevent redundant interleavings.

In this work, our goal is to removeall the redundant interleavings but keep the
necessary ones for a given unroll bound. We focus on reducingthe verification condi-
tions, as generated in the token-passing modeling approach[17]. To understand how we
remove redundancy, we first present a brief overview of such amodeling approach.

x=?
y=?
z=?

y=0

assert (y > 0)

y=a1-a2

a1=x+3

I

1a

2a

E

4a

b1=x-2

b2=x+1

z=b1-1

1b

2b

4b

3b3a

y=b 1+b2

a2=z-1

assume (-7 < x)
assume (y < z+5)

W(y)

����
����R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

R(y)

CCFG

1a

2a

4a

1b

2b

4b

3b3a

W(y)

R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

#pair-wise constraints = 4∗4∗2=32

Token-Passing Model

3b

ws

rs

x,y,z=?
tk= ?
ctk= ?

tk= ?

M1 M2

(a) (b)

x=?
y=?
z=?

y=0

assert (y > 0)

y=a1-a2

a1=x+3

II

1a1a

2a2a

EE

4a4a

b1=x-2

b2=x+1

z=b1-1

1b1b

2b2b

4b4b

3b3b3a3a

y=b 1+b2

a2=z-1

assume (-7 < x)
assume (y < z+5)

W(y)

����
����R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

R(y)

CCFG

1a1a

2a2a

4a4a

1b1b

2b2b

4b4b

3b3b3a3a

W(y)

R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

#pair-wise constraints = 4∗4∗2=32

Token-Passing Model

3b3b

ws

rs

x,y,z=?
tk= ?
ctk= ?

tk= ?

M1 M2

(a) (b)

Fig. 1.(a) Concurrent system, shown as thread CFGs, with threadsM1, M2 and local variablesai,
bi respectively, communicating with shared variablex, y, z, and (b) Token-passing Model [17].

2.1 Token-passing Model
The main idea of token-passing model (TPM) is to introduce a single Boolean token
tk and a clock vectorctk in a model, and then manipulate the passing of the token
to capture all necessary interleavings in the given system.The clock vector records
the number of times the tokentk is passed and is synchronized when the token is
passed. Unlike a synchronous model, TPM does not have a scheduler in the model. The
verification model is obtained two phases.

In the first phase, the goal is obtain abstract and decoupled thread models. Each
thread is decoupled from the other threads by localizing allthe shared variables. For the
example shown in Figure 1(a),M1 andM2 are decoupled by renaming (i.e., localizing)
shared variable such asx to x1 andx2, respectively. Each model is then abstracted
by allowing renamed (i.e., localized) variables to take non-deterministic values at every
shared access. To achieve that, each shared access node (in every thread) is instrumented
with two control states as follows: (a) an atomicpre-access control state, referred to as

4 Malay K. Ganai1 and Sudipta Kundu2

read syncblock, is inserted before each shared access, and (b) an atomic post-access
control state, referred to aswrite syncblock, is inserted after each shared access. In
read syncblock, all localized shared variables obtain non-deterministic values.

As an example, we show the token-passing model in the Figure 1(b). For clarity
of presentation, we did not show renaming of the shared variables, but for all our pur-
pose we consider them to be local to the thread, i.e.,x of threadMi andx of Mj are
not the same variable. In such a model, atomic control statesrs andws are inserted
pre and post of shared accesses in decoupled model, respectively. As highlighted for a
control state3b, we add the following statements in the correspondingrs node, i.e.,
x=?,y=?,z=?,tk=?,ctk=?. Similarly, we addtk=? in ws node. (? denotes the
non-deterministic values.)

Note, the transition (update) relation for each localized shared variable depends on
other local variables, thereby, making the model independent (i.e., decoupled). How-
ever, due to non-deterministic read values, the model have additional behaviors, hence,
it is an abstract model.

In thesecondphase, the goal is to remove the imprecision caused due to abstraction.
In this phase, the constraints are added to restrict the introduced non-determinism and
to capture the necessary interleavings. More specifically,for each pair of shared access
state (in different threads),token-passing constraintsare added from thewrite sync
node of a shared access to theread syncnode of the other shared access. Intuitively,
these token-passing constraints allow passing of the tokenfrom one thread to another,
giving a total order in the shared accesses. Furthermore, these constraints allow to syn-
chronize the values of the localized shared variables from one thread to another. To-
gether, the token-passing constraints capturesall and onlythe necessary interleavings
that are sequentially consistent [24] as stated in the following theorem.

Theorem 1 (Ganai, 2008 [17]).The token-based model is both complete, i.e., it allows
only sequentially consistent traces, and sound, i.e., captures all necessary interleaving,
for a bounded unrolling of threads. Further, the size of pair-wise constraints added
grow quadratically (in the worse case) with the unrolling depth.

In Figure 1(b), we show a token-passing constraint as a directed edge from awrite sync
ws node of one thread to aread syncrs node of another. Note, these constraints are
added for all pairs ofws andrs nodes. A synchronization constraint fromM1 to M2

will include x2 = x1 ∧ y2 = y1 ∧ z2 = z1 ∧ tk2 = 1 ∧ tk1 = 0 ∧ ctk2 = ctk1,
where token-passing is enforced by assertion/de-assertion of corresponding token vari-
able. (Recall,vi is localized variable inMi corresponding to shared variablev). As
shown, one adds4 ∗ 4 ∗ 2 = 32 such token-passing constraints for this example.

Improvement Scope:Though the above approach captures all and only necessary
interleavings, it also allows interleavings that may be redundant (i.e. equivalent). For
example, the interleavingσ1 ≡ 1b · 2b · 1a · 3b · 4b · 2a · 3a · 4a, andσ2 ≡ 1a · 2a · 1b ·
2b ·3a ·3b ·4b ·4a, are equivalent as in these interleavings the conflicting pairs (2b, 3a),
(1a, 4b), (4b, 4a) are in the same happens-before order, besides the thread program
order pairs. (Note, “·” denotes concatenation). The previous-approach [17] willexplore
both the interleavings.

In the following sections, we build our approach on such a token-passing model to
identify pair-wise constraints that can be safely removed,without affecting soundness
and completeness, and guaranteeing optimality by removingall redundant interleav-
ings. For the example in Figure 1, our approach removes24 such pair-wise constraints

Title Suppressed Due to Excessive Length 5

(as shown in Figure 4), and yet covers all the necessary interleavings with no redun-
dancy. To illustrate, our approach allowsσ1, and not any other equivalent (toσ1) inter-
leavings such asσ2. Note, the choice of a representative interleaving will depend on a
given thread prioritization, as discussed later.

2.2 Mutually Atomic Transactions
Our partial-order reduction approach is based on the concept of mutually atomic trans-
actions, MAT for short. Intuitively, let a transaction be a sequence of statements in a
thread, then we say two transactionstri andtrj of threadsMi andMj , respectively, are
mutually atomic transactions if and only if there exists exactly one conflicting shared-
access pair between them, and the statements containing theshared-access pair is the
last one in each of the transactions. (We will present a more formal definition later).

Now we illustrate the concept of MAT using an example as shownin Figure 2.
From the control state pair(1a, 1b), there are two reachable control states with con-
flicting accesses, i.e.,(3a, 2b) and(1a, 4b). Corresponding to that we have two MATs
m = (tr1 = 1a · · · 3a, tr2 = 1b · · ·2b) (Figure 2(a)) andm′ = (tr′1 = 1a, tr′2 =
1b · · · 4b) (Figure 2(b)), respectively. Similarly, from(1a, 2b) we havem′′ = (tr′′1 =
1a, tr′′2 = 2b · · ·4b) (Figure 2(c)). In general, there could be multiple possibleMATs
for our examples.

In a more general setting with conditional branching, we identify MATs by explor-
ing beyond conditional branches, as illustrated in the Figure 2(d), with a conditional
branch denoted as a diamond node, and control statesAi, Bi, Ci denoted as dark ovals.
Starting from(A1, A2), we have following control path segments,tr11 = A1 · · ·B1,
tr12 = A1 · · ·C1, tr21 = A2 · · ·B2, andtr22 = A2 · · ·C2 (shown as ovals). For each
of the four combinations oftr1i, tr2j , we define MAT separately.

1a1a

2a2a

4a4a

1b1b

2b2b

4b4b

3b3b3a3a

W(y)

R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

1a1a

2a2a

4a4a

1b1b

2b2b

4b4b

3b3b3a3a

W(y)

R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

tr1 tr2 tr’1 tr’2

(a) (b)

1a1a

2a2a

4a4a

1b1b

2b2b

4b4b

3b3b3a3a

W(y)

R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

tr’’1 tr’’2

(c) (d)

tr11 tr21
tr22

tr12

M1 M2

A1

B1
C1

A2

B2
C2

tr11 tr21
tr22

tr12

M1 M2

A1

B1
C1

A2

B2
C2

Fig. 2. (a)m=(tr1, tr2), (b) m′=(tr′1, tr
′
2), (c) m′′=(tr′′1 , tr′′2) (d) MATs for branches.

Given a MAT (tri, trj), we can have only two equivalent classes of interleav-
ings [25]. One represented bytri ·trj , i.e.,tri executing beforetrj and other bytrj ·tri,
i.e., trj executing beforetri. (Note, “·” represent concatenations.) For a given MAT
m = (tr1, tr2) shown in Figure 2(a), the interleavingsσ1 ≡ 1a · 2a · 3a · 1b · 2b and
σ2 ≡ 1b·2b·1a·2a·3a represent the two equivalent classes, respectively. In other words,
given a MAT, the associated transactions can be consideredatomic pair-wise, and one
can avoid interleaving themin-between. In general, transactions associated with differ-
ent MATs may not be atomic. For example,tr1 is not atomic withtr′′2 (Figure 2(a),(c)).

Intuitively, it would be desirable to have a set of MATs such that, by adding token-
passing constraints only between MATs, we will not only missany necessary interleav-
ing but also remove all the redundant interleaving. In Section 5, we describe such an

6 Malay K. Ganai1 and Sudipta Kundu2

algorithmGenMATto compute an optimal and adequate set of MATs. For our exam-
ple one such set is{(1a · · · 3a, 1b · · ·2b), (4a, 1b · · ·4b), (1a, 3b · · ·4b), (4a, 3b · · ·4b),
(2a · · · 4a, 3b · · ·4b)}. Based on the set, we add only8 token-passing constraints (Fig-
ure 4), compared to32 (Figure 1(b)).

At this point we would like to highlight the salient featuresof our approachesvis-
a-visprevious works. A previous approach [9] on partial-order reduction used in a ex-
plicit model checking framework does not guarantee optimality. Though such guaran-
tee is provided in a recent symbolic approach (using synchronous modeling) [16], our
approach goes further in reducing problem sizes, besides anoptimal reduction in the
state space. Our approach obtains state space reduction by removing constraints (i.e.,
adding fewer token-passing constraints), while the approach [16] obtains it by adding
more constraints (i.e., constraining the scheduler). In our experiments, we observed
that our approach is order-of-magnitude more memory efficient compared to the ap-
proaches [16,17]. Our approach is orthogonal to the approaches that exploit transaction-
based reductions [11,19,20]. Nevertheless, we can exploitthose to identify unreachable
conflicting pairs, and further reduce the necessary token-passing constraints.
Contributions Highlights:

– We are first to exploit partial order reduction techniques ina SMT-based bounded
model checking using token-passing modeling approach. We developed a novel
approach—based on MAT—to reduce verification conditions, both in size and state
space for concurrent systems.

– We prove that our MAT-based reduction is both adequate (preserves all and only
the necessary interleavings) and optimal (no redundant interleaving, as determined
statically), for a bounded depth analysis.

– Our approach outperforms other approaches [16, 17] by orders of magnitude, both
in performance and size of the verification problems.

3 Formal Definitions
With the brief informal overview, we present our approach ina more formal setting.
We consider a multi-threaded systemCS comprising a finite number of deterministic
bounded-stack threads communicating with shared variables, some of which are used
as synchronization objects such as locks. LetMi(1 ≤ i ≤ N) be a thread model rep-
resented by a control and data flow graph of the sequential program it executes. LetTi

represent the set of 4-tuple transitions(c, g, u, c′) of threadMi, wherec, c′ represent the
control states,g is Boolean-valued enabling condition (orguard) on program variables,
u is an update function on program variables. LetT =

⋃
i Ti be the set of all transi-

tions. LetVi be set of local variables inTi andV be set of (global) shared variables. Let
S be the set of global states of the system, and a states ∈ S is valuation of all local and
global variables of the system. A global transition system for CS is an interleaved com-
position of the individual thread models,Mi. Each transition consists of global firing of
a local transitionti = (ai, gi, ui, bi) ∈ T . If enabling predicategi evaluates to true in
s, we say thatti is enabledin s.

3.1 Notation

We define the notion of a run of a multi-threaded program as an observation of events
such as global accesses, thread creations and thread termination. If the events are or-
dered, we call it atotal order run. We define a setAi of shared accesses corresponding

Title Suppressed Due to Excessive Length 7

to a readRi(x) and a writeWi(x) of a threadMi wherex ∈ V . For ai ∈ Ai, we
usevar(ai) to denote the accessed shared variable. We use⊢i to denote the beginning
and⊣i to denote the termination of threadMi, respectively. The alphabets of events of
threadMi is a setΣi = Ai ∪ {⊢i,⊣i}. We useΣ = ∪iΣi to denote a set of all events.
A word σ defined over the alphabet setΣ, i.e.,σ ∈ Σ∗ is a string of alphabet fromΣ,
with σ[i] denoting theith access inσ, andσ[i, j] denoting the access substring fromith

to jth position, i.e.,σ[i] · · ·σ[j] (· denotes concatenation).|σ| denotes the length of the
word σ. We useπ(σ) to denote a permutation of alphabets in the wordσ. We useσ |i
to denote the projection ofσ on threadMi, i.e., inclusion of the actions ofMi only.

Transaction:A transaction is a wordtri ∈ Σ∗
i that may beatomic (i.e., uninter-

rupted by other thread) with respect to some other transactions. If it is atomic with
respect to all other thread transactions, we refer it asindependent transaction.

Schedule: Informally, we define a schedule as a total order run of a multi-threaded
program where the accesses of the threads are interleaved. Formally, a schedule is a
wordσ ∈ Σ∗ such thatσ |i is a prefix of the word⊢i ·A∗

i · ⊣i.
Happens-before Relation (≺,�): Given a scheduleσ, we saye happens-beforee′,

denoted ase ≺σ e′ if i < j whereσ[i] = e andσ[j] = e′. We drop the subscript if
it is obvious from the context. Also, if the relation is not strict, we use the notation�.
If e, e′ ∈ Σi ande precedese′ in σ, we say that they are in athread program order,
denoted ase ≺po e′.

Sequentially consistent: A scheduleσ is sequentially consistent [24] iff (a)σ |i is in
thread program order, (b) each shared read access gets the last data written at the same
address location in the total order, and (c) synchronization semantics is maintained, i.e.,
the same locks are not acquired in the run without a corresponding release in between.
We only consider schedules (and their permutations) that are sequentially consistent.

Conflicting Access:We define a pairai ∈ Ai, aj ∈ Aj , i 6= j conflicting, if they
are accesses on the same shared variable (i.e.,var(ai) = var(aj)) and one of them is
write access. We useCij to denote the set of tuples(ai, aj) of such conflicting accesses.
We useShij to denote a set of shared variables—betweenMi andMj threads—with
at least one conflicting access, i.e.,Shij = {var(ai)|(ai, aj) ∈ Cij}. We defineShi =⋃

i6=j Shij , i.e., a set of variables shared betweenMi andMk, k 6= i with at least one
conflicting access. In general,Shij ⊆ (Shi ∩ Shj).

Dependency Relation (D): A relationD ⊆ Σ × Σ is a dependency relation iff for
all (e, e′) ∈ D, one of the following holds: (1)e, e′ ∈ Σi ande ≺po e′, (2)(e, e′) ∈ Cij ,
(3) e =⊣i, e′ =⊣j for i 6= j. Note, the last condition is required when the order of thread
termination is important. If(e, e′) 6∈ D, we say the eventse, e′ are independent. The
dependency relation in general, is hard to obtain; however,one can obtain such relation
conservatively using static analysis [4], which may resultin a larger dependency set
than required. For our reduction analysis, we assume such a relation is provided.

Equivalency Relation (≃): We say two schedulesσ1 = w · e · e′ · v andσ2 =
w · e′ · e · v are equivalent (Mazurkiewicz’s trace theory [25]), denoted asσ1 ≃ σ2, if
(e, e′) 6∈ D. An equivalent class of schedules can be obtained by iteratively swapping
the consecutive independent events in a given schedule. Final values of both local and
shared variables remains unchanged when two equivalent schedules are executed.

A partial order is a relationR ⊆ Σ×Σ on a setΣ, that is reflexive, antisymmetric,
and transitive. A partial order is also atotal order if, for all e, e′ ∈ Σ, either(e, e′) ∈
R, or (e′, e) ∈ R. Partial order-based reduction (POR) methods [4] avoid exploring

8 Malay K. Ganai1 and Sudipta Kundu2

all possible interleavings of shared access events. Note, if (e, e′) ∈ D, all equivalent
schedules agree on eithere ≺ e′ or e′ ≺ e, but not both.

Definition 1 (MAT). We say two transactionstri and trj of threadsMi andMj , re-
spectively, are mutually atomic iff except for the last pair, all other event pairs in the
corresponding transactions are independent. Formally, a Mutually Atomic Transactions
(MAT) is a pair of transactions, i.e.,(tri, trj), i 6= j iff ∀k 1 ≤ k ≤ |tri|, ∀h 1 ≤ h ≤
|trj |, (tri[k], trj [h]) 6∈ D (k 6= |tri| and h 6= |trj |), andtri[|tri|], trj [|trj |]) ∈ D.

Given a MAT(tri, trj), an interesting observation (as noted earlier) is that a word
w = tri · trj is equivalent to any wordπ(w) obtained by swapping any consecutive
eventstri[k] andtrj [h] such thatk 6= |tri| andh 6= |trj |. Similarly, the wordw′ =
trj · tri is equivalent to any wordπ(w′) obtained as above. Note,w 6≃ w′. Therefore,
for a given MAT, there are only two equivalent classes, represented byw andw′. In
other words, given a MAT, the associated transactions areatomic pair-wise.

4 Token-passing Model using MAT

We exploit the pair-wise atomicity of MATs in a token-based model as follows: Letc(e)
represent the control state of the thread where the corresponding evente occurs. For the
given MAT (tri = fi · · · li, trj = fj · · · lj), we only add token-passing constraints
from c(lj) to c(fi), andc(li) to c(fj), respectively. Recall, such constraints are added
between the corresponding pre and post- access blocks as discussed in Section 2.1.
Adequacy of MATs Given a scheduleσ = w1

1 · · ·w
1
N · · ·wn

1 · wn
N , wk

i ∈ Σ∗
i , 1 ≤

k ≤ n, 1 ≤ i ≤ N . We define a set of ordered pairsCSP as follows:CSP (σ) =

{(lki , fk′

i′)|1 ≤ i, i′ ≤ N, 1 ≤ k, k′ ≤ n} wherefk
i and lki denote the first and last

accesses ofwk
i ; andwk′

i′ is a non-empty word adjacent right ofwk
i . Note,CSP (σ)

captures the necessary interleaving pairs to obtain the schedule, i.e., if we add token
passing constraints between every pair of control states(a, b) ∈ CSP (σ), we allow
the scheduleσ. For a given MATα = (fi · · · li, fj · · · lj), we define a set of inter-
leaving ordered pairs,TP (α) = {(li, fj)), (lj , fi))}. Given a set ofMAT ij , we de-
fine TP (MAT ij) =

⋃
α∈MAT ij

TP (α), and denote it asTPij . We say a token-
passing pairs setTP is adequateiff for every scheduleσ in the multi-threaded system,
CSP (σ) ⊆ TP . A setMAT is adequateiff TP is adequate.Note, the size ofTP is
upper bounded by quadratic number of pair-wise accesses.

Unrolled Thread CFGs
M1…Mn

For each thread pair (Mi,Mj)
identify a set �ij of pair thread

locations with conflicting
shared accesses

Update �ij ⇐ �ij\c
where c is a conflicting pair

location that is simultaneously
unreachable

1. GenMAT: Given �ij for a thread
pair (Mi,Mj) find a set �	
ij ,

2. TPij = {(fi,lj),(fj,li) |
(fi�li, fj�lj)∈�	
ij)

3. GenExtraTP(�	
ij): find set eTPij

4. TP = (∪i�jTPij) ∪ (∪i�jeTPij)

Add bound constraints on
number of token exchanges

Independent
(decoupled) thread model

Generate verification conditions
and give to SMT/SAT solver

1

2

4

5

8

For each (a,b) ∈ TP, add
token passing constraint�i={xi | (xi,xk)∈�
� k�i},

TPij = {(xi,xj)(xj,xi) | (xi,xj) ∈ �i × �j }
TP = ∪i�jTPij3

7

OLD

N
E

W Token-passing Model

N
E

W O
LD

6

Fig. 3. Reducing verification conditions in a token-passing model using MAT.

Title Suppressed Due to Excessive Length 9

We use procedureGenMAT (ref. Section 5) to obtain a set ofMAT ij . If Shij (

Shi ∪ Shj, we use procedureGenExtraTP (ref. Section 6) to generate an extra
token-passing pairs seteTPij fromMAT ij . We then construct the adequate setTP as
(
⋃

i6=j TPij) ∪ (
⋃

i6=j eTPij). We give an overview of using MATs in a token-passing
model to selectively add token-passing constraints as shown in Figure 3.

Step 1,2: Given a set of unrolled threadsM1 · · ·MN , we obtain a set of conflicting
pair of control locationsCij for each thread pairMi, Mj.

Step 3: From the setCij , we remove the pairs that are unreachable simultaneously due
to i) happens-before relation such as before and after fork/join, ii) mutual exclusion,
iii) lock acquisition pattern [11].

Step 4: (Corresponds to previous scheme [17], denoted asOLD). An ordered set of
token-passing pairs TP is obtained by considering every pair of control states in
Ci × Cj , whereCi andCj consist of control states of threadMi andMj that have
some conflicting access, respectively.

Step 5: (Corresponds to our proposed scheme, denoted asNEW). For each thread pairs
Mi andMj, and corresponding setCij , we identify a setMAT ij usingGenMAT .
We obtain the setTPij = TP (MAT ij). Given a setMAT ij , we identify a set
eTPij usingGenExtraTP . We constructTP = (

⋃
i6=j TPij) ∪ (

⋃
i6=j eTPij).

Step 6: We now build token-passing model by first generating decoupled (unrolled)
thread models. For each ordered pair(a, b) ∈ TP , we add token passing constraints
between(a, b), denoting token may be passed froma to b.

Step 7: Optionally, we add constraintsCBl
i ≤ ctk ≤ CBu

i to bound the number of
times a token could be passed to a specific thread modelMi, with CBl

i andCBu
i

corresponding to user-provided lower and upper context-bounds, respectively.
Step 8: We generate verification conditions (discussed in Section 2.1) comprising tran-

sition relation of each thread model, token-passing constraints, context-bounding
constraints (optionally), and environmental assumptionsand negated property con-
straints. These constraints are expressed in a quantifier-free formula and passed to
a SMT/SAT solver for a satisfiability check.

5 Generating MATs
Notation Shortcuts: Before we get into details, we make some notation abuse for ease
of readability. When there is no ambiguity, we useei to also indicatec(ei), the control
state of threadMi where the access eventei belongs. Further, we use+ei to denote
the event immediately afterei in program order, i.e.,c(+ei) = next(c(ei)). Similarly,
we use−ei to denote event immediately precedingei, i.e.,c(ei) = next(c(−ei)). We
sometimes refer tuple(a, b) as a pair.

We provide a simple procedure,GenMAT (Algorithm 1) for generatingMAT ij ,
given a pair of unrolled threadsMi andMj and dependency relationD. For ease of
explanation, we assume the threads are unrolled for some bounded depth, and there is
no conditional branching. We first initialize a queueQ with control state pair(⊢i,⊢j)
representing the beginning of the threads, respectively. For any pair(fi, fj) in theQ,
representing the current control pair locations, we can obtain a MATm′ = (tr′i, tr

′
j) as

follows: we starttr′i andtr′j from fi andfj respectively, and end inl′i andl′j respec-
tively, such that(l′i, l

′
j) ∈ D, and there is no other conflicting pair in-between. There

may be many MAT-candidatesm′. Let Mc denote a set of such choices. The algo-
rithm selectsm ∈ Mc uniquely by assigning thread priorities and using the following

10 Malay K. Ganai1 and Sudipta Kundu2

selection rule. If a threadMj is given higher priority overMi, the algorithm prefers
m = (tri = fi · · · li, trj = fj · · · lj) overm′ = (tr′i = fi · · · l′i, tr

′
j = fi · · · l′j) if

lj ≺po l′j. Note, the choice ofMj overMi is arbitrary, but is required for the optimality
result. We presented MAT selection (lines 7–9) in a declarative style for better under-
standing. However, algorithm finds the unique MAT using the selection rule, without
constructing the setMc. We show later thatGenMat can always find such a unique
MAT with the chosen priority (lines 7—9).

We updateMAT ij with m. If (li 6=⊣i) and (lj 6=⊣j), we updateQ with three
pairs, i.e.,(+li, +lj), (+li, fj), (fi, +li); otherwise, we insert selectively as shown in
the algorithm (lines 11—15).

Example:We present a run ofGenMAT in Figure 4 for the example in Figure 1(a).
We gaveM2 higher priority overM1. The table columns provide each iteration step (#I),
the pairp ∈ Q\Q′ selected, the chosenMAT 12, and the new pairs added inQ\Q′

(shown in bold). We add token-passing constraints (shown asdirected edges) in the fig-
ure (on the right) between every ordered pair in the setTP (MAT 12). Total number
of pair-wise constraints we add is8, much less compared with all pair-wise constraints
(in Figure 1). The fork/join constraints, shown as dotted edges, provide happens-before
ordering between the accesses. In the first iteration of the run, out of the two MAT can-
didatesm = (1a · · · 3a, 1b · · ·2b) andm′ = (1a, 1b · · · 4b) (also shown in Figure 2(a)-
(b)) GenMAT selectsm, asM2 is given higher priority overM1 and2b ≺po 4b.

In the following section, we show the adequacy and optimality of the pair-wise
constraints so obtained.

Theorem 1 The algorithmGenMAT terminates.

Proof.For bounded depth, number of pair-wise accesses are bounded. As each control
state pair is picked only once (line 6), the procedure terminates.2.

5

4

3

2

1

#I Q\Q’
�����p∈∈∈∈Q\Q’

(2a�4a,3b �4b)(2a,3b)

(2a,3b)(4a,3b�4b)(4a,3b)

(4a,3b)(2a,3b)(1a,3b�4b)(1a,3b)

(1a,3b)(4a,3b)(4a,1b�4b)(4a,1b)

(4a,1b)(1a,3b)
(4a,3b)

(1a�3a,1b �2b)(1a,1b)

(1a,1b)

5

4

3

2

1

#I Q\Q’
�����p∈∈∈∈Q\Q’

(2a�4a,3b �4b)(2a,3b)

(2a,3b)(4a,3b�4b)(4a,3b)

(4a,3b)(2a,3b)(1a,3b�4b)(1a,3b)

(1a,3b)(4a,3b)(4a,1b�4b)(4a,1b)

(4a,1b)(1a,3b)
(4a,3b)

(1a�3a,1b �2b)(1a,1b)

(1a,1b) 1a1a

2a2a

4a4a

1b1b

2b2b

4b4b

3b3b3a3a

W(y)

R(x)

R(z)

W(y)

R(x)

W(z)

R(x)

W(y)

#pair-wise constraints = 8

EE

II Fork Constraints

Join Constraints

Token Passing pair-set (TP(���12))=
{(2b,1a)(3a,1b)(4a,1b)(4b,4a),(1a,3b)(4b,1a) (4a,3b)(4b,2a)}

Fig. 4. Run ofGenMAT on example in Figure 1(a).

6 MAT-based Reduction: Optimality and Adequacy
For ease of understanding, we first present optimality and adequacy results for a two-
threaded system i.e.,Mi andMj with i, j ∈ {1, 2}. For two-threaded system,Shij =
(Shi ∪ Shj), and as noted earlier,eTPij = ∅. We ignore it for now; we discuss the
general case later as the proof arguments are similar.

Title Suppressed Due to Excessive Length 11

Theorem 2 (Two-threaded Optimality) For two-threaded system with bounded un-
rolling, the setTP = TP (MAT ij) is optimal i.e., it does not allow two equivalent
schedules.

Algorithm 1 GenMAT : Obtain a set of MATs
1: input: Unrolled Thread Models:Mi, Mj ; Dependency RelationD
2: output: MAT ij .
3: MAT ij := ∅; Q := {(⊢i,⊢j)}; Q′ := ∅ {Initialize Queue};
4: while Q 6= Q′ do
5: Select(fi, fj) ∈ Q\Q′

6: Q := Q\{(fi, fj)}; Q′ := Q′ ∪ {(fi, fj)}
7: MAT-candidates set,Mc = {m′ | m′ = (tr′i = fi · · · l

′
i, tr

′
j = fj · · · l

′
j) is MAT},

8: Select a MATm = (tri = fi · · · li, tri = fj · · · lj) ∈ Mc such that
9: ∀m′∈Mc,m′ 6=m lj ≺po l′j , (i.e.,Mj has higher priority).

10: MAT ij := MAT ij ∪ {m}
11: if (li =⊣i ∧lj =⊣j) then continue;
12: elseif(li =⊣i) then q := {(fi, +lj)};
13: elseiflj =⊣j) then q := {(+li, fj)};
14: elseq := {(+li, +lj), (+li, fj), (fi, +lj)};
15: Q := Q ∪ q;
16: end while
17: return MAT ij

Lemma 1. If (ai, aj) ∈ TP (MAT ij), then∃m = (a′
i · · · ai, aj · · · a′

j) ∈ MAT ij

where⊢i�po a′
i �po ai andaj �po a′

j �po⊣j .

Lemma 2. From a given pair(fi, fj) ∈ Q, given possible MAT candidatesm1 =
(fi · · · ei, fj · · · ej) or m2 = (fi · · · e′i, fj · · · e′j), GenMAT selects only one of them,
i.e., eitherm1 ∈ MAT ij or m2 ∈ MAT ij , but not both. Further, if the threadMi is
given higher priority thanMj, m1 is selected if(ei ≺po e′i), otherwisem2 is selected.

Optimality Proof . We show the optimality by arguing the contrapositive holds, i.e., if
two schedules allowed byTP (MAT ij) are equivalent, then they are same. We explain
our proof steps using the Figure 5(a). Consider two equivalent schedules, i.e.,σ1 ≃ σ2.
We assume that the necessary interleaving pairs for the two schedules be captured by
the MAT set, i.e.,CSP (σ1) ⊆ TP (MAT ij), andCSP (σ2) ⊆ TP (MAT ij). We
showσ1 = σ2 by contradiction.

Assumeσ1 6= σ2, i.e., CSP (σ1) 6= CSP (σ2). Wlog, let σ1 = w1
i · w1

j · · ·w
k
i ·

wk
j · · ·wn

i ·w
n
j andσ2 = v1

i ·v
1
j · · · v

k
i ·v

k
j · · · vn

i ·v
n
j , a sequence of words,wk

i , vk
i ∈ Σ∗

i ,
wk

j , vk
j ∈ Σ∗

j , 1 ≤ k ≤ n. (Note, if the words do not align, we pick the schedule with
fewer words, sayσ1, and prefix it with empty words corresponding to each thread.)
Starting from the end, let the difference first show up at thekth word, i.e.,wk

j 6= vk
j ,

and∀t k < t ≤ n, wt
i = vt

i , wt
j = vt

j .

Let wk
j = fk

j · · · lkj andvk
j = fk′

j · · · lkj . Note, both words end with the same access

event because the interleaving pairs matches till that point. Wlog, we assumefk′

j ≺po

fk
j . Similarly, we havewk

i = fk
i · · · lki , andvk

i = fk′

i · · · lki . Note, lki immediately

precedes (in program order)wk+1
i , i.e., lki = −wk+1

i [1] (Recall,w[1] denotes the first
event in wordw).

12 Malay K. Ganai1 and Sudipta Kundu2

If k = 1, we get a trivial contradiction asw2
i = v2

i impliesw1
i = v1

i . Therefore,
we only need to considerk > 1. Further, aswk+1

j = vk+1
j , we have|vk

j | 6= 0 implies

|wk
j | 6= 0 (Note, |vk

j | 6= 0 implies⊢j�po −vk+1
j [1], which implies⊢j�po −wk+1

j [1],

which implies|wk
j | 6= 0). Similarly, aswk+1

i = vk+1
i , |vk

i | 6= 0 implies |wk
i | 6= 0. As

σ1 is a schedule prefixed with empty words,|wk
j | 6= 0 implies |vk

j | 6= 0, and|wk
i | 6= 0

implies|vk
i | 6= 0. Thus, we only need to consider|vk

j | 6= 0 wherek > 1.

Claim 1: ∃pk
j fk′

j ≺po fk
j �po pk

j �po lkj , s.t.(lki , pk
j) ∈ D.

As (lki , fk′

j) ∈ TP (MAT ij),∃m1 = (bk
i · · · l

k
i , fk′

j · · · pk
j) ∈ MAT ij with (lki , pk

j) ∈

D, bk
i �po lki andfk′

j �po pk
j (as per lemma 1).

Further,fk
j �po pk

j . If not, i.e.,pk
j ≺po fk

j , thenpk
j ≺σ1

lki , andlki ≺σ2
pk

j . Since,
(lki , pk

j) ∈ D, we getσ1 6≃ σ2 (contradicting our assumption).

Claim 2: ∀f fk′

j �po f � lk−1
j (= −fk

j), and∀e fk
i �po e �po lki s.t.(f, e) 6∈ D.

For suchf and e, we havef ≺σ1
e and e ≺σ2

f . Sinceσ1 ≃ σ2, the claim
(f, e) 6∈ D follows.
Claim 3: ∃f ′ lki ≺po f ′ s.t.(f ′, lk−1

j) ∈ D.

Since(lk−1
j , fk

i) ∈ TP (MAT ij), ∃m2 = (fk
i · · · f ′, f · · · lk−1

j) ∈ MAT ij (as

per lemma 1). Thus,(f ′, lk−1
j) ∈ D. Using claim 2, we havelki ≺po f ′ as well.

Claim 4: ¬((lk−1
j , fk

i) ∈ TP (MAT ij) ∧ (lki , fk′

j) ∈ TP (MAT ij)), i.e.,¬(m1 ∈
MAT ij ∧ m2 ∈ MAT ij).

Note, bk
i , fk

i �po lki ≺po f ′, andf, fk′

j �po lk−1
j ≺po pk

j . Applying lemma 2,
following holds: withMi higher priority,m2 will not be chosen aslki ≺po f ′, and with
Mj higher priority,m1 will not be chosen aslk−1

j ≺po pk
j . Thus, the claim follows.2

Theorem 3 (Two-threaded Adequacy)For two-threaded system with bounded unrolling,
the setTP = TP (MAT ij) is adequate.

Proof Sketch:Equivalently, we claim that the token-passing constraintsadded between
every pairs inTP (MAT ij) adequately captures all sequentially consistent schedules.
In the first step, we construct a procedureGenEqv(algorithm 2) to obtain an equivalent
scheduleσ′ ≃ σ, which is also a unique representative of the equivalence class. Second,
we use that equivalent scheduleσ′ to showCSP (σ′) ⊆ TP (MAT ij).

Example: Given a scheduleσ shown in Figure 6(a), we obtain equivalent schedulesσ′

andσe by right moving (shown as dotted edges) the last access of a word that does not
conflict with the adjacent right word. Note, we use(1a : W (y)) to denote a write access
on variabley at control state1a, and similarly, the rest are denoted.

We give the proof details later, but first present required lemmas whose proofs fol-
low from the construction ofGenEqvandGenMAT (refer Appendix A for details).

Lemma 3. σe = GenEqv(σ) ≃ σ. Further, forσe = v1
i · v

1
j · ·v

n
i · vn

j , the last event of
a non-empty word is dependent on some access in the right adjacent non-empty word.

Lemma 4. For somek < n, if |vk
i | = 0, |vk+1

i | 6= 0, then for1 ≤ t ≤ k, |vt
i | = 0,

and fork < h ≤ n, |vh
i | 6= 0. In other words,σe can have prefix of empty words, but

remaining ones are non-empty.

Lemma 5. Procedure GenEqv always terminates.

Title Suppressed Due to Excessive Length 13

≤po

≤po

≤po

fj
k

lj
k

lj
k-1

fi
k

fj
k

lj
k

lj
k-1= -fj

k

≤po

fi
k

fj
k’

li
k

li
k

lj
(k-1)’=-fj

k’

fi
k+1 fi

k+1

pj
k

pj
k

ff

bi
k

e

bi
k

lj
(k-1)’

f’
f’

fj
k’

≤po

≤po

<

e

<

≤po

≤po

σ2≅σ1

Mi Mj Mi Mj

Optimality Claims
1. (li

k, pj
k) ∈D

2. (f, e) ∉D
3. (f’,lj

(k-1)) ∈D
4. ¬(lj

k-1,fi
k) ∈TP∧(li

k,fi
k’)∈TP)

≤po

≤po

≤po

Not established token
passing order
Established token
passing order

Program order (<,≤)
Conflict pair

li
k

fi
k

fj
k

lj
k

-fj
k’

fj
k’

rj

qi

li
k-1

ai ≤po

<po ≤po

≤po

≤po

+ai

aj
+aj

li
k

fi
k

fj
k

lj
k

-fj
k’

fj
k’

rj

qi

li
k-1

ai

<po

≤po

+ai

aj
+aj

σe σ’e

fi
k+1

≤po

ci
k

Case 1: ∃(ai, aj)∈D�(-fj
k’,+a’i)∈TP

Case 2 : ∀ (ai, aj) ∉D

1. fj
k <po fj

k’

2. (li
k, rj

’) ∈ D
3. (qi,f) ∈ D
4. (-fj

k’,fi
k) ∈ TP

Mi Mj
Mi Mj

Adequacy Claims

(a) (b)

ej
k-1 ej

k-1

≤po
≤po

Fig. 5. (a) Optimality claim:σ1≃σ2 ⇒ σ1=σ2 (b) Adequacy claim: CSP(σ1) ⊆ TP (MAT ij).

Lemma 6. If (fi · · · ei, fj · · · ej) ∈ MAT ij , then (1)(ei, ej) ∈ D, (2) (fi, fj) ∈ Q,
(2) if ei 6=⊣i, (+ei, fj) ∈ Q (4) if ej 6=⊣j , (fi, +ej) ∈ Q (5) if ei 6=⊣i ∧(ej 6=⊣j),
(+ei, +ej) ∈ Q (6) (ei, fj), (ej , fi) ∈ TP (MAT ij).
Lemma 7. For every pair(fi, fj) ∈ Q, there is a MAT candidate,m = (fi · · · ei, fj · · · ej),
where(ei, ej) ∈ D, andfi �po ei, andfj �po ej .

Lemma 8. Given a pair(fi, fj) ∈ Q, and a reachable pair(ei, ej) ∈ D there exists a
MAT (f ′

i · · · ei, f
′
j · · · ej) ∈ MAT ij , wherefi �po f ′

i �po ei, fj �po f ′
j �po ej and

(f ′
i , f

′
j) ∈ Q.

Lemma 9. Given a pair(fi, fj) ∈ Q, and a reachable pair(ei, ej) ∈ D, then (a)
(ei, fj) ∈ TP (MAT ij) if Mi is given higher priority. (b)(ej, fi) ∈ TP (MAT ij) if
Mj is given higher priority.

Adequacy Proof.We explain our proof using the Figure 5(b). We first obtain an equiv-
alent scheduleσe = GenEqv(σ) such thatσe = v1

i · v1
j · · · v

n
i · vn

j . We remove the

Algorithm 2 GenEqv: Obtain an equivalent schedule

1: input: A sequence of words,σ = w1
i · w1

j · ·wn
i · wn

j , wk
i ∈ Σ∗

i , wk
j ∈ Σ∗

j , 1 ≤ k ≤ n.
2: output: σe(≃ σ).
3: repeat
4: Do one of the following, A or B
5: A Right move the last access eventlki of the wordwk

i (k ≤ n) to the beginning of the
wordwk+1

i if lki is either independent of all events inwk
j or |wk

j | = 0

6: B Right move the last access eventlkj of wk
j (k < n) to the beginning of the wordwk+1

j

if lkj is independent of all events inwk+1

i or |wk+1

i | = 0.
7: until neither A nor B occurred
8: return σe

14 Malay K. Ganai1 and Sudipta Kundu2

prefix empty words, and assume that|v1
i | 6= 0. Using lemma 4, we havevk

i 6= 0, vk
j 6= 0

for 1 ≤ k ≤ n. Assume that all interleaving pairs up tokth word are captured in
the setTP (MAT ij), i.e.,∀t k < t ≤ n, we have(lti , f

t
j) ∈ TP (MAT 12) and∀h

k ≤ h < n, we have(lhj , fh+1
i) ∈ TP (MAT 12). Let (lki , fk

j) 6∈ TP (MAT ij), but

(lki , fk′

j) ∈ TP (MAT ij), fk
j 6= fk′

j .

Claim 1: fk
j ≺po fk′

j . Also, threadMj is given higher priority overMi in selecting
MAT.

From the lemma 3, we have(ak′

i ,−fk
j) ∈ D, werefk

i �po ak′

i �po lki . From the

lemma 6-8, we have∃ai ai �po ak′

i s.t.(ai, f
k
j) ∈ Q If we giveMi higher priority, we

have(lki , fk
j) ∈ TP (MAT ij), with (ai, f

k
j) ∈ Q, and(lki , rk

j) ∈ D (using lemma 6,
9). This contradicts our assumption(lki , fk

j) 6∈ TP (MAT ij). Thus, we can not give

Mi higher priority. Sincefk
j 6= fk′

j , the claimfk
j ≺po fk′

j follows.
Claim 2: ∃rj ∀aj fk

j �po aj ≺po rj �po lkj s.t.(lki , rj) ∈ D and(lki , aj) 6∈ D.
From the lemma 3, we clearly havefk

j �po rj . From claim 1, we havefk
j ≺po rj .

Claim 3: ∃f fk
j �po f ≺po fk′

j , ∃qi lki ≺po qi, s.t.(qi, f) ∈ D.
If not true, then we move to the(k − 1)th word, as the schedules are equivalent up

to kth word.
Claim 4: (−fk′

j , fk
i) ∈ TP (MAT ij).

We havefk
i ≺po qi (from claim 3), andfk

j �po −fk′

j (from claim 1). Using

lemma 3,∃ek−1
j ek−1

j ≺po fk
j s.t.(−fk

i , ek−1
j)) ∈ D. From(fk

i , +ek−1
j) ∈ Q (lemma 6),

with Mj higher priority (claim 1), the claim(−fk′

j , fk
i) ∈ TP (MAT ij) holds (using

lemma 9).
Case Scenario 1: fk

i · · · lki conflicts withfk
j · · · − fk′

j .

Since(lki ,−fk′

j) 6∈ D (claim 2), there∃(ak
i , ak

j) ∈ D, such that+ak
i · · · l

k
i does not

conflict with+ak
j · · · − fk′

j , wherefk
i ≺po ak

i ≺po lki andfk
j �po ak

j ≺po −fk′

j . Note,

we have(+ak
i , +ak

j) ∈ Q (lemma 6). Since(qi,−fk′

j) ∈ D (claim 3), and withMj

higher priority (claim 1),(−fk′

j , +ak
i) ∈ TP (MAT ij) (lemma 9).

We rearrange the scheduleσe (as shown in Figure 5(a)) to obtain an equivalent
σ′

e = v1
i · v1

j · · · v
k−1
j · v′i · v

′
j · v′′i · v′′j · vk+1

j · vk+1
j · · · vn

i · vn
j wherev′i = fk

i · · · ak
i

andv′j = fk
j · · · − fk′

j , andv′′i = +ak
i · · · l

k
i , andv′′j = fk′

j · · · lkj . Note,(−fk′

j , +ak
i) ∈

TP (MAT ij) (by above argument) and(lki , fk′

j) ∈ TP (MAT ij) (by assumption).

For the subsequence ofσ′
e, v′j ·v

′′
i ·v

′′
j ·v

k+1
j ·v

(k+1)
j · · · vn

i ·vn
j , we have established that

all the interleaving pairs are captured in the setTP (MAT ij). We then obtain a prefix
subsequenceσ′

es = v1
i · v1

j · · · v
k−1
j · v′i · v

′
j · v′′i . Note, the last access ofv′i, i.e., may

not have conflict withv′j , butv′i andv′j are in conflict (case assumption). Therefore, we
obtainσ′

ese = GenEqv(σ′
es), and then reapply our above arguments onσ′

e.
Case Scenario 2: fk

i · · · lki does not conflict withfk
j · · · − fk′

j .

We have(−fk′

j , fk
j) ∈ TP (MAT ij) (claim 4) and(lki , fk′

j) ∈ TP (MAT ij) (by

assumption). We rearrange the scheduleσe to obtain an equivalentσ′
e = v1

i ·v
1
j · · · v

k−1
j ·

v′j · v
′
i · v

k+1
i · vk+1

j · · · vn
i · vn

j wherev′j = fk
j · · · − fk′

j , andv′i = fk
i · · · lki . We apply

our above arguments on the subsequence ofσ′
es = v1

i · v1
j · · · v

k−1
j . 2

Title Suppressed Due to Excessive Length 15

Example:We show a run of the adequacy proof in Figure 6(b) on a scheduleσ shown
in Figure 6(a). We first apply procedureGenEqvto obtainσe. The solid edges show the
token passing pairs inTP (MAT 12). Starting from left onσe, we find that the control
state pair(4b, 2a) ∈ TP (MAT 12), but (1a, 1b) 6∈ TP (MAT 12). As 1a : W (y) not
in conflict with1b : R(x) · · ·−4b : W (y), we apply the Case Scenario 2, and rearrange
the schedule as shown inσ′

e by right moving access1a : W (y) after2b : W (z). Note,
(2b, 1a) ∈ TP (MAT 12), as(2b : W (z), 3a : R(z)) ∈ D.

1a:W(y) 1b:R(x) 2b:W(z) 2a:R(x) 3a:R(z) 3b:R(x) 4b:W(y) 4a:W(y)

1a:W(y) 1b:R(x) 2b:W(z) 2a:R(x) 3b:R(x) 4b:W(y) 3a:R(z) 4a:W(y)

1a:W(y) 1b:R(x) 2b:W(z) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

right move

right move

σ

σ’

σe

≅

≅

1a:W(y) 1b:R(x) 2b:W(z) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

(4b,2a) ∈ TP(���12)
(1a,3b) ∈ TP(���12)

1b:R(x) 2b:W(z) 1a:W(y) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

(2b,1a) ∈ TP

right move
Edges are token passing pairs in TP(���12)

σe

σ’e

≅

(a) (b)

1a:W(y) 1b:R(x) 2b:W(z) 2a:R(x) 3a:R(z) 3b:R(x) 4b:W(y) 4a:W(y)

1a:W(y) 1b:R(x) 2b:W(z) 2a:R(x) 3b:R(x) 4b:W(y) 3a:R(z) 4a:W(y)

1a:W(y) 1b:R(x) 2b:W(z) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

right move

right move

σ

σ’

σe

≅

≅

1a:W(y) 1b:R(x) 2b:W(z) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

(4b,2a) ∈ TP(���12)
(1a,3b) ∈ TP(���12)

1b:R(x) 2b:W(z) 1a:W(y) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

(2b,1a) ∈ TP

right move
Edges are token passing pairs in TP(���12)

σe

σ’e

≅

1a:W(y) 1b:R(x) 2b:W(z) 2a:R(x) 3a:R(z) 3b:R(x) 4b:W(y) 4a:W(y)

1a:W(y) 1b:R(x) 2b:W(z) 2a:R(x) 3b:R(x) 4b:W(y) 3a:R(z) 4a:W(y)

1a:W(y) 1b:R(x) 2b:W(z) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

right move

right move

σ

σ’

σe

≅

≅

1a:W(y) 1b:R(x) 2b:W(z) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

(4b,2a) ∈ TP(���12)
(1a,3b) ∈ TP(���12)

1b:R(x) 2b:W(z) 1a:W(y) 3b:R(x) 4b:W(y) 2a:R(x) 3a:R(z) 4a:W(y)

(2b,1a) ∈ TP

right move
Edges are token passing pairs in TP(���12)

σe

σ’e

≅

(a) (b)

Fig. 6. (a) Equivalent sched.σ, σ′, σe at each step of GenEqv. (b) Run of adequacy proof.

6.1 Optimality and Adequacy for Multi-threaded System
For a thread pairMi, Mj if Shij ((Shi ∪ Shj) holds, then the set

⋃
i6=j TPij is

not adequate. This can happen for a schedule if a token passesfrom Mi or Mj to a
conflicting access in another threadk 6= i, j on a shared variablev ∈ (Shi∪Shj)\Shij .
We illustrate it with the following example.

Example:Consider a three-threaded system with threadsMa, Mb andMc commu-
nicating with shared variablesx, y, andz as shown in Figure 7(a), and the corresponding
pair-wise token-passing setsTPab, TPbc, andTPac computed usingGenMAT proce-
dure. Consider a scheduleσ as shown in the figure. One can obtain an equivalent sched-
ule σe by performing right moves. (The procedureGenEqv can be modified to obtain
σe for general case.) One can verify that the scheduleσe can not be captured by the
computed sets due to missing token-passing pairs such as(3a, 2b). This non-adequacy
arise from the following observation: Asy 6∈ Shab, the procedureGenMAT ignores
any interference on such variables by the threadMc, while considering threadsMa and
Mb. Therefore, the token passing pair(3a, 2b) is not added inTPab while considering
the MAT (2a ⇒ 3a, 1b ⇒ 3b), although(1b, 1c) is added inTPbc asy ∈ Shbc.

To overcome that scenario, we propose the following construction GenExtraTP
that usesMAT ij to generateeTPij by adding token-passing pairs for such cases.

eTPij = {(li,+mj), (lj , +mi)|(fi ⇒ li, fj ⇒ lj) ∈ MAT ij ,
(fi � mi ≺ li) ∧ ∃k 6=jck.(mi, ck) ∈ TPik ∧¬∃cj .(mi, cj) ∈ TPij ,
(fj � mj ≺ lj) ∧ ∃k 6=ick.(mj , ck) ∈ TPjk ∧¬∃ci.(mj , ci) ∈ TPij}

For the example, we need additional 9 token-passing pairs with a total of 27 such
pairs for adequacy, as compared to 54 (=3*18) in all pair-wise approach [17]. Following
result shows that the set is optimal as well.

Theorem 4 (Optimality and Adequacy) For a multi-threaded system, the set(
⋃

i6=j TPij)∪
(
⋃

i6=j eTPij) is both adequate and optimal.

16 Malay K. Ganai1 and Sudipta Kundu2

1a

2a

1b

2b

W(x)

W(z)

R(y)

R(x)

1c

2c R(z)

W(y)

TPab:=TP(!"ab)= {(1a,1b)(2b,1a)(3a,1b)(3b,2a)(3b,1a)(3a,3b)}
TPbc:=TP(!"bc)= {(1b,1c)(1c,1b)(3c,1b)(3b,2c)(3b,1c)(3c,2b)}
TPac:=TP(!"ac)= {(2a,1c)(2c,1a)(3a,1c)(3c,3a)(3c,1a)(3a,3c)}

eTPab := {(1a,2b)(3a,2b)(3b,3a)}
eTPbc := {(3b,3c),(3c,3b)}
eTPac := {(2c,2a)(2a,2c)(3c,2a),(3a,2c)}3a 3b 3c

#
a

#
b

#
c

1a:W(x) 1b:R(y) 1c:W(y) 2c:R(z) 2a:W(z) 2b:R(x)σ

Ma Mb Mc

3a 3b 3c

1a:W(x)1b:R(y) 1c:W(y) 2c:R(z) 2a:W(z) 2b:R(x)σe 3a 3b 3c

(1b,1c) ∈ TPab (2c,1a) ∈ TPac (3a,2b) ∈ eTPab (3b,3c) ∈ eTPbc

right moves

Shab := {x}
Shbc := {y}
Shac := {z}

 ≅
Sha := {x,z}
Shb := {x,y}
Sha := {y,z}

fi

li

fj

lj

mj

+mj

Mi Mj

Token passing through
some threads Mk, k$i,j

(a) (b)
Fig. 7. (a) Adequacy for a 3-thread example, (b) Example used in the proof.

Proof sketch: The proof arguments are similar to that used in proving Theorems 2 and 3.
We provide a proof sketch here.
Adequacy. Consider(

⋃
i6=j eTPij) = ∅. We claim that for everyci such that(mj , ci) ∈

TPij , there existsli such thatci �po li, and(li, +mj) ∈ TPij .
Consider(

⋃
i6=j eTPij) 6= ∅, i.e.,∃i6=jShij ((Shi∪Shj). Consider a MAT(fi ⇒

li, fj ⇒ lj) ∈ MAT ij (shown in Figure 7(b)) with(mj , ck) ∈ TPik for somek 6= j
andfj � mj ≺ lj . By construction ofGenExtraTP procedure,(li, +mj) ∈ eTPij.
In other words, if a token leaves atmj , it comes back from threadMi at+mj .

We then proceed the proof as follows: Given any scheduleσ, we first obtain an
equivalent scheduleσe by right moving the last access until a fix point (similar to
GenEqv procedure). Then using the argument similar to proving Theorem 3, we show
thatCSP (σe) ∈ (

⋃
i6=j eTPij) ∪

⋃
i6=j TPij).

Optimality. Given two equivalent schedulesσ1 andσ2, if CSP (σ1), CSP (σ2) ⊆ (
⋃

i6=j TPij),
we show the optimality by applying Theorem 2 on consecutive words in the sched-
ules. Otherwise, w.l.o.g assume(li, +mj) ∈ CSP (σ1) with (li, +mj) ∈ eTPij (Fig-
ure 7(b)). We claim that the token passing path frommj to li (through some other
thread(s)) necessarily contains the pair(mj , ak) ∈ D with mj ≺ ak. We then show
that(li, +mj) ∈ CSP (σ2). Thereby, we show thatσ1 = σ2. 2

7 Experiments and Results
We implemented our approach in a token-based modeling framework (similar to [17])
(Figure 3), and used the SMT solver Yices-1.0.13 [26]. We conducted our experiments
on a linux box with Intel dual core CPU at 2.0 GHz with 1GB RAM running Ubuntu
Linux 8.04, using a 1800 secs time limit. We also integrated context-bounding [23] by
bounding the clock vector variablectk. (Recall, such a variable is used to record the
number of times the token is exchanged, i.e., number of context-switches).

In our experiments, we automatically checked several three-threaded benchmarks of
varied complexity with respect to the number of shared variable accesses. The property
constraints correspond to assertion violations. All benchmarks are checked at a depth
D equal to the longest path in the program (as it is unrolled). We used standard lockset
analysis and inferred happens-before relation from fork/join constraints to reduce the
size ofCij .

Title Suppressed Due to Excessive Length 17

The details of the benchmarks are shown in Table 1. Columns 1–4 includes the
name of benchmarks (Column 1), the number of shared variableaccesses in each thread
(#SA) (Column 2), the number of shared variables in the program(#SV) (Column
3), and the number of transitions in the program(#T) (Column 4). Each benchmark
is suffixed with S or U corresponding to the satisfiable (i.e.,has a reachable violation)
or unsatisfiable instance. For example, benchmark E3S has a reachable violation with
three threads with 1, 20, and 20, number of shared accesses, respectively. Also, E3S
benchmark has 2 shared variables, and 51 transitions.

The rest of the columns describes the comparison results. InColumn 5 (unrolled
cfg), we provide total number of pair-wise constraints(#P). In the MAT analysis columns
(6—7), we provide number of pair-wise constraints after MATanalysis(#PM), and
number of MAT(#M). Note, we get significant reduction in(#PM). In Columns 8—
11, we present the results of token-based approach [17] using P constraints, referred to
as basic encodingB. In these columns, we provide SMT formula size, time taken (in
sec) with no context-bound constraint (NCB), time taken with one context-bound per
thread (C1), and the witness length (D) (if any), respectively. As the formula sizes for
NCB andC1 are almost the same, and we do not report them separately. In Columns
12—15, we present similar results for our approach using MATanalysis, denoted as
B+M, i.e., token-based approach usingPM constraints. In Columns 16—18, we com-
pare our results with the state-of-the-art symbolic approach [16] based on synchronous
modeling, referred to asExt, and present similar results. SinceExt does not support
context-bounding, and it is not clear how to add those constraints efficiently, we do not
have any reportable data.

Our approach using MAT (B+M) outperforms the basic encodingB, andExt in both
performance and size of verification conditions by 1–2 orders of magnitude. Encoding
using MATs and context bounding (B+M+C1) can find the SAT instances very quickly,
whereas other encodingcannotfind it within the time limit. Note, due to synchronous
modeling, the witness lengthD tends to be larger forExt, also noted in [17].

Table 1.Comparing MAT-based reduction with prior approaches

Ex Program Size Unrolled cfg MAT anal. B [17] B+M Ext [16]
(S/U) #SA #SV #T #P #PM #MAT Size NCB C1 D Size NCB C1 D Size NCB D
E1S (1,4,4) 2 19 48 23 14 32K 00:0 00:0 11 26K 00:0 00:0 11 174K 00:0 14
E2S (2,8,8) 3 29 192 8 4 98K 00:1 00:1 15 18K 00:0 00:0 15 497K 00:2 24
E3S (1,20,20) 2 51 880 591 390 487K 22:1 00:9 27 375K 07:3 00:5 27 1.7M 00:8 46
E4S (2,40,40) 3 93 3520 200 100 1.9M 1550:5 08:5 47 163K 00:2 00:2 47 6.9M 04:2 88
E5U (2,40,40) 3 93 3520 200 100 1.9M TO 13:7 - 163K 50:5 00:2 - 6.9M 99:7 -
E6S (1,100,100) 2 211 20400 14951 9950 12M TO 497:8107 8.7M TO 150:8107 51M MO 206
E7S (2,200,200) 3 413 81600 5000 2500 48M TO TO 207 3.3M TO 16:4 207256M MO 408
SA - Shared Accesses in each thread.SV - Shared Variables.T - Transitions
B: [17] Basic. M: With MAT. Ext: [16]. P: All pair-wise constraintsPM : P after MAT
NCB: No context boundC1: One context bound.D: Witness depth.MO: Memory out.
TO: Time out. Time is in sec:msec.

8 Conclusion

We are first to exploit partial order reduction techniques ina symbolic model check-
ing effort that generates verification conditions directlywithout an explicit scheduler.
We discussed a novel approach to reduce verification problemsizes and state space for
concurrent systems using MATs. We show that our approach gives both adequate and
optimal set of token-passing constraints for a bounded unrolling of threads. Our ex-
perimental results demonstrates the efficacy of our approach. In future, we would like

18 Malay K. Ganai1 and Sudipta Kundu2

to exploit transaction-based reductions [11, 19, 20] to further reduce necessary token-
passing pairs.

References
1. G. Ramalingam. Context sensitive synchronization sensitive analysis is undecidable. In

ACM Transactions on Programming Languages and Systems, 2000.
2. A. Valmari. Stubborn sets for reduced state space generation. In Application and theory of

petri nets, 1989.
3. D. Peled. All from one, one for all: on model checking usingrepresentatives. InProc. of

CAV, 1993.
4. P. Godefroid.Partial-order Methods for the Verification of Concurrent Systems: An Approach

to the State-explosion Problem. PhD thesis, 1995.
5. G. Holzmann. The model checker spin.IEEE Transactions on Software Engineering, 1997.
6. P. Godefroid. Model checking for programming languages using verisoft. InProc. of POPL,

1997.
7. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie.ZING: Exploiting program

structure for model checking concurrent software. InProc. of CONCUR, 2004.
8. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.

In Proc. of POPL, 2005.
9. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian partial-order reduction. InProc.

of SPIN Workshop, 2007.
10. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order reduc-

tion in symbolic state space exploration. InProc. of CAV, pages 340–351, 1997.
11. V. Kahlon, A. Gupta, and N. Sinha. Symbolic model checking of concurrent programs using

partial orders and on-the-fly transactions. InProc. of CAV, 2006.
12. F. Lerda, N. Sinha, and M. Theobald. Symbolic model checking of software. InElectronic

Notes Theoretical Computer Science, 2003.
13. B. Cook, D. Kroening, and N. Sharygina. Symbolic Model Checking for Asynchronous

Boolean Programs. InProc. of SPIN Workshop, 2005.
14. O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided Underapproximation-

Widening for Multi-process Sytems. InProc. of POPL, 2005.
15. I. Rabinovitz and O. Grumberg. Bounded model checking ofconcurrent programs. InProc.

of CAV, 2005.
16. C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole Partial Order Reduction. InProc. of

TACAS, 2008.
17. M. K. Ganai and A. Gupta. Efficient modeling of concurrentsystems in bmc. InProc. of

SPIN Workshop, 2008.
18. E. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.
19. S. D. Stoller and E. Cohen. Optimistic synchronization-based state-space reduction. InProc.

of TACAS, 2003.
20. C. Flanagan and S. Qadeer. Transactions for software model checking. InProc. of TACAS,

2003.
21. V. Levin, R. Palmer, S. Qadeer, and S. K. Rajamani. Sound transaction-based reduction

without cycle detection. InProc. of SPIN Workshop, 2003.
22. P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verification

methods. InProc. of CAV, 1993.
23. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. InProc.

of TACAS, 2005.
24. L. Lamport. How to make multiprocessor computer that correctly executes multiprocess

programs.IEEE Transactions on Computers, 1979.
25. A. Mazurkiewicz. Trace theory.Advances in Petric nets, 1986.
26. SRI. Yices: An SMT solver.http://fm.csl.sri.com/yices.

Title Suppressed Due to Excessive Length 19

***The appendix should not be considered as a part of the
submission.***

A Appendix: Proofs

Lemma 1 If (ai, aj) ∈ TP (MAT ij), then∃m = (a′
i · · · ai, aj · · ·a′

j) ∈ MAT ij

where⊢i�po a′
i �po ai andaj �po a′

j �po⊣j .

Proof. Follows from definition ofTP (MAT ij). 2

Lemma 2 From a given pair(fi, fj) ∈ Q, given possible MAT candidatesm1 =
(fi · · · ei, fj · · · ej) or m2 = (fi · · · e′i, fj · · · e′j), GenMAT selects only one of them,
i.e., eitherm1 ∈ MAT ij or m2 ∈ MAT ij , but not both. Further, if the threadMi is
given higher priority thanMj, m1 is selected if(ei ≺po e′i), otherwisem2 is selected.

Proof. Whenm1 andm2 are such thatei ≺po e′i ande′j ≺po ej , thenGenMAT selects
m1 if Mi has higher priority thanMj , otherwise it selectsm2.

Lemma 3 σe = GenEqv(σ) ≃ σ. Further, forσe = v1
i · v1

j · ·vn
i · vn

j , the last event of
a non-empty word is dependent on some access in the right adjacent non-empty word.

Proof. Follows from construction of the procedureGenEqv. 2

Lemma 4 For somek < n, if |vk
i | = 0, |vk+1

i | 6= 0, then for1 ≤ t ≤ k, |vt
i | = 0,

and fork < h ≤ n, |vh
i | 6= 0. In other words,σe can have prefix of empty words, but

remaining ones are non-empty.

Proof. If for 1 ≤ h < n, |vh
i | 6= 0, then|vh

j | 6= 0; otherwise, we would right move the

entire wordvh
i to vh+1

i . If |vh
j | 6= 0, then|vh+1

i | 6= 0; otherwise, we would right move

the entire wordvh
j to vh+1

j . Similarly, if |vt
i | = 0, |vt−1

i | = 0 for 1 ≤ t ≤ k < n. 2

Lemma 5 Procedure GenEqv always terminates.

Proof. For a given scheduleσ, the number of different sequences are finite. We only
need to show that every eligible right move generates a new and different sequence
which corresponds to an equivalent schedule. Letlki be the last access event that is
moved fromwk

i (k < n) to wk+1
i . After the move,wk

i changes towk
i [1, |wk

i | − 1],
andwk+1

i to lki · wk+1
i . Thus, we obtain a different sequence from the previous one.

Since, we always make a right move, we can not move the same event e twice from the
same word. Thus, we always obtain a new sequence on every move. Also, since each
right move respects the dependency (conflict) ordering, thecorresponding schedule is
equivalent.2

Lemma 6 If (fi · · · ei, fj · · · ej) ∈ MAT ij , then (1)(ei, ej) ∈ D, (2) (fi, fj) ∈ Q,
(2) if ei 6=⊣i, (+ei, fj) ∈ Q (4) if ej 6=⊣j , (fi, +ej) ∈ Q (5) if ei 6=⊣i ∧(ej 6=⊣j),
(+ei, +ej) ∈ Q (6) (ei, fj), (ej , fi) ∈ TP (MAT ij).

Proof. By construction ofGenMAT and definition ofTP (MAT ij). 2

20 Malay K. Ganai1 and Sudipta Kundu2

Lemma 7 For every pair(fi, fj) ∈ Q, there is a MAT candidate,m = (fi · · · ei, fj · · · ej),
where(ei, ej) ∈ D, andfi �po ei, andfj �po ej .

Proof. For every pair(fi, fj) ∈ Q (⊢i�po fi �po⊣i) and(⊢i�po fi �po⊣i holds. Also,
(⊣i,⊣j) ∈ D. Thus, the claim holds trivially.2

Lemma 8 Given a pair(fi, fj) ∈ Q, and a reachable pair(ei, ej) ∈ D there exists a
MAT (f ′

i · · · ei, f
′
j · · · ej) ∈ MAT ij , wherefi �po f ′

i �po ei, fj �po f ′
j �po ej and

(f ′
i , f

′
j) ∈ Q.

Proof. AssumeMi is given the higher priority. The argument is similar ifMj is given the
higher priority. Letf ′

i , f
′
j represent a pair reachable fromfi, fj . If (f ′

i · · · ei, f
′
j · · · ej) ∈

MAT ij , we are done; otherwise∃e′i, e
′
j f ′

i �po e′i ≺po ei f ′
j �po e′j s.t.(f ′

i · · · e
′
i, f

′
j · · · e

′
j) ∈

MAT ij . (lemma 2). In that case, we have(+e′i, +e′j), (+e′i, f
′
j) ∈ Q, (lemma 6). If

ej ≺po +e′j , we reapply the argument from(+e′i, f
′
j), otherwise from(+e′i, +e′j). In

both cases,(ei, ej) is still reachable. Thus, by applying the argument repeatedly, the
claim follows.2.

Lemma 9 Given a pair(fi, fj) ∈ Q, and a reachable pair(ei, ej) ∈ D, then (a)
(ei, fj) ∈ TP (MAT ij) if Mi is given higher priority. (b)(ej, fi) ∈ TP (MAT ij) if
Mj is given higher priority.

Proof. Consider case (a), as case (b) is a similar. If(fi · · · ei, fj · · · ej) ∈ MAT ij ,
we are done; otherwise∃e′i, e

′
j fi �po e′i ≺po ei fj �po e′j s.t. (fi · · · e′i, fj · · · e′j) ∈

MAT ij . (lemma 2). In that case, we have(+e′i, fj) ∈ Q (lemma 6). if(+e′i = ei), we
will have (ei, fj · · · e′j) ∈ MAT ij (lemma 2). The claim follows using lemma 6.2.

