
Efficient Probabilistic Model Checking on
General Purpose Graphics Processors

Dragan Bošnački1, Stefan Edelkamp2, and Damian Sulewski3

1 Eindhoven University of Technology, The Netherlands
2 TZI, Universität Bremen, Germany

3 Technische Universität Dortmund, Germany

Abstract. We present algorithms for parallel probabilistic model check-
ing on general purpose graphic processing units (GPGPUs). For this
purpose we exploit the fact that some of the basic algorithms for prob-
abilistic model checking rely on matrix vector multiplication. Since this
kind of linear algebraic operations are implemented very efficiently on
GPGPUs, the new parallel algorithms can achieve considerable runtime
improvements compared to their counterparts on standard architectures.
We implemented our parallel algorithms on top of the probabilistic model
checker PRISM. The prototype implementation was evaluated on several
case studies in which we observed significant speedup over the standard
CPU implementation of the tool.

1 Introduction

Probabilistic Model Checking. Traditional model checking deals with the
notion of absolute correctness or failure of a given property. On the other hand,
probabilistic1 model checking is motivated by the fact that probabilities are often
an unavoidable ingredient of the systems we analyze. Therefore, the satisfaction
of properties is quantified with some probability. This makes probabilistic model
checking a powerful framework for modeling various systems ranging from ran-
domized algorithms via performance analysis to biological networks.

From an algorithmic point of view, probabilistic model checking overlaps
with the conventional one, since it too requires computing reachability of the
underlying transition systems. Still, there are also important differences because
numerical methods are used to compute the transition probabilities. It is those
numerical components that we are targeting in this paper and show how they can
be sped up by employing the power of the new graphic processors technology.
1 In the literature probabilistic and stochastic model checking often are used inter-

changeably. Usually a more clear distinction is made by relating the adjectives
probabilistic and stochastic to the underlying model: discrete- and continuous-time
Markov chain, respectively. For the sake of simplicity in this paper our focus is on
discrete-time Markov chains, so we opted for consistently using the qualification
“probabilistic”. Nevertheless, as we also emphasize in the paper, the concepts and
algorithms that we present here can be applied as well to continuous-time Markov
chains.

2

Parallel Model Checking. According to [31] less than two years ago a clear
majority of the 500 most powerful computers in the world (www.top500.org)
were characterized as clusters of computers/processors that work in parallel.
Unfortunately, this has not had a major impact on the popularity of paral-
lel computing both in industry and academia. With the emergence of the new
parallel hardware technologies, like multi-core processors and general purpose
graphics processing units, this situation is changing drastically.

This “parallelism for the masses” certainly offers great opportunities for
model checking. Yet, ironically enough, model checking, that was mainly in-
troduced for the verification of highly parallel systems, in the past has mostly
relied on sequential algorithms. Parallel model checking algorithms have been
designed before (e.g., [33, 30, 8]) and with few exceptions [27, 26] all of them tar-
geted clusters of CPUs. However, this did not have any major impact in practice
- besides some recent case studies on a big cluster (DAS-3)[4] none of the widely
used model checking tools has a cluster version that preserves its full range of
capabilities. In the last several years the things started to change. In [24, 25]
the concept of multi-core model checking was introduced, followed by [5]. In the
context of large-scale verification, different disk-based algorithms for solving the
model checking problem have been published [16, 9, 7]. In [16], the authors avoid
nested depth-first search for accepting cycle detection by reducing the liveness
to a safety problem. This I/O-efficient solution was further improved by running
directed search and exploiting parallelism. Another disk-based algorithm for LTL
model checking [7] avoids the increase in space, but does not operate on-the-fly.
The algorithm given in [9] is both on-the-fly and linear in the space requirements
wrt. the size of the state space, but its worst-case time complexity is large. Other
advances in large-scale LTL model checking exploit Flash media [18, 19].

GPGPU Programming. In the recent years (general purpose) graphics pro-
cessor units ((GP)GPUs) have become powerful massively parallel systems and
they have outgrown their initial application niches in accelerating computer
graphics. This has been facilitated by the introduction of new application pro-
gramming interfaces (APIs) for general computation on GPUs, like CUDA form
NVIDIA, Stream SDK from AMD, and Open CL. Applications that exploit
GPUs in different domains, like fluid dynamics, protein folding prediction in
bioinformatics, Fast Fourier Transforms, and many others, have been developed
in the last several years [32]. In model checking, however, GPUs have not had
any impact. To the best of our knowledge the only attempt to use model checking
on GPUs was by the authors of this paper [15]. They improved large-scale disk-
based model checking by shifting complex numerical operations to the graphic
card. As delayed elimination of duplicates is the performance bottleneck, the
authors performed parallel processing on the GPU to improve the sorting speed
significantly. Since existing GPU sorting solutions like Bitonic Sort and Quicksort
do not obey any speed-up on state vectors, they propose a refined GPU-based
Bucket Sort algorithm. Additionally, they study sorting a compressed state vec-
tor and obtain speed-ups for delayed duplicate detection of more than one order
of magnitude with a 8800-GTX GPU.

3

Contribution. Traditionally the main bottleneck in practical applications of
model checking has been the infamous state space explosion [35] and, as a direct
consequence, large requirements in time and space. With the emergence of the
new 64-bit processors there is no practical limit to the amount of shared mem-
ory that could be addressed. As a result the goals shift towards improving the
runtime of the model checking algorithms [25]. In this paper we show that signifi-
cant runtime gains can be achieved exploiting the power of GPUs in probabilistic
model checking. This is because basic algorithms for probabilistic model check-
ing are based on matrix-vector multiplication. These operations lend themselves
to very efficient implementation on GPUs. Because of the massive parallelism
– a standard commercial video card comprises hundreds of fragment processors
– quite impressive speedups with regard to the sequential counterparts of the
algorithms are quite common.

We present an algorithm that is a parallel adaptation of the method of Jacobi
for matrix-vector product. Jacobi was chosen over other methods that usually
outperform it on sequential platforms because of its lower memory requirements
and potential to be parallelized because of fewer data dependencies. The algo-
rithm features sparse matrix vector multiplication. It requires a minimal number
of copy operations from RAM to GPU and back. We implemented the algorithm
on top of the probabilistic model checker PRISM [28]. The prototype implemen-
tation was evaluated on several case studies and remarkable speedups (up to
factor 18) were achieved compared to the sequential version of the tool.
Related Work. In [11] a distributed algorithm for model checking of Markov
chains is presented. The paper focuses on continuous-time Markov chain models
and Computational Stochastic Logic. They too use a parallel version of Jacobi’s
method, which is different from the one presented in this paper. This is reflected
in the different memory management (GPUs hierarchical shared memory model
vs. the distributed memory model) and in the fact that their algorithm stores
part of the state space on external memory (disks). Also, [11] is much more
oriented towards increasing the state spaces of the stochastic models, than im-
proving algorithm runtimes, which is our main goal. Maximizing the state space
sizes of stochastic models by joining the storages of individual workstations of
a cluster is the goal pursuit also in [12]. A significant part of the paper is on
implicit representations of the state spaces with a conclusion that, although
they can further increase the state space sizes, the runtime remains a bottleneck
because of the lack of efficient solutions for the numerical operations.

In [1] a shared memory algorithm is introduced for CTMC construction and
numerical steady-state solution. The CTMCs are constructed from generalized
stochastic Petri nets. The algorithm for computing steady state probability dis-
tribution is an iterative one. Compared to this work, our algorithm is more
general as it can be used in CTMCs also to compute transient probabilities.

Another shared memory approach is described in [6]. It targets Markov de-
cision processes, which we do not consider in this paper. As such it differs from
our work significantly since the quantitative numerical component of the algo-
rithm reduces to solving systems of linear inequalities, i.e., using linear program

4

solvers. In contrast, large-scale solutions support multiple scans over the search
space on disks [17, 13].
Layout. The paper is structured as follows. Section 2 briefly introduces prob-
abilistic model checking. Section 3 describes the architecture, execution model
and some challenges of GPU programming. Section 4 presents the algorithm for
matrix-vector multiplication as used in the Jacobi iteration method and its port
to the GPU. Section 5 evaluates our approach verifying examples shipped with
the PRISM source showing significant speedups compared to the current CPU
solution. The last section concludes the paper and discusses the results.

2 Probabilistic Model Checking

In this section we briefly recall along the lines of [29] the basics of probabilistic
model checking for discrete-time Markov chains (DTMCs). More details can be
found in, e.g., [29, 2].
Discrete Time Markov Chains. Given a fixed finite set of atomic propositions
AP we define a DTMC as follows:

Definition 1. A (labeled) DTMC D is a tuple (S, ŝ,P, L) where

– S is a finite set of states;
– ŝ ∈ S is the initial state;
– P : S×S → [0, 1] is the transition probability matrix where Σs′∈SP(s, s′) = 1

for all s ∈ S;
– L : S → 2AP is a labeling function which assigns to each state s ∈ S the set
L(s) of atomic propositions that are valid in the state.

Each P(s, s′) gives the probability of a transition from s to s′. For each state
the sum of the probabilities of the outgoing transitions must be 1. Thus, end
states, i.e., states which will normally not have outgoing transitions are modeled
by adding self-loops with probability 1.
Probabilistic Computational Tree Logic. Properties of DTMCs can be
specified using Probabilistic Computation Tree Logic (PCTL) [20], which is a
probabilistic extension of CTL.

Definition 2. PCTL has the following syntax:

Φ ::= true | a | ¬Φ | Φ ∧ Φ | P∼p[φ] φ ::= X Φ | Φ U ≤kΦ

where a ∈ AP , ∼∈ {<,≤,≥, >}, p ∈ [0, 1], and k ∈ N ∪ {∞}.

For the sake of presentation, in the above definition we use both state formu-
lae Φ and path formulae φ, which are interpreted on states and paths, respec-
tively, of a given DTMC D. However, the properties are specified exclusively as
state formulae. Path formulae have only an auxiliary role and they occur as a
parameter in state formulae of the form P∼p[φ]. Intuitively, P∼p[φ] is satisfied
in some state s of D, if the probability of choosing a path that begins in s and

5

satisfies φ is within the range given by ∼p. To formally define the satisfaction of
the path formulae one defines a probability measure, which is beyond the scope
of this paper. (For example, see [29] for more detailed information.) Informally,
this measure captures the probability of taking a given finite path in the DTMC,
which is calculated as the product of the probabilities of individual transitions
of this path.

The intuitive meaning of the path operators is analogous to the ones in
standard temporal logics. The formula X Φ is true if Φ is satisfied in the next
state of the path. The bounded until formula Φ U ≤kΨ is satisfied if Ψ is satisfied
in one of the next k steps and Φ holds until this happens. For k =∞ one obtains
the unbounded until. In this case we omit the superscript and write Φ U Ψ . The
interpretation of unbounded until is the standard one.
Algorithms for Model Checking PCTL. Given a labeled DTMC D =
(S, ŝ, P, L) and a PCTL formula Φ, usually we are interested whether the initial
state of D satisfies Φ. Nevertheless, the algorithm works by checking the satis-
faction of Φ for each state in S. The output of the algorithm is Sat(Φ), the set
of all states that satisfy Φ.

The algorithm starts by first constructing the parse tree of the PCTL formula
Φ. The root of the tree is labeled with Φ and each other node is labeled by a
subformula of Φ. The leaves are labeled with true or an atomic proposition.
Starting with the leaves, in a recursive bottom-up manner for each node n of
the tree the set of states is computed that satisfies the subformula that labels n.
When we arrive at the root we can determine Sat(Φ).

Except for the path formulae the model checking of PCTL formulae is actu-
ally the same as for their counterparts in CTL and as such quite straightforward
to implement. In this paper we concentrate on the path formulae. They are the
most computationally demanding part of the model checking algorithm and as
such they are the targets of our improvement via GPU algorithms.

To give a general flavor of the path formulae, we give a briefly consider the
algorithm for the formulae of the form P[Φ U≤kΨ], where k =∞. This case boils
down to finding the least solution of the linear equation system:

W(s, Φ U Ψ) =

1 if s ∈ Sat(Ψ)
0 if s ∈ Sat(¬Ψ ∧ ¬Ψ)
Σs′∈SP(s, s′) ·W(s′, Φ U Ψ) otherwise

where W(Φ U Ψ) is the resulting vector of probabilities indexed by the states
in S. The states in which the formula is satisfied with probabilities 1 and 0 are
singled out. For each other state the probabilities are computed via the corre-
sponding probabilities of the neighboring states. Before solving the system, the
algorithm employs some optimizations by precomputing the states that satisfy
the formula with probability 0 or 1. The (simplified) system linear equations
can be solved using iterative methods that comprise matrix-vector multiplica-
tion. One such method is the one by Jacobi, which is also one of the meth-
ods that PRISM uses and which we describe in more detail in Section 4. We
choose Jacobi’s method over methods that on sequential architectures usually

6

perform better. This is because Jacobi has certain advantages in the parallel pro-
gramming context. For instance, it has lower memory consumption compared to
the Krylov subspace methods and less data dependencies than the Gauss-Seidel
method, which makes ti easier to parallelize [11].

The algorithms for the next operator and bounded until boil down to a single
matrix-vector product and a sequence of such products, respectively. Therefore
they can also be resolved by using Jacobi’s method.

PCTL can be extended with various rewards (costs) operators that we do
not give here. The algorithms for those operators can also be reduced to matrix-
vector multiplication [29].

Model checking of a PCTL formula Φ on DTMC D is linear in |Φ|, the size
of the formula, and polynomial in |S|, the number of states of the DTMC. The
most expensive are the operators for unbounded until and also the rewards op-
erators which too boil down to solving system linear equations of size at most
|S|. The complexity is also linear in kmax , the maximal value of the bounds k in
the bounded until formulae (which also occurs in some of the costs operators).
However, usually this value is much smaller than |S|. Thus, the main runtime
bottleneck of the probabilistic model checking algorithms remain the linear al-
gebraic operations. Their share of the total runtime of the algorithms increases
with |S|. So, for real world problems, that tend to have large state spaces, this
dependence is even more critical. In the sequel we show how by using parallel
versions of the algorithms on GPU, one can obtain substantial speedups of more
than one order of magnitude compared to the original sequential algorithms.
Beyond Discrete Time Markov Chains. Matrix-vector product is also in the
core of model checking continuous-time Markov chains, i.e., the corresponding
Computational Stochastic Logic (CSL) [29, 3, 11]. For instance, the next operator
of CSL can be checked with in the same way like its PCTL counterpart. Both
algorithms for steady state and transient probabilities boil down to matrix-vector
multiplication. On this operation hinge also various extensions of CSL with costs.
Thus, the parallel version of the Jacobi algorithm that we present in the sequel,
can be used also for stochastic models, i.e., models based on CTMCs.

3 GPU Programming

A considerable part of the challenges that arise in model checking algorithms for
GPUs is due to the specific architectural differences between GPUs and CPUs
and the restrictions on the programs that can run on GPUs. Therefore, before
describing our approach in more detail, we give an overview of the GPU archi-
tecture and the Compute Unified Device Architecture (CUDA) programming
model by the manufacturer NVIDIA [14] along the lines of [10].

Modern GPUs are no longer dedicated only to graphics applications. Instead
a GPU can be seen as a general purpose multi-threaded massively data parallel
co-processor. Harnessing the power of GPUs is facilitated by the new APIs for
general computation on GPUs.

7

CUDA is an interface by NVIDIA which is used to program GPUs. CUDA
programs are basically extended C programs. To this end CUDA features ex-
tensions like: special declarations to explicitly place variables in some of the
memories (e.g., shared, global, local), predefined keywords (variables) containing
the block and thread IDs, synchronization statements for cooperation between
threads, runtime API for memory management (allocation, deallocation), and
statements to launch functions on GPU.
CUDA Programming Model. A CUDA program consists of a host program
which runs on the CPU and a set of CUDA kernels. The kernels, which are the
parallel parts of the program, are launched on the GPU device from the host
program, which comprises the sequential parts. The CUDA kernel is a parallel
kernel that is executed on a set of threads. Each thread of the kernel executes the
same code. Threads of a kernel are grouped in blocks. Each thread block of the
grid is uniquely identified by its block ID and analogously each thread is uniquely
identified by its thread ID within its block. The dimensions of the thread and
the thread block are specified at the time of launching the kernel. The grid can
be one- or two-dimensional and the blocks are at most three-dimensional..
CUDA Memory Model. Threads have access to different kind of memories.
Each thread has its own on-chip registers and off-cheap local memory, which is
quite slow. Threads within a block cooperate via shared memory which is on-
cheap and very fast. If more than one block are executed in parallel then the
shared memory is equally split between them. All blocks have access to the device
memory which is large (up to 4GB), but slow since, like the local memory, it is not
cached. The host has read and write access to the global memory (Video RAM, or
VRAM), but cannot access the other memories (registers, local, shared). Thus, as
such, global memory is used for communication between the host and the kernel.
Besides the memory communication, threads within a block can cooperate via
light-weight synchronization barriers.
GPU Architecture. The architecture of GPU features a set of multiprocessors
units called streaming multiprocessors (SMs). Each of those contains a set of pro-
cessor cores called streaming processors (SPs). The NVIDIA GeForce GTX280
has 30 SMs each consisting of 8 SPs, which gives in total 240 SPs.
CUDA Excution Model. Each block is mapped to one multiprocessor whereas
each multiprocessor can execute several blocks. The logical kernel architecture
allows flexibility to the GPU to schedule the blocks of the kernel depending of
the concrete hardware architecture in an optimal and for the user completely
transparent way. Each multiprocessor performs computations in SIMT (Single
Instruction Multiple Threads) manner, which means that each thread is exe-
cuted independently with its own instruction address and local state (registers
and local memory). Threads are executed by the SPs and thread blocks are exe-
cuted on the SMs. Each block is assigned to the same processor throughout the
execution, i.e., it does not migrate. The number of blocks that can be physically
executed in parallel on the same multiprocessor is limited by the number of reg-
isters and the amount of shared memory. Only one kernel at a time is executed
per GPU.

8

GPU Programming Challenges. To fully exploit the computational power
of the GPUs some significant challenges will have to be addressed.

The main performance bottleneck is usually the relatively slow communica-
tion (compared to the enormous peak computational power) with the off-chip
device memory. To fully exploit the capacity of the GPU parallelism this memory
latency must be minimized. Further, it is recommended to avoid synchronization
between thread blocks. The inter-thread communication within a block is cheap
via the fast shared memory, but the accesses to the global and local memories
are more than hundred times slower.

Another way to maximize the parallelism is by optimizing the thread map-
ping. Unlike the CPU threads, the GPU threads are very light-weight with neg-
ligible overhead of creation and switching. This allows GPUs to use thousands
of threads whereas multi-core CPUs use only a few. Usually more threads and
blocks are created than the number of SPs and SMs, respectively, which al-
lows GPU to maximally use the capacity via smart scheduling - while some
threads/blocks are waiting for data, the others which have their data ready are
assigned for execution. Thread mapping is coupled with the memory optimiza-
tion in the sense that threads that access physically close memory locations
should be grouped together.

4 Matrix-Vector Multiplication on GPU

To speed up the algorithms we replace the sequential matrix-vector multiplica-
tion algorithm with a parallel one, which is adapted to run on GPU. In this
section we describe our parallel algorithms which are derived from the Jacobi
algorithm for matrix-vector multiplication. This algorithm was used for both
bounded and unbounded until, i.e., also for solving systems of linear equations.

Jacobi Iterations. As mentioned in Section 2 for model checking DTMCs,
Jacobi iteration method is one option to solve the set of linear equations we have
derived for until (U). Each iteration in the Jacobi algorithm involves a matrix-
vector multiplication. Let n be the size of the state space, which determines the
dimension n× n of the matrix to be iterated.

The formula of Jacobi for solving Ax = b iteratively for an n × n matrix
A = (aij)0≤i,j≤n−1 and a current vector xk is

xk+1
i = 1/aii ·

bi −∑
j 6=i

aijx
k
i

 , for i ∈ {0, . . . , n− 1}.

For better readability (and faster implementation), we may extract the diagonal
elements and invert them prior to applying the formula. Setting Di = 1/aii,
i ∈ {0, . . . , n− 1} then yields

xk+1
i = Di ·

bi −∑
j 6=i

aijx
k
i

 , for i ∈ {0, . . . , n− 1}.

9

The sufficient condition for Jacobi iteration to converge is that the magnitude of
the largest eigenvalue (spectral radius) of matrixD−1(A−D) is bounded by value
1. Fortunately, the Perron–Frobenius theorem asserts that the largest eigenvalue
of a (strictly positive) stochastic matrix is equal to 1 and all other eigenvalues
are smaller than 1, so that limk→∞Ak exists. In the worst case, the number of
iterations can be exponential in the size of the state space but in practice the
number of iteration k until conversion to some sufficiently small ε according to
a termination criteria, like maxi |xk

i − x
k+1
i | < ε, is often moderate [34].

Sparse Matrix Representation. The size of the matrix is Θ(n2), but for
sparse models that usually appear in practice it can be compressed. Such ma-
trix compaction is a standard technique used for probabilistic model checking
and to this end special structures are used. In the algorithms that we present
in the sequel we assume the so called modified compressed sparse row/column
format [11]. We illustrate this format on the sparse transition probability matrix
P given below:

row 0 0 0 1 1 2 2 2 3 4 4
col 1 2 4 2 3 0 3 4 0 0 2

non-zero 0.2 0.7 0.1 0.01 0.99 0.3 0.58 0.12 1.0 0.5 0.5

The above matrix contains only the non-zero elements of P. The arrays
labeled row, col, and non-zero contain the row and column indices, and the
values of the non-zero elements, respectively. More formally, for all r of the
index range of the arrays, non-zeror = P(rowr, colr). Obviously, this is already
an optimized format compared to the standard full matrix representation. Still,
one can save even more space as shown in the table below, which is, in fact, the
above mentioned modified compressed sparse row/column format :

rsize 3 2 3 1 2
col 1 2 4 2 3 0 3 4 0 0 2

non-zero 0.2 0.7 0.1 0.01 0.99 0.3 0.58 0.12 1.0 0.5 0.5

The difference with the previous representation is only in the top array rsize.
Instead of the row indices, this array contains the row sizes, i.e., rsizei contains
the number of non-zero elements in row i of P. To extract row i of the original
matrix P, we take the elements

non-zerorstarti
,non-zerorstarti+1, . . . ,non-zerorstarti+rsizei−1

where rstarti =
∑i−1

k=0 rsizek.

10

Algorithm 1 Jacobi iteration with row compression, as implemented in PRISM.
1: k := 0
2: Terminate := false
3: while (not Terminate and k < maxk) do
4: h := 0;
5: for all i := 0 . . . n do
6: d := bi;
7: l := h;
8: h := l + rsizei − 1;
9: for all j = l . . . h do

10: d = d−
“

non-zeroj · xk

colj

”
;

11: d := d ·Di;
12: xk+1

i := d;
13: Terminate := true
14: for all i := 0 . . . n do
15: if |xk+1

i − xk
i | > ε then

16: Terminate := false
17: k := k + 1;

Algorithm Implementation. The pseudo code of the sequential Jacobi algo-
rithm that implements the aforementioned recurrent formula and which uses the
compression given above is shown in Algorithm 1.

The iterations are repeated until a satisfactory precision is achieved or the
maximal number of iterations maxk is overstepped. In lines 6–8 (an element of)
vector b is copied into the auxiliary variable d and the lower and upper bounds
for the indices of the elements in array non-zero that correspond to row i are
computed. In the for loop the product of row i and the result of the previous
iteration, vector xk, is computed. The new result is recorded in variable xk+1.

Note that, since we are not interested in the intermediate results, only two
vectors are needed: one, x, to store xk, and another, x′, that corresponds to
xk+1, the result of the current iteration. After each iteration the contents of
x and x′ are swapped, to reflect the status of x′, which becomes the result of
the previous iteration. We will use this observation to save space in the parallel
implementation of the algorithm given below.

In lines 13–16 the termination condition is computed, i.e., it is checked if suf-
ficient precision is achieved. We assume that vector x is initialized appropriately
before the algorithm is started.

Due to the fact that the iterations have to be performed sequentially the
matrix-vector multiplication is the part to be distributed. As a feature of the
algorithm (that contributed most to the speedup) the comparison of the two
solution vectors, x and x′ in this case, is done in parallel. The GPU version of
the Jacobi algorithm is given in Algorithms 2 and 3.

Algorithm 2, running on the CPU, copies vectors non-zero and col from the
matrix representation, together with vectors x and b, and constants ε and n,
to the global memory (VRAM) and allocates space for the vector x′. Having

11

Algorithm 2 JacobiCPU: CPU part of the Jacobi iteration, for unbounded
until computation.
1: allocate global memory for x’
2: allocate global memory for col, non-zero, b, x, ε, n and copy them
3: allocate global memory for TerminateGPU to be shared between blocks
4: rstart0 := 0;
5: for i = 1 . . . |rsize|+ 1 do
6: rstarti := rstarti−1 + rsizei−1;
7: allocate global memory for rstartGPU and copy rstart to rstartGPU
8: k := 0
9: Terminate := false

10: while (not Terminate and k < maxk) do
11: <<<n/BlockSize+1,BlockSize>>>JacobiKernel();
12: copy TerminateGPU to Terminate;
13: Swap(x,x’)
14: k = k + 1;
15: copy x’ to RAM;

done this, space for the Terminate variable is allocated in the VRAM. Variable
rstart defines the starting point of a row in the matrix array. The conversion
from rsize to rstart is needed to let each thread find the starting point of a row
immediately. (In fact, implicitely we use a new matrix representatin where rsize
is replaced with rstart.) Array rstart is copied to the global memory variable
rstartGPU. To specify the number of blocks and the size of a block CUDA
supports additional parameters in front of the kernel (<<< number of blocks,
block size >>>). Here the grid is defined with n/BlockSize + 1 blocks2, and a
fixed BlockSize. After the multiplication and comparison step on the GPU the
Terminate variable is copied back and checked. This copy statement serves also
as a synchronization barrier, since the CPU program waits until all the threads
of the GPU kernel have terminated before copying the variable from the GPU
global memory. If another iteration is needed x and x′ are swapped3. After all
iterations the result is copied back from global memory to RAM.

JacobiKernel shown in Algorithm 3 is the so-called kernel that operates on
the GPU. Local variables d, l, h, i and j are located in the local registers and
they are not shared between threads. The other variables reside in the global
memory. The result is first computed in d (locally in each thread) and then
written to the global memory (line 11). This approach minimizes the access to
the global memory from threads. At invocation time each thread computes the
row i of the matrix that it will handle. This is feasible because each thread
knows its ThreadId, and the BlockId of its block. Note that the size of the block
(BlockSize) is also available to each thread. Based on value i only one thread
(the first one in the first block) sets the variable TerminateGPU to true. Recall,

2 If BlockSize is a divisor of n threads in the last block execute only the first line of
the kernel.

3 Since C operates on pointers, only these are swapped in this step.

12

Algorithm 3 JacobiKernel: Jacobi iteration with row compression on the GPU.
1: i := BlockId ·BlockSize+ ThreadId;
2: if (i = 0) then
3: TerminateGPU := true;
4: if (i < n) then
5: d := bi;
6: l := rstartGPUi;
7: h := rstartGPUi+1 − 1;
8: for all j = l . . . h do
9: d := d− non-zeroj · xcolj ;

10: d := d ·Di;
11: x′i := d;
12: if |xi − x′i| > ε then
13: TerminateGPU := false

this variable is located in the global memory, and it is shared between all threads
in all blocks. Now, each thread reads three values from the global memory (line
5 to 7), here we profit from coalescing done by the GPU memory controller. It is
able to detect neighboring VRAM access and combine it. This means, if thread
i accesses 2 bytes at bi and thread i + 1 accesses 2 bytes at bi+1 the controller
fetches 4 bytes at bi and divides the data to serve each thread its chunk. In
each iteration of the for loop an elementary multiplication is done. Due to the
compressed matrix representation a double indirect access is needed here. As
in the original algorithm the result is multiplied with the diagonal value Di

and stored in the new solution vector x′. Finally, each thread checks if another
iteration is needed and consequently sets the variable TerminateGPU to false.
Concurrent writes are resolved by the GPU memory controller.

The implementation in Algorithm 2 matches the one for bounded-until (U≤k),
except that bounded-until has a fixed upper bound on the number of iterations,
while for until a termination criterion applies.

5 Experiments

All experiments were done on a PC with an AMD Athlon(tm) 64 X2 Dual Core
Processor 3800+ with 4 GB of RAM; the operating system is 64-bit SUSE 11 with
CUDA 2.1 SDK and the NVIDIA driver version 177.13. This system includes a
MSI N280GTX T20G graphic card with 1 GB global memory plugged into an
ExpressPCI slot. The GTX200 chip on this card contains 10 texture processing
clusters (TPC). Each TPC consists of 3 streaming multiprocessors (SM) and
each SM includes 8 streaming processors (SPs) and 1 double precision unit. In
total, it has 240 SPs executing the threads in parallel. Maximum block size for
this GPU is 512. Given a grid, the TPCs divide the blocks on its SMs, and each
SM controls at most 1024 threads, which are run on the 8 SPs.

We verified three protocols, herman, cluster, and tandem, shipped with the
source of PRISM. The protocols were chosen due to their scalability and the

13

possibility to verify its properties by solving a linear function with the Jacobi
method. Different protocols show different speedups achieved by the GPU, be-
cause the Jacobi iterations are only a part of the model checking algorithms,
while the results show the time for the complete run.

In all tables of this section n denotes the number of rows (columns) of the
matrix, ”iterations” denotes the number of iterations of the Jacobi method, ”seq.
time” and ”par. time” denote the runtimes of the standard (sequential) version
of PRISM and our parallel implementation extension of the tool, respectively.
All times are given in seconds. The speedup is computed as the quotient between
the sequential and parallel runtimes.

The first protocol called herman is the Herman’s self-stabilizing algorithm [22].
The protocol operates synchronously on an oriented ring topology, i.e., the com-
munication is unidirectional. The number in the file name denotes the num-
ber of processes in the ring, which must be odd. The underlying model is a
DTMC. We verified the PCTL property 3 from the property file herman.pctl
(R=? [F "stable" {"k_tokens"}{max}]). Table 1 shows the results of the
verification. Even though the number of iterations is rather small compared to
the other models, the GPU achieves a speedup factor of approx. 1.5. Since ev-
erything beyond multiplication of the matrix and vector is done on the CPU, we
have not expected a larger speedup. Unfortunately, it is not possible to scale up
this model, due to the memory consumption being too high; the next possible
instance (herman19.pm) consumes more then 1 GB.

Table 1. Results for the herman protocol.

instance n iterations seq. time par. time speedup

herman15.pm 32,768 245 22.430 21.495 1.04
herman17.pm 131,072 308 304.108 206.174 1.48

The second case study is cluster [21] which models communication within
a cluster of workstations. The system comprises two sub-clusters with N work-
stations in each of them, connected in a star topology. The switches connecting
each sub-cluster are joined by a central backbone. All components can break
down and there is a single repair unit to service all components. The underlying
model is CTMC and the checked CSL property is property 1 from the corre-
sponding property file (S=? ["premium"]). Fig. 1 shows that GPU performs
significantly better, Table 2 contains some exact numbers for chosen instances.
The largest speedup reaches a factor of more then 9. Even for smaller instances,
the GPU exceeds factor 3. In this case study a sparser matrix was generated,
which in turn needed more iterations to converge then the herman protocol. In
the largest instance (N = 572) checked by the GPU, PRISM generates a matrix
with 11,810,676 lines and iterates this matrix 28,437 times. It was even neces-
sary to increase the maximum number of iterations, set by default to 10,000, to

14

obtain a solution. In this protocol, as well as in the next one, for large matrices
we observed a slight deterioration of the performance of the GPU implementa-
tion for which, for the time being, we could not find a clear explanation. One
plausible hypothesis would be that after some threshold number of threads GPU
cannot profit any more from smart scheduling to hide the memory latencies.

0

5000

10000

15000

20000

0 100 200 300 400 500 600
0

2

4

6

8

10

se
co

nd
s

to
 c

om
pl

et
e

th
e

m
od

el
 c

he
ck

in
g

pr
oc

es
s

sp
ee

du
p

(C
P

U
 ti

m
e

/ G
P

U
 ti

m
e)

choosen constant N

CPU hybrid
CPU
GPU

speedup

Fig. 1. Verification times for several instances of the cluster protocol. The x-axis
shows the value of the parameter N . Speedup is computed as described in the text
as a quotient between the runtime of standard PRISM and the runtime of our GPU
extension of the tool.

The third case study tandem is based on a simple tandem queueing net-
work [HMKS99]. The model is represented as a CTMC which consists of a
M/Cox(2)/1-queue sequentially composed with a M/M/1-queue. We use c to
denote the capacity of the queues. We verified property 1 from the correspond-
ing CSL property file (R=? [S]). Constant T was set to 1 for all experiments
and parameter c was scaled as shown in Table 3. In this protocol the best
speedup was recorded. For the best instance (c = 2047) PRISM generates a
matrix with 8,386,560 rows, which is iterated 24,141 times. For this operation
standard PRISM needs 9, 672 seconds while our parallel implementation only
needs 516 seconds, scoring a maximal speedup of a factor 18.7.

As mentioned above, 8 SPs share one double precision unit, but each SP
has an own single precision unit. Hence, our hypothesis was that reducing the
precision from single to double should bring a significant speedup. The code of

15

Table 2. Results for the cluster protocol. Parameter N is used to scale the protocol.
The global memory usage (denoted as GPU mem) is in MB.

N n iterations seq. time par. time GPU mem speedup

122 542,676 1,077 31.469 8.855 21 3.55
230 1,917,300 2,724 260.440 54.817 76 4.75
320 3,704,340 5,107 931.515 165.179 146 5.63
410 6,074,580 11,488 3,339.307 445.297 240 7.49
446 7,185,972 18,907 6,440.959 767.835 284 8.38
464 7,776,660 23,932 8,739.750 952.817 308 9.17
500 9,028,020 28,123 11,516.716 1,458.609 694 7.89
572 11,810,676 28,437 15,576.977 1,976.576 908 7.88

Table 3. Results from the verification of the tandem protocol. The constant c is used to
scale the protocol. Global memory usage, shown as GPU mem, is given in MB (o.o.m
denotes out of global memory)

c n iterations seq. time par. time GPU mem speedup

255 130,816 4,212 26.994 3.639 4 7.4
511 523,776 8,498 190.266 17.807 17 10.7

1,023 2,096,128 16,326 1,360.588 103.154 71 13.2
2,047 8,386,560 24,141 9,672.194 516.334 287 18.7
3,070 18,859,011 31,209 25,960.397 1,502.856 647 17.3
3,588 25,758,253 34,638 33,820.212 2,435.415 884 13.9
4,095 33,550,336 37,931 76,311.598 o.o.m

PRISM was modified to support single precision floats for examining the effect.
As can be seen in Fig. 2 the hypothesis was wrong. The time per iteration in
double precision mode is nearly the same as the single precision mode. The
graph clearly shows that the GPU is able to hide the latency which occurs when
a thread is waiting for the double precision unit by letting the SPs work on
other threads. Nevertheless, it is important to note that the GPU with single
precision arithmetic was able to verify larger instances of the protocol, given
that the floating point numbers consumed less memory.

It should be noted that in all cases studies we also tried the MTBDD and
hybrid representations of the models, which are an option in PRISM, but in all
cases the runtimes were consistently slower than the ones with the sparse matrix
representation, which are shown in the tables.

6 Conclusions

In this paper we introduced GPU probabilistic/stochastic model checking as a
novel concept. To this end we described a parallel version of Jacobi’s method
for sparse matrix-vector multiplication, which is the main core of the algorithms

16

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

m
ili

se
co

nd
s

pe
r

ite
ra

tio
n

const c

dual precision CPU
single precision GPU

dual precision GPU

Fig. 2. Time per iteration in the tandem protocol. The CPU is significantly slower then
the GPU operating in single or double precision. Reducing the precision has nearly no
effect on the speed.

for model checking discrete- and continuous-time Markov chains, i.e., the cor-
responding logics PCTL and CSL. The algorithm was implemented on top of
the probabilistic model checker PRISM. Its efficiency and the advantages of the
GPU probabilistic model checking in general were illustrated on several case
studies. Speedups of up to 18 times compared to the sequential implementation
of PRISM were achieved.

We believe that our work opens a very promising research avenue on GPU
model checking in general. To stay relevant for the industry, the area has to
keep pace with the new technological trends. “Model checking for masses” gets
tremendous opportunities because of the “parallelism for masses”. To this end
model checking algorithms that are designed for the verification of parallel sys-
tems and exploit the full power of the new parallel hardware will be needed.

In the future we intend to experiment with other matrix-vector algorithms
for GPUs, as well as with combination of multi-core and/or multi-GPU systems.
What is needed for analyzing the time complexity of GPU algorithms is a fine
grained theoretical model of its operation.

17

References

1. S.C. Allmaier, M. Kowarschik, G. Horton, State Space Construction and Steady-
state Solution of GSPNs on a Shared-Memory Multiprocessor, Proc. 7th Intt. Work-
shop on Petri Nets and Peformance Models (PNPM’97), pp. 112-121, IEEE Comp.
Soc. Press, 1997.

2. C. Baier, J.-P. Katoen, Principles of Model Checking, MIT Press, 950 pp, 2008.
3. C. Baier, J.-P. Katoen, H. Hermanns, B. Haverkort, Model-Checking Algorithms

for Contiuous-Time Markov Chains, IEEE Transactions on Software Engineering,
29(6):524-541, 2003.

4. H. Bal, J. Barnat, L. Brim, and K. Verstoep, Efficient Large-Scale Model Checking.
IEEE International Parallel & Distributed Processing Symposium (IPDPS). To
appear, 2009.

5. J. Barnat, L. Brim, P. Ročkai, Scalable Multi-core Model-Checking, Model Checking
Software, 14th International SPIN Workshop, SPIN 07 LNCS 4595, pp. 187-203,
Springer, 2007.

6. J. Barnat, L. Brim, I. Černá, M. Ceska, J. Tumova, ProbDiVinE-MC: Multi-core
LTL Model Checker for Probabilistic Systems, International Conference on the
Quantitative Evaluaiton of Systems QEST 2008, pp. 77-78, IEEE Compuer So-
ciety Press, 2008.

7. J. Barnat, L. Brim, and P. Šimeček. I/O efficient accepting cycle detection. In
CAV, volume 4590 of LNCS, pages 281–293. Springer, 2007.

8. J. Barnat, L. Brim, J. Stŕıbrná, Distributed LTL Model Checking in SPIN, Proc.
of the 8th Intl. Spin Workshop on Model Checking of Software, SPIN 2001, LNCS
2057, pp. 200-216, Springer, 2001.

9. J. Barnat, L. Brim, P. Šimeček, and M. Weber. Revisiting resistance speeds up
I/O-efficient LTL model checking. In TACAS, pages 48–62, 2008.

10. M.M. Baskaran, R. Bordawekar, Optimzing Sparse Matrix-Vector Multiplication
on GPUs Using Compile-time and Run-time Strategies, IBM Reserach Report,
RC24704 (W0812-047), 2008.

11. A. Bell, B.R. Haverkort, Distribute Disk-based Algorithms for Model Checking Very
Large Markov Chains, Formal Methods in System Design 29:177-196, Springer,
2006.

12. G. Ciardo, Distributed and Structured Analysis Approaches to Study Large and
Complex Systems, European Educational Forum: School on Formal Methods and
Performance Analysis 2000: 344-374, 2000.

13. P. Dai, Mausam and D. S. Weld. External Memory Value Iteration. In Proc. of the
Twenty-Third AAAI Conf. on Artificial Intelligence (AAAI), pages 898-904, 2008.

14. http://www.nvidia.com/object/cuda_home.html#

15. S. Edelkamp, D. Sulewski, Model Checking via Delayed Duplicate Detection on the
GPU, Technical Report 821, Universität Dortmund, Fachberich Informatik, ISSN
0933-6192, 2008.

16. S. Edelkamp and S. Jabbar. Large-scale directed model checking LTL. In Proc.
13th International SPIN Workshop, LNCS 3925, pp. 1–18, Springer, 2006.

17. S. Edelkamp and S. Jabbar and B. Bonet. External Memory Value Iteration. In
Proc. 17th Int. Conf. on Automated Planning and Scheduling, pp. 128–135, AAAI
Press, 2007.

18. S. Edelkamp, P. Sanders, and P. Šimeček. Semi-external LTL model checking.
In Proc. 20th Int. Conf. Computer Aided Verification, LNCS 5123, pp. 530–542,
Springer, 2008.

18

19. S. Edelkamp and D. Sulewski. Flash-efficient LTL model checking with minimal
counterexamples. In Software Engineering and Formal Methods, 73–82, 2008.

20. H. Hansson, B. Jonsson, A Logic for reasoning about time and reliability, Formal
Aspects of Computing, 6(5):512-535, 1994.

21. B. Haverkort, and H. Hermanns, J.-P. Katoen, On the Use of Model Checking
Techniques for Dependability Evaluation, Proc. 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’00), pp. 228-237, 2000.

22. T. Herman, Probabilistic Self-stabilization, Information Processing Letters, 35 (2),
pp. 63-67, 1990.

23. H. Hermanns, J. Meyer-Kayser, M. Siegle, Multi Terminal Binary Decision Di-
agrams to Represent and Analyse Continuous Time Markov Chains, Proc. 3rd
International Workshop on Numerical Solution of Markov Chains (NSMC’99), pp.
188-207, 1999.

24. G.J. Holzmann, D. Bošnački, The Design of a multi-core extension of the Spin
Model Checker IEEE Trans. on Software Engineering, 33 (10), pp. 659-674, October
2007. (first presented at: Formal Methods in Computer Aided Design (FMCAD),
San Jose, November 2006.)

25. G.J. Holzmann, D. Bošnački, Multi-core Model Checking with Spin, Proc. Parallel
and Distributed Processing Symposium, IPDPS 2007, pp. 1-8, IEEE International,
2007.

26. C.P. Inggs, H. Barringer, CTL∗ Model Checking on a Shared Memory Architecture,
Electronic Notes in Theoretical Computer Science, 128 (4), pp. 107-123, 2005.

27. C.P. Inggs, H. Barringer, Effective State Exploration for Model Checking on a
Shared Memory Architecture, Electronic Notes in Theoretical Computer Science,
68 (4), 2002.

28. M.Z. Kwiatkowska, G. Norman, D. Parker, PRISM: Probabilistic Symbolic Model
Checker, Computer Performance Evaluation, Modelling Techniques and Tools 12th
International Conference, TOOLS 2002, LNCS 2324, pp.200-204, Springer, 2005.

29. M. Kwiatkowska, G. Norman, D. Parker. Stochastic Model Checking, Formal Meth-
ods for the Design of Computer, Communication and Software Systems: Perfor-
mance Evaluation, LNCS 4486, pp. 220-270, Springer, 2007.

30. F. Lerda, R. Sisto, Distributed Model Checking in SPIN, Theoretical and Practical
Aspects of SPIN Model Checking, 5th and 6th International SPIN Workshops,
LNCS 1680, pp. 22-39, Springer, 1999.

31. A. Marowka, Parallel Computing on Any Desktop, Comm. of the ACM, 50 (9), pp.
75-78, September, 2007.

32. J.C. Philips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R.D. Skeel, L. Kale, K. Sculten, Scalable Molecular Dynamics with NAMD, Jornal
of Computational Chemistry, 26:1781-1802, 2005.

33. U. Stern, D. Dill, Parallelizing the Murφ Verifier, Proc. 9th Intl. Conf. Computer
Aided Verification (CAV), LNCS 1254, pp. 256-278, Springer, 1997.

34. W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.

35. A. Valmari, The State Explosion Problem, Lectures on Petri Nets I: Basic Models,
LNCS Tutorials, LNCS 1491, pp. 429-528, Springer, 1998.

