Reduction of Verification Conditions for Concurrent
System using Mutually Atomic Transactions

Malay K. Ganal and Sudipta Kund

INEC Labs America, Princeton, NJ, USA
2University of California, San Diego, CA, USA

Abstract. We present a new symbolic method based on partial order tieduc
to reduce verification problem size and state space of a-tméiaded concurrent
system with shared variables and locks. We combine our rdettith a pre-
vious token-based approach that generates verificatioditocmms directly with-
out a scheduler. For a bounded unrolling of threads, theiquewapproach adds
concurrency constraints between all pairs of global aeses#/e introduce the
notion of Mutually Atomic Transactions (MAT), i.e., two fisactions are mutu-
ally atomic when there exists exactly one conflicting shareckss pair between
them. We propose to reduce the verification conditions byrgddoncurrency
constraintonly between MATS. Such an approach remoa#gedundant inter-
leavings, thereby, achieves state reduction as well. Weagtee that our MAT-
based reduction is both adequate (preserves all the negéstaleavings) and
optimal (no redundant interleaving), for a bounded deptdlyesis. Our experi-
mental results show the efficacy of our approach in redudiegstate space and
the verification problem sizes by orders of magnitude, aad=thy, improving the
overall performance, compared with the state-of-thefgpt@aches.

1 Introduction

Verification of multi-threaded programs is hard due to carpnd un-expected in-
terleaving between the threads [1]. In practice, the vetifinn efforts often usén-
completemethods, oimprecisemodels, or sometimes both, to address the scalability
of the problem. The verification model is typically obtainggdcomposing individual
thread models using interleaving semantics, and modekehngare applied to system-
atically explore the global state space. To combat the stgiosion problem, most
methods employ partial-order reduction techniques toict$he state-traversal to only
a representative subset of all interleavings, therebyidawp exploring the redundant
interleaving among independent transitions [2—4]. Exptitodel checkers [5-9] ex-
plore the states and transitions of concurrent system biicéixpnumeration, while
symbolic model checkers [10-17] uses symbolic methods. aasf on symbolic ap-
proaches based on SMT (Satifiability Modulo Theory) to gateefficient verification
conditions. Based on how verifications models are built, syl approaches can be
broadly classified intosynchronousi.e., with scheduler) andsynchronou§i.e., with-
out scheduler) modeling.

Synchronous modelingn this category of symbolic approaches [10-12], a syn-
chronous model of concurrent programs is constructed wstthaduler. The scheduler
is then constrained—by adding guard strengthening—tooegpdnly a subset of in-
terleaving. To guarantee correctness (i.e., cover allssarg interleavings), the sched-
uler must allow context-switch between accesses that arictong (i.e. dependent).
One determines statically (i.e., conservatively) which-pase locations require con-
text switches, using persistent [4]/ample [18] set contarta. One can further use

2 Malay K. Ganai and Sudipta Kundu

lock-set and/or lock-acquisition history analysis [11+29], and conditional depen-
dency [16, 22] to reduce the set of interleavings need to Ipéoead (i.e., remove re-
dundant interleavings). Even with these state reductiothaus, the scalability prob-
lem remains. To overcome that, researchers have employed sdstraction [7] with

bounded number of context switches [23] (i.e., under-axpration), while some oth-

ers have used finite-state model abstractions [13], cordbisith proof-guided method
to discover the context switches [14].

Asynchronous Modelingn this category, the symbolic approaches such as TCBMC [15]
and token-based [17] generate verification conditionsctliiravithout constructing a
synchronous model of concurrent programs, i.e., withoungua scheduler. These veri-
fication conditions are then solved by satisfiability soévdio our knowledge so far, the
state-reduction based on partial-order hasdly been exploited in the asynchronous
modeling approaches [15, 17]. We will focus primarily intth@ection.

Our ApproachWe present a new SMT-based method—combining partialroede
duction with the previous token-based approach [17]—taicedverification problem
size and state-space for multi-threaded concurrent syatitmshared variables and
locks. For a bounded unrolling of threads, the previous@gqr adds concurrency con-
straints between all pairs of global accesses, therebyialgpredundant interleavings.
Our goal is to reduce the verification conditions by remoahgedundant interleavings
(i.e., guarantee optimality) but keeping the necessarg @ine, guarantee adequacy).
We first introduce the notion dflutually Atomic Transaction@AT), i.e., two transac-
tions are mutually atomic when there exists exactly one oximify shared-access pair
between them. We then propose an algorithm to identify amabtand adequate set
of MATs. For each MAT in the set, we add concurrency constsainly between the
first and last accesses of the transactions, and not in-batv@ur MAT-based approach
achieves reduction both in state-space as well as in theofizerification conditions.
We guarantee that our MAT-based reduction is both adegpatsdrves all the neces-
sary interleavings) and optimal (no redundant interleglifor a bounded depth anal-
ysis. We implemented our approach in a SMT-based prototgmedwork, and demon-
strated the efficacy of our approach against the stateeshthSMT-based approaches
based on asynchronous modeling [17], and synchronous mgd#&b], respectively.

Outline: We provide an informal overview of our MAT-based reductigpeoach
in Section 2, followed by formal definitions and notationSiection 3. In Section 4, we
present a flow diagram of our new SMT-based method. We givégamidam for iden-
tifying an adequate and optimal set of MATs in Section 5,dwkd by a presentation
of adequacy and optimality theorems in Section 6. We pres@néxperimental results
in Section 7, and conclusions in Section 8.

2 An Overview
We motivate our readers with a following example, which we tesguide the rest of
our discussion. Consider a two-threaded concurrent sysbanprising threadd/; and
M, with local variablesz; andb;, respectively, and shared (global) variableg, z.
This is shown in Figure 1(a), as a concurrent control flow gre@CFG) with a fork-
join structure. Each shared statement associated with a is@domig i.e., it cannot
be interrupted. Further, each node is associated with atomesshared access. A node
with a shared write/read access of variablis identified as¥ (z)/R(z). We use the
notation? to denote a non-deterministic input to a variable.

Given such a concurrent system, the goal of the token-bgsgaach [17] is to
generate verification conditions that capture necess#gyléaving for some bounded

Title Suppressed Due to Excessive Length 3

unrolling of the threads, aimed at detecting reachabiliyperties such as data races
and assertion violations. These verification conditiomgetber with the property con-
straints are encoded and solved by an SMT solver. A satisfissiult is typically ac-
companied by a trace—comprising data input valuations, amatal-ordered thread
interleaving—that is witness to the reachability prope@y the other hand, an un-
satisfiable result is followed by these steps (a)—(c): (ajaase unroll depths of the
threads, (b) generate verification conditions for incrdasepths, and (c) invoke SMT
solver on these conditions. Typically, the search prodess (o find withesses) is ter-
minated when a resource—such as time, memory or bound dep#ehes its limit.
For effective implementation, these verifications coristszare added on-the-fly, lazily
and incrementally at each unrolled depth. Though the ajgproaptures all necessary
interleaving, it however does not prevent redundant iageings.

In this work, our goal is to removall the redundant interleavings but keep the
necessary ones for a given unroll bound. We focus on redubangerification condi-
tions, as generated in the token-passing modeling appfad@tio understand how we
remove redundancy, we first present a brief overview of sutlodeling approach.

x=? @ assume (-7 <X)

? assume (y < z+5) I
z=? A E ‘ Token-Passing Model ‘

X,y,2=?
tk=?

1\ ctk=?
= R N 7 . 4
b,=x-2) W(y) @\\\"ﬂ ‘
B\ LA
Re) @) a,7+3 z=b,1 () W) ROO (S
R@) (33) 3,721 b,=x+1 R(¥) R@) (3

2SN
W) az y w(y) w(y) (4 ;'X
M 7/« doin | M,

#pair-wise constraints = 4[4[R2=32
R(y) assert (y > 0) ‘ ‘

() (b)

Fig. 1.(a) Concurrent system, shown as thread CFGs, with threAdd/, and local variables;,
b; respectively, communicating with shared variablg, z, and (b) Token-passing Model [17].

2.1 Token-passing Model

The main idea of token-passing model (TPM) is to introduc@ngls Boolean token

t k and a clock vectoct k in a model, and then manipulate the passing of the token
to capture all necessary interleavings in the given sysi#m. clock vector records
the number of times the tokeark is passed and is synchronized when the token is
passed. Unlike a synchronous model, TPM does not have aideh@dthe model. The
verification model is obtained two phases.

In the first phase, the goal is obtain abstract and decoupled threadlsnégeh
thread is decoupled from the other threads by localizinthalshared variables. For the
example shown in Figure 1(a)/; and M are decoupled by renaming (i.e., localizing)
shared variable such asto x; andxs, respectively. Each model is then abstracted
by allowing renamed (i.e., localized) variables to take-deterministic values at every
shared access. To achieve that, each shared access nodgyitheead) is instrumented
with two control states as follows: (a) an atorpie-access control stateeferred to as

4 Malay K. Ganai and Sudipta Kundu

read.syncblock, is inserted before each shared access, and (b) ancgtost-access
control state referred to asvrite_syncblock, is inserted after each shared access. In
read.syncblock, all localized shared variables obtain non-deteistimwvalues.

As an example, we show the token-passing model in the Figime Eor clarity
of presentation, we did not show renaming of the shared Masabut for all our pur-
pose we consider them to be local to the thread, 4.®f threadM/; andz of M; are
not the same variable. In such a model, atomic control staseandws are inserted
pre and post of shared accesses in decoupled model, reghedkis highlighted for a
control state3b, we add the following statements in the correspondiagnode, i.e.,
x=?,y=?, z=?,tk=?, ct k=?. Similarly, we add k=? in ws node. ¢ denotes the
non-deterministic values.)

Note, the transition (update) relation for each localizeared variable depends on
other local variables, thereby, making the model indepen(ie., decoupled). How-
ever, due to non-deterministic read values, the model hddi¢ianal behaviors, hence,
it is an abstract model.

In thesecondhase, the goal is to remove the imprecision caused dueti@etien.

In this phase, the constraints are added to restrict thedatred non-determinism and
to capture the necessary interleavings. More specifidallygach pair of shared access
state (in different threadsjpken-passing constrain@re added from thevrite_sync
node of a shared access to tead.syncnode of the other shared access. Intuitively,
these token-passing constraints allow passing of the tfvkemone thread to another,
giving a total order in the shared accesses. Furthermasetbonstraints allow to syn-
chronize the values of the localized shared variables framtbread to another. To-
gether, the token-passing constraints captatieand onlythe necessary interleavings
that are sequentially consistent [24] as stated in thevafig theorem.

Theorem 1 (Ganai, 2008 [17])The token-based model is both complete, i.e., it allows
only sequentially consistent traces, and sound, i.e.,uraptall necessary interleaving,
for a bounded unrolling of threads. Further, the size of paise constraints added
grow quadratically (in the worse case) with the unrollingpde

In Figure 1(b), we show a token-passing constraint as ateidestige from arite_sync
ws node of one thread to @ad.syncr s node of another. Note, these constraints are
added for all pairs ofvs andr s nodes. A synchronization constraint frabfy to M,
will include To = X1 ANY2 = Y1 N 22 = 21 A\ tko = 1 ANtky = 0 A ctky = ctkq,
where token-passing is enforced by assertion/de-ass@ftimorresponding token vari-
able. (Recallp; is localized variable inM; corresponding to shared variahlg As
shown, one add$ * 4 x 2 = 32 such token-passing constraints for this example.

Improvement Scopd&:hough the above approach captures all and only necessary
interleavings, it also allows interleavings that may beurathnt (i.e. equivalent). For
example, the interleavingy = 16-2b-1a-3b-4b-2a - 3a - 4a, andos = 1la-2a - 1b-
2b-3a-3b-4b-4a, are equivalent as in these interleavings the conflicting2b, 3a),
(la,4b), (4b,4a) are in the same happens-before order, besides the thregrhpro
order pairs. (Note,-” denotes concatenation). The previous-approach [17]exilore
both the interleavings.

In the following sections, we build our approach on such &tegassing model to
identify pair-wise constraints that can be safely remowéthout affecting soundness
and completeness, and guaranteeing optimality by remadinggdundant interleav-
ings. For the example in Figure 1, our approach rem@desuch pair-wise constraints

Title Suppressed Due to Excessive Length 5

(as shown in Figure 4), and yet covers all the necessaryleéaigngs with no redun-
dancy. To illustrate, our approach allows, and not any other equivalent (#q) inter-
leavings such as,. Note, the choice of a representative interleaving willetgbon a
given thread prioritization, as discussed later.

2.2 Mutually Atomic Transactions

Our partial-order reduction approach is based on the candeputually atomic trans-
actions, MAT for short. Intuitively, let a transaction be egasence of statements in a
thread, then we say two transactignsandtr; of threads\/; andM;, respectively, are
mutually atomic transactions if and only if there exists@kaone conflicting shared-
access pair between them, and the statements containirsfdined-access pair is the
last one in each of the transactions. (We will present a nmredl definition later).

Now we illustrate the concept of MAT using an example as showhRigure 2.
From the control state pafia, 1b), there are two reachable control states with con-
flicting accesses, i.e(3a, 2b) and(1a, 4b). Corresponding to that we have two MATs
m = (tr;1 = la---3a,tro = 1b---2b) (Figure 2(a)) andn’ = (tr] = la,try =
1b---4b) (Figure 2(b)), respectively. Similarly, froifia, 2b) we havem” = (ir] =
la,try = 2b---4b) (Figure 2(c)). In general, there could be multiple possMKTs
for our examples.

In a more general setting with conditional branching, wentdg MATs by explor-
ing beyond conditional branches, as illustrated in the Fd(d), with a conditional
branch denoted as a diamond node, and control stgteB;, C; denoted as dark ovals.
Starting from(A4;, A2), we have following control path segments;; = A;--- By,
trig = Ay -+ -Cy, troy = Ay -+ By, andtrey = As - - - Co (shown as ovals). For each
of the four combinations afry;, tro;, we define MAT separately.

M, M,

of

tr, 'y tr

tr,
ON R WW) "Wl s
¥ / Y
@ o @

’,f / \\

we)| Ry W) wa)|

(22)
re) \(3a) RO | R@) @ @ R | R@
w(y) wi(y)| W) . w(y) | W)

(@) (b) ©) (d)

®©®
©)050,0

Fig. 2. (@) m=(tr1, tr2), (b) m'=(tr], try), (c) m' =(tr!, try) (d) MATSs for branches.

Given a MAT (tr;,tr;), we can have only two equivalent classes of interleav-
ings [25]. One represented by; - tr;, i.e.,tr; executing beforer; and other byr; - ¢r;,
i.e., tr; executing befordr;. (Note, “” represent concatenations.) For a given MAT
m = (try, tre) shown in Figure 2(a), the interleavings = la - 2a - 3a - 1b - 2b and
oo = 1b-2b-1a-2a-3a represent the two equivalent classes, respectively. retbrds,
given a MAT, the associated transactions can be consiggosdic pair-wise and one
can avoid interleaving theim-betweenIn general, transactions associated with differ-
ent MATs may not be atomic. For exampte, is not atomic withéry (Figure 2(a),(c)).
Intuitively, it would be desirable to have a set of MATs suhhtt by adding token-
passing constraints only between MATSs, we will not only n@eg necessary interleav-
ing but also remove all the redundant interleaving. In $&ch, we describe such an

6 Malay K. Ganai and Sudipta Kundu

algorithmGenMATto compute an optimal and adequate set of MATs. For our exam-
ple one such set i§(1a---3a, 1b---2b), (4a,1b- - -4b), (1a,3b- - - 4b), (4a, 3b - - - 4b),
(2a---4a,3b---4b)}. Based on the set, we add orflyoken-passing constraints (Fig-
ure 4), compared t82 (Figure 1(b)).

At this point we would like to highlight the salient featurelsour approachesis-
a-visprevious works. A previous approach [9] on partial-ordeluation used in a ex-
plicit model checking framework does not guarantee opiipnalhough such guaran-
tee is provided in a recent symbolic approach (using symzus modeling) [16], our
approach goes further in reducing problem sizes, besidept@mal reduction in the
state space. Our approach obtains state space reducti@moying constraints (i.e.,
adding fewer token-passing constraints), while the apgr¢a6] obtains it by adding
more constraints (i.e., constraining the scheduler). Inexgperiments, we observed
that our approach is order-of-magnitude more memory effici@mpared to the ap-
proaches [16,17]. Our approach is orthogonal to the appesthat exploit transaction-
based reductions[11,19,20]. Nevertheless, we can exptmst to identify unreachable
conflicting pairs, and further reduce the necessary tolessipg constraints.
Contributions Highlights:

— We are first to exploit partial order reduction techniquea ®MT-based bounded
model checking using token-passing modeling approach. &veldped a novel
approach—based on MAT—to reduce verification conditionf In size and state
space for concurrent systems.

— We prove that our MAT-based reduction is both adequate ¢pves all and only
the necessary interleavings) and optimal (no redundaeti@aving, as determined
statically), for a bounded depth analysis.

— Our approach outperforms other approaches [16, 17] by safenagnitude, both
in performance and size of the verification problems.

3 Formal Definitions

With the brief informal overview, we present our approactaimore formal setting.
We consider a multi-threaded syst&l§ comprising a finite number of deterministic
bounded-stack threads communicating with shared vagabtame of which are used
as synchronization objects such as locks. L&f1 < ¢ < N) be a thread model rep-
resented by a control and data flow graph of the sequentigranoit executes. Léef;
represent the set of 4-tuple transitidnsg, u, ¢) of threadM,, wherec, ¢’ represent the
control statesy is Boolean-valued enabling condition @uard) on program variables,
v is an update function on program variables. Zet= | J, T; be the set of all transi-
tions. LetV; be set of local variables ifi; and)V be set of (global) shared variables. Let
S be the set of global states of the system, and a staté is valuation of all local and
global variables of the system. A global transition systenfS is an interleaved com-
position of the individual thread model&{;. Each transition consists of global firing of
a local transitiort; = (a;, g;, ui, b;) € 7. If enabling predicatg; evaluates to true in
s, we say that; is enabledn s.

3.1 Notation

We define the notion of a run of a multi-threaded program asteemation of events
such as global accesses, thread creations and thread aéominif the events are or-
dered, we call it aotal order run We define a setl; of shared accesses corresponding

Title Suppressed Due to Excessive Length 7

to a readR;(x) and a writeW;(z) of a threadM; wherexz € V. Fora; € A;, we
usevar(a;) to denote the accessed shared variable. We-yuge denote the beginning
and-; to denote the termination of thredd;, respectively. The alphabets of events of
threadM; is a set™; = A; U {F;, -;}. We useX’ = U, X; to denote a set of all events.
A word o defined over the alphabet sBft i.e.,o € X* is a string of alphabet frony,
with o [i] denoting the'” access iw, ando[i, j] denoting the access substring froih

to jt" position, i.e.g[i] - - - o[j] (- denotes concatenationy,| denotes the length of the
word 0. We user(c) to denote a permutation of alphabets in the wordVe uses |;

to denote the projection af on threadM,, i.e., inclusion of the actions df/; only.

Transaction:A transaction is a wordr; € X7 that may beatomic(i.e., uninter-
rupted by other thread) with respect to some other trarmatilf it is atomic with
respect to all other thread transactions, we referihdspendent transaction

Schedulelnformally, we define a schedule as a total order run of airtluteaded
program where the accesses of the threads are interleavedalfy, a schedule is a
wordo € X* such thav |; is a prefix of the word-; - A ;.

Happens-before Relation(<): Given a schedule, we saye happens-before/,
denoted ag <, ¢ if i < j whereo[i] = e ando[j] = €. We drop the subscript if
it is obvious from the context. Also, if the relation is notist, we use the notatior.

If e,e’ € X; ande precedeg’ in o, we say that they are inthread program order
denoted as <, ¢’

Sequentially consisterA schedules is sequentially consistent [24] iff (&) |; is in
thread program order, (b) each shared read access getsitdata written at the same
address location in the total order, and (c) synchronipa@nantics is maintained, i.e.,
the same locks are not acquired in the run without a corratipgmelease in between.
We only consider schedules (and their permutations) tlees@gquentially consistent.

Conflicting AccessWe define a pain; € A;,a; € Aj, 1 # j conflicting, if they
are accesses on the same shared variableui&(q;) = var(a;)) and one of them is
write access. We ugg; to denote the set of tupl¢s;, a;) of such conflicting accesses.
We useSh;; to denote a set of shared variables—betwggrand M; threads—with
at least one conflicting access, i.8h;; = {var(a;)|(a;,a;) € C;;}. We defineSh; =
U#J_ Shyj;, i.e., a set of variables shared betweédnand My, k # ¢ with at least one
conflicting access. In generdlh;; C (Sh; N Shy).

Dependency Relatiol)): A relation D C X' x X' is a dependency relation iff for
all (e,e’) € D, one of the following holds: (19, ¢’ € X; ande <, ¢/, (2) (e, €’) € C;j,
(3)e =H;, ¢’ =, fori # j. Note, the last condition is required when the order of ttirea
termination is important. Ife,e’) ¢ D, we say the events e’ areindependentThe
dependency relation in general, is hard to obtain; howewercan obtain such relation
conservatively using static analysis [4], which may resula larger dependency set
than required. For our reduction analysis, we assume suglation is provided.

Equivalency Relation~): We say two schedules; = w-e- ¢’ - v andos =
w - ¢ - e- v are equivalent (Mazurkiewicz’s trace theory [25]), dedcdso; ~ o, if
(e,e’) ¢ D. An equivalent class of schedules can be obtained by ¥efatswapping
the consecutive independent events in a given schedulel. Ftues of both local and
shared variables remains unchanged when two equivaleadstds are executed.

A partial orderis a relationk C X' x X on a set, that is reflexive, antisymmetric,
and transitive. A partial order is alsatatal orderif, for all e, e’ € X, either(e,e’) €
R, or (¢/,e) € R. Partial order-based reduction (POR) methods [4] avoid exploring

8 Malay K. Ganai and Sudipta Kundu

all possible interleavings of shared access events. Note,d’) € D, all equivalent
schedules agree on either ¢’ ore’ < e, but not both.

Definition 1 (MAT). We say two transactions; andtr; of threads)M; and M, re-
spectively, are mutually atomic iff except for the last palf other event pairs in the
corresponding transactions are independent. Formally,udMdlly Atomic Transactions
(MAT) is a pair of transactions, i.e(fr;, tr;),i # jiff VkE 1 < k < |tr;|,Vh1 < h <
[tr;|, (trilk], tri[h]) € D (k # |tri| and h # |tr;|), andtr;[|tr;]], tr;[|tr;]]) € D.

Given a MAT (tr;, tr;), an interesting observation (as noted earlier) is that awor
w = tr; - tr; is equivalent to any word(w) obtained by swapping any consecutive
eventstr;[k] andtr;[h] such thatt # |tr;| andh # |tr;|. Similarly, the wordw’ =
tr; - tr; is equivalent to any word (w') obtained as above. Note, £ w'. Therefore,
for a given MAT, there are only two equivalent classes, regnéed byw andw’. In
other words, given a MAT, the associated transactionagnaic pair-wise

4 Token-passing Model using MAT

We exploit the pair-wise atomicity of MATs in a token-baseddel as follows: Let(e)
represent the control state of the thread where the comeéapgpevent occurs. For the
given MAT (tr; = fi---l;,tr; = f;---1;), we only add token-passing constraints
from ¢(l;) to ¢(f;), andc(l;) to c(f;), respectively. Recall, such constraints are added
between the corresponding pre and post- access blockscassksl in Section 2.1.
Adequacy of MATs Given a schedule = wi -+ wk -+ wi - wh, wk € X5, 1 <

k <n,1< i< N.We define a set of ordered paifs&SP as follows:CSP(c) =
{(IF, f51 < i,/ < N,1 < k,k¥ < n} wherefF andl¥ denote the first and last
accesses ofv¥; andw? is a non-empty word adjacent right of*. Note, CSP (o)
captures the necessary interleaving pairs to obtain thedsd, i.e., if we add token
passing constraints between every pair of control statgls) € CSP(o), we allow
the schedules. For a given MATa = (fi---1;, fj - - 1;), we define a set of inter-
leaving ordered pairs' P(a) = {(l;, f;)), (15, f:))}. Given a set of\. AT ;;, we de-
fine TP(MAT ;) = Usemar,, TP(a), and denote it ad’'F;;. We say a token-
passing pairs séf P is adequatsff for every scheduler in the multi-threaded system,
CSP(oc) CTP. Aset MAT is adequateff TP is adequatelNote, the size df' P is
upper bounded by quadratic number of pair-wise accesses.

Unrolled Thread CFGs E Token-passing Model
M;...M, 1. GenMAT: Given C; for a thread z ‘ Independent
1 pair (M;, M) find a set .’Mﬂ’fijl B (decoupled) thread model
2Py = {gi'li)i(f'f'li) ||) MAT) For each (a kl)) O TP, add
- O))
For each thread pair (M;,M) =M =1 EAL ’ . . ‘
identify a set ; of pair thread 3. GenExtraTP(M.AT,): find set eTP; token passing constraint
locations with conflicting 4.TP = (LTP;) O (0i4eTPy) 1 6
shared accesses aQ
= \i‘ 5 Add bound constraints on
2 l g number of token exchanges
wherl;pcdgtz ggr?ﬂicct‘ij;cg pair C={x; | (x,x9DCye k7, l ‘L
location that is simultaneously TPy = {06x) (%) | (6x) B G > G- Generate verification conditions
unreachable 3 TP = ADi;!]TPij and give to SMT/SAT solver
; OoLD : 4 8

Fig. 3. Reducing verification conditions in a token-passing modaig MAT.

Title Suppressed Due to Excessive Length 9

We use procedur&enM AT (ref. Section 5) to obtain a set d1.A7 ;. If Sh;; C
Sh; U Shj, we use proceduré&lenExtral P (ref. Section 6) to generate an extra
token- passing pairs sef'P;; from M.AT ;;. We then construct the adequateBét as
(U#J TP;)U eTP”). We give an overview of using MATs in a token-passing
model to selectlve y add token-passing constraints as slowigure 3.

Step 1,2: Given a set of unrolled thread¥; - - - M, we obtain a set of conflicting
pair of control locationg’;; for each thread paik/;, M;.

Step 3: From the set’;;, we remove the pairs that are unreachable simultaneously du
to i) happens-before relation such as before and afterjéankii) mutual exclusion,
iii) lock acquisition pattern [11].

Step 4: (Corresponds to previous scheme [17], denote®BB). An ordered set of
token-passing pairs TP is obtained by considering evenygiaiontrol states in
C; x Cj, whereC; andC; consist of control states of thredd; and.\; that have
some conflicting access, respectively.

Step 5: (Corresponds to our proposed scheme, denotBdEa®). For each thread pairs
M; andM;, and corresponding séf;, we identify a seiM AT ;; usingGenM AT.
We obtain the sel'P;; = TP(MAT;;). Given a setM AT ;;, We identify a set
eT'P;; usingGenExtraT P. We construct P = (U, ,; T'F;;) U eT'P;;).

Step 6: We now build token-passing model by first generatlng decmijpunrolled)
thread models. For each ordered gairb) € TP, we add token passing constraints
between(a, b), denoting token may be passed frarto b.

Step 7: Optionally, we add constraints B! < ct k < C'B¥ to bound the number of
times a token could be passed to a specific thread maewith C B! andC B}
corresponding to user-provided lower and upper contextils, respectively.

Step 8: We generate verification conditions (discussed in Sectibpcdmprising tran-
sition relation of each thread model, token-passing cairdt, context-bounding
constraints (optionally), and environmental assumptanegated property con-
straints. These constraints are expressed in a quantifiefdrmula and passed to
a SMT/SAT solver for a satisfiability check.

5 Generating MATs

Notation ShortcutsBefore we get into details, we make some notation abuseafsg e
of readability. When there is no ambiguity, we useo also indicate:(e;), the control
state of threadV/; where the access evesit belongs. Further, we usee; to denote
the eventimmediately after, in program order, i.eg(+e;) = next(c(e;)). Similarly,
we use—e; to denote event immediately precedingi.e.,c(e;) = next(c(—e;)). We
sometimes refer tuple:, b) as a pair.

We provide a simple procedur@enM AT (Algorithm 1) for generating\{. AT ;;,
given a pair of unrolled thread¥/; and M/; and dependency relatiaR. For ease of
explanation, we assume the threads are unrolled for somededuepth, and there is
no conditional branching. We first initialize a que@dewith control state paitt;, ;)
representing the beginning of the threads, respectivelyaRy pair(f;, f;) in the Q,
representing the current control pair locations, we caniolet MAT m' = (tr}, tr’;) as
follows: we starttr; andtr’; from f; and f; respectively, and end itf and/’ respec—
tively, such that(l;,l;) € D and there is no other conflicting pair in- between There
may be many MAT-candidates’. Let M. denote a set of such choices. The algo-
rithm selectsn € M. uniquely by assigning thread priorities and using the foilg

10 Malay K. Gandi and Sudipta Kundu

selection rule. If a thread/; is given higher priority over)/;, the algorithm prefers
m = (t?"i = Z‘"'li,t’l’j = ,fglg) overm’ = (t?"; = lei,tT; = fll;) if

I <po I Note, the choice ol/; over M; is arbitrary, but is required for the optimality
result. We presented MAT selection (lines 7-9) in a dedlaatyle for better under-
standing. However, algorithm finds the unique MAT using taketion rule, without
constructing the seM .. We show later tha€fenM at can always find such a unique
MAT with the chosen priority (lines 7—9).

We updateM AT ;; with m. If (I; #;) and(l; #-;), we update) with three
pairs, i.e.,(+l;, +1;), (+, f;), (fi, +1:); otherwise, we insert selectively as shown in
the algorithm (lines 11—15).

ExampleWe present a run afenM AT in Figure 4 for the example in Figure 1(a).
We gavel, higher priority overM/; . The table columns provide each iteration step (#1),
the pairp € Q\Q’ selected, the choseM AT 15, and the new pairs added P\ Q’
(shown in bold). We add token-passing constraints (shovdirasted edges) in the fig-
ure (on the right) between every ordered pair in thel3B{M.AT2). Total number
of pair-wise constraints we add&s much less compared with all pair-wise constraints
(in Figure 1). The fork/join constraints, shown as dottedes] provide happens-before
ordering between the accesses. In the first iteration ofutheaut of the two MAT can-
didatesn = (la---3a,1b---2b) andm’ = (1la, 1b- - - 4b) (also shown in Figure 2(a)-
(b)) GenM AT selectsn, asM; is given higher priority ove/; and2b <, 4b.

In the following section, we show the adequacy and optimalitthe pair-wise
constraints so obtained.

Theorem 1 The algorithmGenM AT terminates.

Proof. For bounded depth, number of pair-wise accesses are bouftsle@ch control
state pair is picked only once (line 6), the procedure teateis.C.

e A TS

#
(1a,1b) W) 2 R®
1 | qa1b) | 1a=3a,1b =2b) | (4a,1b)(12,3b)
(4a,3b) R (@) W@
2| (4a1b) | (4a,1b=ab) | (1a3b)4a3b))
R
3| @asw) [(1a3b—ab) | (4a3b)2a3b) @ © reo
4| (4a30) | (4a3b=4b) | (2a3b) w(y) (3)~ W(y)
5 | (2a,3b) | (2a=4a,30 =4b)
Token Passing pair-set (TP(M.AT,,))=
{(2b,1a)(3a, 1b)(4a,1b)(4b,4a),(1a,3b)(4b,1a) (4a,3b)(4b,2a)} | | #pair-wise constraints = 8 |

Fig. 4. Run of GenM AT on example in Figure 1(a).

6 MAT-based Reduction: Optimality and Adequacy

For ease of understanding, we first present optimality aedjaacy results for a two-
threaded system i.el/; andM; with ¢, 5 € {1,2}. For two-threaded systen§j;; =
(Sh; U Sh;), and as noted earlieeT'P;; = (. We ignore it for now; we discuss the
general case later as the proof arguments are similar.

Title Suppressed Due to Excessive Length 11

Theorem 2 (Two-threaded Optimality) For two-threaded system with bounded un-
rolling, the setl’P = TP(M.AT;;) is optimal i.e., it does not allow two equivalent
schedules.

Algorithm 1 GenM AT': Obtain a set of MATs

1: input: Unrolled Thread Modelsp/;, M;; Dependency Relatio®
2: output: MAT ;.

3t MAT ;5 :=0; Q :={(Fi,F;)}; Q" = 0 {Initialize Queué;

4: while Q # Q' do

5. Select(fi, f;) € Q\Q'

S: Q= Q\{(f:, 1)} Q"= Q U{(fi, i)}

8

9

MAT-candidates setM. = {m’ | m' = (tr; = fi--- Ui, tr; = f;--- 1}

)is MAT},
Selecta MATm = (tr; = fi -+ li,tr; = fj---1;) € M. such that

: Vil e Meo,m?m bi <po U5, (i.€., M has higher priority).

10: MAT;; := MAT;; U{m}

11: if (I; = Al; =-;) then continue;

12: elseif(l; =) thenq := {(fi, +1;)};

13: elseifl; =;) thenq := {(+;, i) };

14: elseq = {(+ll7+lJ)7(+l27fj)7(fl7+lJ)}'

15: Q:=QUg;

16: end while

17: return MAT,;

Lemmal. If (a;,a;) € TP(MAT;;), thendm = (a}---a;,a;---a}) € MAT;;
wheret; <, a; <po a; anda; =p, @} <po;.

Lemma 2. From a given pair(f;, f;) € @, given possible MAT candidates; =
(fi- e, fj---ej)0rma = (fi---e}, fj---e), GenM AT selects only one of them,
i.e., eitherm; € MAT;; or mg € MAT;;, but not both. Further, if the threadl/; is
given higher priority tham\/;, m; is selected ife; <,, €}), otherwisem is selected.

Optimality Proof . We show the optimality by arguing the contrapositive hpids, if
two schedules allowed 6§y P(M.AT ;;) are equivalent, then they are same. We explain
our proof steps using the Figure 5(a). Consider two equitaiehedules, i.eq; ~ 0.
We assume that the necessary interleaving pairs for the ¢chvedsiles be captured by
the MAT set, i.e.,CSP(01) C TP(MAT,;), andCSP(02) C TP(MAT,;). We
showo; = o9 by contradiction.

Assumeo; # o3, i.e.,CSP(01) # CSP(o3). Wlog, leto; = w} - w} ---w} -
wh - wlw? andoy = vj v} ---vf ok -0l -07, asequence of wordsy, vf € X7,
w;?, vf € X*, 1 <k <n.(Note, if the words do not align, we pick the schedule with
fewer word]s, sayi, and prefix it with empty words corresponding to each thhead.
Starting from the end, let the difference first show up atifeword, i.e.,w® # o,

andvt k < t < n, wf = vf, w;- = v;.

Letwh = fF-..1¥ andv} = fj’-“/ ---1%. Note, both words end with the same access
event because the interleaving pairs matches till thattpdiiog, we assumg!‘j’?’ ~po
fE. Similarly, we havew} = fF..-iF, andvf = fF ...iF. Note, ¥ immediately

precedes (in program orderf ™, i.e.,I¥ = —wF"![1] (Recall,w[1] denotes the first
event in wordw).

12 Malay K. Gandi and Sudipta Kundu

If & = 1, we get a trivial contradiction as? = v? impliesw} = v}. Therefore,
we only need to considér > 1. Further, as;/““ = vk“ we have|v’“| #£ 0 implies
lwk| # 0 (Note, [v¥| # 0 impliest;=,, —vf“[], Wh|ch impliest-; <, —wi 1],
which implies|w¥| # 0). Similarly, asw/ ™" = vf*!, |oF| # 0 implies |wf| # 0. As
o1 is a schedule prefixed with empty words;| # 0 implies |v¥| # 0, and|w}| # 0
implies|vf| # 0. Thus, we only need to considef;| # 0 wherek > 1.

Claim 1: 3pk 5 <0 fF <40 o5 <40 ¥, S0 (l’“,pf) €D.

As (i, 1) € TP(MAL,) Imy = (OF - 1F, fF - ph) € MAT ;5 with (18, ph) €
D, bk <, 1% andfk o pj (as per lemma 1).

Further,f <,, p&. If not, i.e.,p¥ <,, fF, thenpk <, IF, andl} <,, p}. Since,
(lk,pj) € D, we geto; # o2 (contradicting our assumption).

Claim 2: Vf fF =<, f 1571 (= —fF), andVe fF <,0 € =40 1F sit.(f,€) & D.

For suchf ande, we ﬁavef <g, eande <,, f.Sinceos; ~ o9, the claim

(f,e) ¢ D follows.

Claim 3: 3f' IF <, f's.t.(f,1}7") € D.

Since(l5™", fF) € TP(MAT), 3ma = (fF--- f'.f - 1i7") € MAT; (as
per lemma 1). Thug,f’, l’“_l) € D. Using claim 2, we hav&’ <,,, f’ as well.
Claim 4: ~((157", fF) € TP(MAT ;) A (I, f¥') € TP(MAT ;)), i.e., ~(m; €
MAT ;; ANmg € MAT ;).

Note, b¥, fF <, I¥ <,, f/, andf, ff/ =po lf‘l <po P%. Applying lemma 2,
following holds: with M; higher priority,m» will not be chosen ag' <, f/, and with
M; higher priority,m, will not be chosen at'?‘f ! ~po pk Thus, the claim follows

Theorem 3 (Two-threaded Adequacy)For two-threaded system with bounded unrolling,
the setl' P = T P(MAT ;;) is adequate.

Proof SketchEquivalently, we claim that the token-passing constradided between
every pairs il P(M.AT ;;) adequately captures all sequentially consistent schedule
In the first step, we construct a proced@enEqvalgorithm 2) to obtain an equivalent
schedules’ ~ o, which is also a unique representative of the equivalerasscBecond,
we use that equivalent scheduteto showC'SP(¢’) C TP(MAT ;).

Example Given a schedule shown in Figure 6(a), we obtain equivalent schedules
ando. by right moving (shown as dotted edges) the last access of@tiat does not
conflict with the adjacent right word. Note, we Ude : W (y)) to denote a write access
on variabley at control statd a, and similarly, the rest are denoted.

We give the proof details later, but first present requirednieas whose proofs fol-
low from the construction oc6enEqvandGenM AT (refer Appendix A for details).

Lemma 3. 0. = GenEqu(o) =~ o. Further, foro, = vj -vj --op -7, the last event of
a non-empty word is dependent on some access in the ngfnani]aon -empty word.

Lemma 4. For somek < n, if [vF| = 0, [oF '] # 0, then forl < t < k, |vf] = 0,
and fork < h < n, |[v!| # 0. In other words g, can have prefix of empty words, but
remaining ones are non-empty.

Lemma 5. Procedure GenEgv always terminates.

Title Suppressed Due to Excessive Length 13

k)= sk _<
> Ij()_'fj \
» f C<— -
/e 1 -Spo
/- glii= gk« Zpo

SN
I : /’ spo
P | pjk 4\
\
|
|
<
i ~po
|
,l
k ‘/
a -
1 o,
Optimality Claims Conflictpair | - Adequacy Claims
1. (Ik, p¥) OD Program order (<,5) - " 1 - —
5 (fl pJI])D Not established token LA k<P9 f Case 1: (a, E:J)DI,D
' (,' e;z»l) passingorder | T > {2 (%) OD =(ff+ay)0dTP
3.(f ’Ij o)kDD e Established token 3. (qi'f.) oD Case2:0 (ai, aj) oD
4. = (49 OTPI() OTP) passing order 4. (fxfyOTP
(a) (b)

Fig. 5. (a) Optimality claim:o1~02 = o1=02 (b) Adequacy claim: CSk{¢) C T P(MAT ;).
Lemma 6. If (fz EEENTR fj .. 'ej) S MATZ'J', then (1)(81, €j) e D, (2) (fl, fj) S Q,
(2) if €; 7é—|i, (+€i,fj) S Q (4) if €4 7é—|j, (fi,-f—ej) S Q (5) if €; 7é_|l /\(ej 7é—|j),
(+eis +e;) € Q (6) (es, f5), (€5, fi) € TP(MAT).

Lemma 7. Forevery pair(f;, f;) € @, thereis a MAT candidates = (f;---e;, f; - - - €;),
where(e;, e;) € D, and f; =, e;, and f; <, e;.

Lemma 8. Given a pair(f;, f;) € @, and a reachable paife;,e;) € D there exists a
MAT (fll RN fj/ cee ej) S MATZ'J', Wherefi jpo fz/ jpo €, fj jpo fJ/ jpo €; and
(fi, [;) € Q.

Lemma 9. Given a pair(f;, f;) € @, and a reachable paife;,e;) € D, then (a)
(s, fj) € TP(MAT ;) if M, is given higher priority. (b)e;, fi) € TP(MAT ;) if
M; is given higher priority.

Adequacy Proof.We explain our proof using the Figure 5(b). We first obtain quie-
alent schedule, = GenEqu(c) such thatr, = v} - v}--- o7 . v}. We remove the

[J 7

Algorithm 2 GenEqu: Obtain an equivalent schedule

1: input: A sequence of words; = w; - wj - w - w}, wf € Xf, wk € X7, 1<k <n.

2: output: o.(~ o).

3: repeat

4: Do one of the following, A or B

5. A Right move the last access evéfitof the wordw? (k < n) to the beginning of the
word w} ™ if I} is either independent of all eventsairf or [w}| =0

6: B Right move the last access evéfiof w} (k < n) to the beginning of the word);**
if 1% is independent of all events in; ™" or |w ™| = 0.

7: until neither A nor B occurred

8: return o,

14 Malay K. Gandi and Sudipta Kundu

prefix empty words, and assume thalt| # 0. Using lemma 4, we have® # 0, v¥ # 0
for 1 < k < n. Assume that all interleaving pairs up k& word are capt'ured in
the setl' P(MAT), i.e.,Vt k < t < n, we have(l}, fi) € TP(MAT2) andVh
k < h < n,wehave(ll, fi*1) € TP(MAT). Let (I¥, fF) ¢ TP(MAT;), but
(1. f}') € TP(MAT), ff # fF.

Claim 1: fj’-c ~po fj’?'. Also, thread)M; is given higher priority overl/; in selecting
MAT.

From the lemma 3, we have! , — f¥) € D, were fF <, a" <, I¥. From the
lemma 6-8, we hav8a; a; <,, a* s.t.(a;, fF) € Q If we give M; higher priority, we
have(if, fF) € TP(MAT;), with (a;, f) € Q, and(I},r¥) € D (using lemma 6,
9). This contradicts our assumpticif, fj’c ¢ TP(MAT ;). Thus, we can not give
M; higher priority. Sincef¥ # f¥', the claimf¥ <,,, ¥ follows.

Claim 2: 3r; Ya; fF =po aj <po 7j Zpo I S.L.(IF,r;) € D and(lf, a;) & D.

From the lemma 3, we clearly hay¢ <, r;. From claim 1, we havg} <,, r;.
Claim 3: 3f f¥ =<po f <po £, 34 I <po qi St.(qs, f) € D.

If not true, then we move to thg — 1)*" word, as the schedules are equivalent up
to k" word.

Claim 4: (—f¥', fF) € TP(MAT ;).

We haveff <,, ¢ (from claim 3), andf} =, —f’C (from claim 1). Using
lemma33ei ! it <, fEsit(—fF,eh7h)) € D.From(fF, +€") € Q (lemma),
with M; higher priority (claim 1), the claint—f%', f¥) € TP(MAT ;) holds (using
Iemma 9).

Case Scenario 1f/ - -1} conflicts with /" - - - — f’“/

Since(l¥, - f¥') ¢ D (claim 2), thered(a¥ l, a¥) € D, such thatra} - - - I does not
conflict with +a? - - — ¥, wherefF <,, a¥ <, l’“ andf’“ =po @ <po f’“' Note,
we have(+aj, +a¥) € Q (lemma 6). Sincéq;, —) €D (clalm 3), and with)\/;

higher priority (cla|m 1)(— f’“/ +ak) € TP(MAT”) (lemma 9).

We rearrange the schedud@ (as shown in Figure 5(a)) to obtain an equivalent

1,1, k=1 _ .7 .o nooa 0kt k1 k.o gk
O = V; ;v v Vv vl vy vj -vt - v wherev; —f a;

andv; = fF... — f¥ andv/ = +a¥ - 1¥, andv’ = fF .. lk Note,(—fF, +ak) €

TP(MAT ;) (by above argument) and?, f¥) € TP(MAT”) (by assumption).
For the subsequenceef, v/, - v} - v vk“ v§k+1) -+ -}, we have established that
all the interleaving pairs are captured in the B&(M.AT ;). We then obtain a prefix

subsequence,, = v} - v}--- 0§ 0] - v} - v}, Note, the last access of, i.e., may

2

not have conflict with, butv; andv’; are in conflict (case assumption). Therefore, we
obtaing’,, = GenEqu(o’,), and then reapply our above argumentsron
Case Scenario 2} - - - I} does not conflict withy} - - - — ff/.

We have(— f¥', f¥) € TP(MAT ;) (claim 4) and(i¥, f¥') € TP(MAT ;) (by
assumption). We rearrange the schedul®® obtain an equivalent, = v} 1)71 . ~vf*1~
A S SN & o

_ rk K _ fk k
vp v ol o - o wherev) = fF - — fF andop = f7 - 17 We apply

our above arguments on the subsequeneg of= v; - v - -- vffl. O

Title Suppressed Due to Excessive Length 15

Example:We show a run of the adequacy proof in Figure 6(b) on a schedatown

in Figure 6(a). We first apply proceduBenEquto obtaino.. The solid edges show the
token passing pairs i P(M.AT). Starting from left orv., we find that the control
state pair(4b, 2a) € TP(MAT12), but(1a,1b) ¢ TP(MAT 15). As 1a : W (y) not

in conflictwith1b : R(zx)---—4b: W(y), we apply the Case Scenario 2, and rearrange
the schedule as shown déri by right moving accessa : W (y) after2b : W (z). Note,
(2b,1a) € TP(MAT12),as(2b: W (z),3a: R(z)) € D.

(1a,3b) O TP(MA!

(4b,2a) O TP(MAT,,)

g Ila:W(y)|1b:R(x) 2b:W(z) 2a:R(x)|3a:R(z)|3b:R(x) 4b:W(y)‘4a:W(y)|
. Ila:W(y)|1b:R(x) 2b:W(z)| 3b:R(x) 4b:W(y)‘Za:R(x) 3a:R(z) 4a:W(y)| o‘e
- right move —
= e right move ——
o’ la:W(y)‘lb:R(x) 2b:W(z) 2a:R(><)|3b:R(x)|4b:W(y)|3a:R(z) 4a:W(y)| ~ [Edges are token passing pairs in TP(MAT,,) | [}
T right move :
=* |1b:R(x) 2b:W(z) 1a:W(y)‘3b:R(x) 4b:W(y) [2a:R(x) | 3a:R(z) 4a:W(y)| o’
O'e la:W(y)‘lb:R(x) 2b:W(z) | 3b:R(x) [4b:W(y) | 2a:R(X) | 3a:R(2) 4a:W(y)| €
(2b,12) O TP
(@

Fig. 6. (a) Equivalent schedr, o', o, at each step of GenEqv. (b) Run of adequacy proof.

6.1 Optimality and Adequacy for Multi-threaded System

For a thread paid\/;, M, if Sh;; C (Sh; U Sh;) holds, then the SQU#j TP is
not adequate. This can happen for a schedule if a token ptsses\/; or M; to a
conflicting access in another threfag- ¢, j on a shared variablec (Sh;USh;)\Sh;;.
We illustrate it with the following example.

Example:Consider a three-threaded system with threlalds M, and M. commu-
nicating with shared variables y, andz as shown in Figure 7(a), and the corresponding
pair-wise token-passing set¥’,;,, T'P,., andT P,. computed usingzenM AT proce-
dure. Consider a scheduleas shown in the figure. One can obtain an equivalent sched-
ule o, by performing right moves. (The proceduten Equv can be modified to obtain
o. for general case.) One can verify that the schedulean not be captured by the
computed sets due to missing token-passing pairs suuagb). This non-adequacy
arise from the following observation: As ¢ Shy;, the proceduré&enM AT ignores
any interference on such variables by the thr&agdwhile considering thread®/, and
M,. Therefore, the token passing péu, 2b) is not added iff"P,;, while considering
the MAT (2a = 3a, 1b = 3b), although(1b, 1¢) is added inl' P, asy € Shpc.

To overcome that scenario, we propose the following coo8tm Gen ExtraT P
that usesM AT ;; to generateT P;; by adding token-passing pairs for such cases.

GTBJ' = {(li,—i—mj), (lj, -l-’ITLl)KfZ =1, fj = lj) € M.ATij,
(fz <m; < lz) AN Ek;éjck.(mi, Ck) e TP, /\—Elcj.(ml-, Cj) S TPZ'j,
(fj =m; < lj) N Hk#ck.(mj, cr) € T Py, /\ﬁﬂci.(mj, ci) € TPij}

For the example, we need additional 9 token-passing pattsaviotal of 27 such
pairs for adequacy, as compared to 54 (=3*18) in all pailewigproach [17]. Following
result shows that the set is optimal as well.

Theorem 4 (Optimality and Adequacy) For a multi-threaded system, the $bji¢j TP;;)U
(Ui, €T Pj) is both adequate and optimal.

16 Malay K. Gandi and Sudipta Kundu

Sy TPTROATE (100 ib(ee I s A0 e
e J)= ,1c)(1c, C, ,2C) ,1c)(3c, i
RO W) 1 TR(MAT)= {(2a.10)(26.1a)(3a 10)(3c. 3)(3c. La) (32 30)} some threads M 1]

i
R(X) R@ e1p, = {(1a2b)(3a,2b)(3b,3a)}

TPy = {(30,30),(3c.3b)}
s fe oTP. = {(20.28)(28.20)(3c.22),(38,20)}

Shyy i ={x} Sh,:={x,z} o ‘1a:W(x) 1b:R(y) |1c:W(y)‘ 2c:R(z) |2a:W(2) [2b:R(x) | 3a | 3b ‘ 3¢ ‘ |
Shy.:={y} Sh,:={xy} o . .
Shaz ={z} Sh,:={y,z} L right moves "
0'e 1b:R(y) [1c:W(y) [2c:R(z) |[1a:W(x)|2a:W(z)| 3a 2b:R(x) 3b ‘ 3c Mi Mi
(15:1¢) TP (@c,12) O TP, (32,20)0eTP,, (3b,30) 0 TPy
@) (b)

Fig. 7. (a) Adequacy for a 3-thread example, (b) Example used inrbefp

Proof sketchThe proof arguments are similar to that used in proving Tées 2 and 3.
We provide a proof sketch here.

AdequacyConsider(J, ., eT'F;;) = 0. We claim that for every; such tha(m;, ¢;) €
T P;;, there exists; such that; <, l;, and(l;, +m;) € TP;;.

ConsideU,,; eT'Pij) # 0,1.€.,3i;Shi; & (Sh; UShy). Consider aMAT(f; =
Li, f; =) € MAT;; (shown in Figure 7(b)) witlim, ¢,) € T'P;;, for somek # j
andf; < m; < ;. By construction olGen ExtraT P procedure(l;, +m;) € eI P;;.
In other words, if a token leavesat;, it comes back from threadl/; at +m;.

We then proceed the proof as follows: Given any schedulee first obtain an
equivalent schedule. by right moving the last access until a fix point (similar to
GenEqu procedure). Then using the argument similar to proving Témea3, we show
thatCSP(O'e) S (LJ”,&7 GTPZ'J') U Ui?ﬁj TPZJ)

Optimality. Given two equivalent schedules ando, if CSP(01), CSP(02) C (U,; TFij),
we show the optimality by applying Theorem 2 on consecutieeds in the sched-
ules. Otherwise, w.l.o.g assurfie, +m;) € CSP(o1) with (I;, +m;) € eT P,; (Fig-

ure 7(b)). We claim that the token passing path from to /; (through some other
thread(s)) necessarily contains the pait;, ax) € D with m; < a,. We then show
that(l;, +m;) € CSP(o2). Thereby, we show that; = 0. O

7 Experiments and Results

We implemented our approach in a token-based modeling franke(similar to [17])
(Figure 3), and used the SMT solver Yices-1.0.13 [26]. Wedcmted our experiments
on a linux box with Intel dual core CPU at 2.0 GHz with 1GB RANMhning Ubuntu
Linux 8.04, using a 1800 secs time limit. We also integrateatext-bounding [23] by
bounding the clock vector variabte k. (Recall, such a variable is used to record the
number of times the token is exchanged, i.e., number of gbsteitches).

In our experiments, we automatically checked several ttiresaded benchmarks of
varied complexity with respect to the number of shared tdgiaccesses. The property
constraints correspond to assertion violations. All bematks are checked at a depth
D equal to the longest path in the program (as it is unrolled Uged standard lockset
analysis and inferred happens-before relation from foik/gonstraints to reduce the
size ofC;;.

Title Suppressed Due to Excessive Length 17

The details of the benchmarks are shown in Table 1. Columdsiricludes the
name of benchmarks (Column 1), the number of shared varg&blesses in each thread
(#SA) (Column 2), the number of shared variables in the progf#H1”) (Column
3), and the number of transitions in the progré&#il’) (Column 4). Each benchmark
is suffixed with S or U corresponding to the satisfiable (has a reachable violation)
or unsatisfiable instance. For example, benchmark E3S heachable violation with
three threads with 1, 20, and 20, number of shared accesspgctively. Also, E3S
benchmark has 2 shared variables, and 51 transitions.

The rest of the columns describes the comparison resulSolumn 5 (unrolled
cfg), we provide total number of pair-wise constra{gt$>). In the MAT analysis columns
(6—7), we provide number of pair-wise constraints after MaTalysis(#P,), and
number of MAT (#M). Note, we get significant reduction {g# Py,). In Columns 8—
11, we present the results of token-based approach [17j #sgonstraints, referred to
as basic encodinB. In these columns, we provide SMT formula size, time taken (i
sec) with no context-bound constrait¥ (' B), time taken with one context-bound per
thread (1), and the witness lengt)) (if any), respectively. As the formula sizes for
NCB andC'1 are almost the same, and we do not report them separatelplim@s
12—15, we present similar results for our approach using NA3alysis, denoted as
B+M i.e., token-based approach usiRg constraints. In Columns 16—18, we com-
pare our results with the state-of-the-art symbolic apginga6] based on synchronous
modeling, referred to aBxt , and present similar results. SinErt does not support
context-bounding, and it is not clear how to add those camgf efficiently, we do not
have any reportable data.

Our approach using MATE+M) outperforms the basic encodiBgandExt in both
performance and size of verification conditions by 1-2 sdémagnitude. Encoding
using MATs and context boundin@{M+C1) can find the SAT instances very quickly,
whereas other encodirggannotfind it within the time limit. Note, due to synchronous
modeling, the witness length tends to be larger fdext , also noted in [17].

Table 1. Comparing MAT-based reduction with prior approaches

EX Program Size [Unrolled cfg MAT anal. B[17] B+M Ext [16]
(S/U)| #SA [#SV[#T #P #P) [#MAT[Size] NCB | C1 [D | Size[NCB[C1 [D | Size[NCBJ] D
E1S| (1,4,4) 2 |19 48 23 14 [32K| 00:0 [00:0| 11| 26K |00:0] 00:0| 11{174K]|00:0| 14
E2S| (2,88) | 3 |29 192 8 4 |98K| 00:1|00:1|15|18K|00:0| 00:0| 15|497K|00:2| 24
E3S| (1,20,20)| 2 |51 880 591 | 390 |487K| 22:1|00:9|27|375K| 07:3| 00:5(27 |1.7M| 00:8| 46
E4S| (2,40,40)| 3 (93 3520 200 | 100 [1.9M|1550:5 08:5| 47|163K|00:2| 00:2| 47 |6.9M|04:2| 88
E5U| (2,40,40)| 3 |93 3520 200 | 100 [1.9M| TO |13:7| - [163K|50:5| 00:2| - |6.9M|99:7| -
E6S|(1,100,100) 2 (211 20400 |149519950(12M| TO |497:8107)8.7M| TO [150:8107| 51M | MO (20§
E7S|(2,200,200) 3 (413 81600 |5000(2500|48M| TO | TO (207/3.3M| TO | 16:4|207256M| MO (409
SA-Shared Accesses in each threa8V - Shared Variables.T - Transitions

B: [17] Basic. M: With MAT. Ext: [16]. P: All pair-wise constraints Py : P after MAT

NCB: No context boundC1: One context bound.D: Witness depthMO: Memory out.

TO: Time out. Time is in sec:msec.

8 Conclusion

We are first to exploit partial order reduction techniques isymbolic model check-
ing effort that generates verification conditions direatiighout an explicit scheduler.
We discussed a novel approach to reduce verification probiess and state space for
concurrent systems using MATs. We show that our approaasdioth adequate and
optimal set of token-passing constraints for a boundedllimgoof threads. Our ex-
perimental results demonstrates the efficacy of our apprdaduture, we would like

18 Malay K. Gandi and Sudipta Kundu

to exploit transaction-based reductions [11, 19, 20] tohierr reduce necessary token-
passing pairs.

References

1. G. Ramalingam. Context sensitive synchronization sgasanalysis is undecidable. In
ACM Transactions on Programming Languages and Syst20gs).
2. A. Valmari. Stubborn sets for reduced state space géoerdn Application and theory of
petri nets 1989.
3. D. Peled. All from one, one for all: on model checking usiegresentatives. IRroc. of
CAV, 1993.
4. P.GodefroidPartial-order Methods for the Verification of ConcurrentsEsms: An Approach
to the State-explosion ProblerRhD thesis, 1995.
5. G. Holzmann. The model checker spiEEE Transactions on Software Engineeriig97.
6. P. Godefroid. Model checking for programming languagasgiverisoft. InProc. of POPL,
1997.
7. T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. ZiNG: Exploiting program
structure for model checking concurrent softwarePtac. of CONCUR2004.
8. C. Flanagan and P. Godefroid. Dynamic partial-orderctdn for model checking software.
In Proc. of POPL. 2005.
9. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesidialparder reduction. IrProc.
of SPIN Worksho2007.
10. R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and SRKjamani. Partial-order reduc-
tion in symbolic state space exploration.Rroc. of CAV pages 340-351, 1997.
11. V. Kahlon, A. Gupta, and N. Sinha. Symbolic model chegldficoncurrent programs using
partial orders and on-the-fly transactions Piroc. of CAV 2006.
12. F. Lerda, N. Sinha, and M. Theobald. Symbolic model cimeckf software. InElectronic
Notes Theoretical Computer Scien2603.
13. B. Cook, D. Kroening, and N. Sharygina. Symbolic Modek€iting for Asynchronous
Boolean Programs. IRroc. of SPIN Workshqp2005.
14. O. Grumberg, F. Lerda, O. Strichman, and M. TheobaldofRgaided Underapproximation-
Widening for Multi-process Sytems. Froc. of POPL, 2005.
15. I. Rabinovitz and O. Grumberg. Bounded model checkingpaturrent programs. IRroc.
of CAV, 2005.
16. C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole R&@tider Reduction. I#Proc. of
TACAS 2008.
17. M. K. Ganai and A. Gupta. Efficient modeling of concurrepstems in bmc. IiProc. of
SPIN Workshop2008.
18. E. Clarke, O. Grumberg, and D. Pelédodel CheckingMIT Press, 1999.
19. S.D. Stoller and E. Cohen. Optimistic synchronizatiased state-space reductionPhoc.
of TACAS2003.
20. C. Flanagan and S. Qadeer. Transactions for softwarelrnbdcking. InProc. of TACAS
2003.
21. V. Levin, R. Palmer, S. Qadeer, and S. K. Rajamani. Sotarséction-based reduction
without cycle detection. IfProc. of SPIN Workshq2003.
22. P. Godefroid and D. Pirottin. Refining dependencies avgs partial-order verification
methods. IrProc. of CAV 1993.
23. S. Qadeer and J. Rehof. Context-bounded model checkitwnourrent software. Iiroc.
of TACAS2005.
24. L. Lamport. How to make multiprocessor computer thatestity executes multiprocess
programs.|[EEE Transactions on Computers979.
25. A. Mazurkiewicz. Trace theonAdvances in Petric net4986.
26. SRI. Yices: An SMT solvemttp://fm.csl.sri.com/yices

Title Suppressed Due to Excessive Length 19

+x The appendi x shoul d not be considered as a part of the
submi ssi on. ***

A Appendix: Proofs

Lemmal If (ai,a;) € TP(MAT;;), thendm = (a;---a;,a;---a}) € MAT;;
wheret; <, a; <po a; anda; =p, @ <po;.

Proof. Follows from definition of' P(M.AT ;). O

Lemma 2 From a given pair(f;, f;) € @, given possible MAT candidates; =
(fi---ei,fj---ej)ormg = (fi- e, fj---€}), GenM AT selects only one of them,
i.e., eitherm; € MAT,;; or mg € MAT,;;, but not both. Further, if the threadl/; is
given higher priority tham\/;, m; is selected ife; <,, €}), otherwisem, is selected.

Proof. Whenm, andm are such that; <,, ¢, ande; ~<po €5, thenGenM AT selects
my if M; has higher priority thai/;, otherwise it selects:..

Lemma 3 o, = GenEqu(o) ~ o. Further, foro, = v} - vj - -v" - v7, the last event of

B

a non-empty word is dependent on some access in the rightextjaon-empty word.
Proof. Follows from construction of the proceduren Equ. O

Lemma 4 For somek < n, if [vf| = 0, [o¥T| # 0, then forl < t < k, |[vf| = 0,
and fork < h < n, |[v!| # 0. In other words g, can have prefix of empty words, but
remaining ones are non-empty.

Proof. If for 1 < h < n, [v}| # 0, then|v;?| # 0; otherwise, we would right move the
entire wordv!* to """, If [v"| # 0, then|v]"T"| # 0; otherwise, we would right move
the entire word” to v ™. Similarly, if [vf| = 0, [v! "' = 0for 1 <t <k <n.O

Lemma 5 Procedure GenEqv always terminates.

Proof. For a given schedule, the number of different sequences are finite. We only
need to show that every eligible right move generates a nalvd#ferent sequence
which corresponds to an equivalent schedule. Iebe the last access event that is
moved fromw! (k < n) to wi*!. After the movew? changes tav¥[1, jwk| — 1],
andwr ™! to IF - wlT!. Thus, we obtain a different sequence from the previous one.
Since, we always make a right move, we can not move the samecectrice from the
same word. Thus, we always obtain a new sequence on every. il since each
right move respects the dependency (conflict) orderingctiieesponding schedule is
equivalentD

Lemma6 If (fi---e;, f;---ej) € MAT;;, then (1)(ei,e;) € D, (2) (fi, f;) € Q,
(2) if e; #Hi, (4ei, f;) € Q (B) if ej #H;, (fi,+e;) € Q (B) if i #; A(ej #H)),
(+ei, +ej) € Q (6) (ei, f7), (e, fi) € TP(MAT ;).

Proof. By construction ofzenM AT and definition ofl P(MAT ;;). O

20 Malay K. Gandi and Sudipta Kundu

Lemma 7 Forevery pair(f;, f;) € Q,thereis a MAT candidatep = (f; ---e;, f; - - - €;),
where(e;, e;) € D, and f; <,, €;, and f; <, €;.

Proof. For every paif f;, f;) € Q (Fi=po fi =poi) and(F;=,0 fi <po; holds. Also,
(Hi,73) € D. Thus, the claim holds triviallyo

Lemma 8 Given a pair(f;, f;) € @, and a reachable paife;, e;) € D there exists a
MAT (fll c €4, fj/ i -ej) S MATU‘, wheref; =po fz/ =po Cis fj =po fJ/ =po € and
(fi, f}) € Q.

Proof. Assumel/; is given the higher priority. The argumentis similai; is given the
higher priority. Letf;, f; representa pair reachable frgi f;. If (] ---ei, f}---e;) €
MAT;;, we are done;otherwiﬁg,eg ! =po € <po € fj’- =po e;- s.t.(f!---el, fj’- . ~e;-) €
MAT ;. (lemma 2). In that case, we havee;, +¢’), (+ei, f;) € Q, (lemma 6). If
ej =po +¢;, we reapply the argument frofa-¢;, f7), otherwise from(+e;, +¢’). In
both cases(e;, e;) is still reachable. Thus, by applying the argument repégtéuk
claim follows.O.

Lemma 9 Given a pair(f;, f;) € @, and a reachable pai(e;,e;) € D, then (a)
(s, f;) € TP(MAT ;) if M, is given higher priority. (b)e;, fi) € TP(MAT ;) if
M; is given higher priority.

Proof. Consider case (a), as case (b) is a simila(flf---e;, f;---e;) € MAT;,
we are done; otherwisee;, e/, f; <po €] <po €i fj Zpo € St (fi e}, fi---€)) €
MAT ;. (lemma 2). In that case, we haiee], f;) € Q (lemma6). if(+e; = ¢;), we

will have (e;, f; - - -e;) € MAT;; (lemma 2). The claim follows using lemmas.

