System verification using randomized exploration of
large state spaces

N. Abed, S. Tripaki$, J. M. Vincent
* LIG, 51, avenue Jean Kuntzmann, 38330 Montbonnot SaintiVjdfrance
t Cadence Research Laboratories, 2150 Shattuck, AvenueFldith Berkeley, CA 94704
Nazha.Abed@imag.fr, Tripakis@cadence.com, Jean-Marcevit@imag.fr

Abstract— System verification is a technique used to improve aimed at curtailing state space explosion, by reducing the
the correctness of hardware and software systems. It aims to amount of memory necessary for states storage or reducing
discover bugs in early development steps. A common approach the state space to explore. Examples of the approaches made

of system verification consists of exploring and analyzing hte . . .
reachable states graph, which represents the system behavi to reach the first goal are hash compaction [25] and bi-state

in an exhaustive manner. This graph is often too large to be hashing [22] which consists of encoding the graph states
entirely explored: its size grows exponentially in the numler of by the memory bits via a hash function. The methods that
system components. The verification task then becomes a taskaim to reduce the state space include partial-order remtucti
of partial exploration, subject to constraints on memory ard methods [26]; which are based on the observation that
verification time. Several methods of random partial explogtion . " L .
executing two independent events in either order resultisen

have been proposed based mostly on random walk. In this paper X -
1 we present a general strategy of randomized algorithms, in S@me global state and symmetry reduction [27]; which uses th
particular a Uniform Random Search to perform partial, but existence of nontrivial permutation group that presenes t
cons_iderable, state space exploration with litle memory ad time state transition graph. There is alspmbolicmodel checking
requirements. techniques that operate on sets of states rather than dodivi

|. INTRODUCTION states,b and Llepres;en';I such sets symbolically,h for instance
. using binary decision diagrams (BDDs) [6]. In this paper we
To verify system correctness, one can proceed l? 9 y g () 6] bap

gcus on explicit enumerative state space exploration atkth
exhaustive verification (e.g. model checking) or testing. P P P

Model checking [1.] [2] [3] -the prob!gm c.)f deciding yvhethe_r ther techniques aim to equilibrate the exploration of
a property holds in a system specification- has gained wide

acceptance within the hardware and protocol verificati e state transition graph. In particular, the techniques o
P P Oﬂ}:\rtial exploration based on random algorithms. These

ggnr;g}l;n:;esséfzc :relsv\elzvsit;;fzast?ér;\g wﬁf:‘:‘;]r;gs?gg'?gghff tﬂt_]echniques have been shown to be very effective in practice
. A, pa 19 find errors or explore transition graphs. A randomized
system under investigation is finite, model checking m

. .) e}A}'Igorithm is one which contains an assignment to a variable
proceed in a fully automatic, push-button fashion. MorazpveDaseol on the outcome of tossing a fair coin or a random

should the system fail to satisfy the formula, a count%r mber generator. Randomized algorithms are extensively

example trace leading the user to the error state is produc . 2
. ; . . ically for two r ns: simplici n 4].
Model checking however is not without its drawbackss ed, basically for two reasons: simplicity and speed [4]

the most prominent of which is state space explosion: t@ consequence of u_sing randomization_is the fact_ that the
. , - "Wyrectness or termination statements is given with some

phenomenon where the size of a system’s state space gr WS olled probability

exponentially in the size of its specification. State space '

explosion can render the model-checking problem intraetabrhe

- o randomized algorithms proposed in the literature
for many applications of practical interest.

are —in their quasi-totality— based on random walk. A random

. . . . walk on a graph is a stochastic process of type "Markov
Testing, on the other hand, is typically performed directly chain”. The algorithm starts from the initial state, and atte

the !‘mplfmented s_ystem. This has the a_dvantag(_e of CheCk’srfgp, it chooses in a uniform way a successor of the current
the “real” system instead of a model of it. The disadvanta

is that anomalies are detected often too late, resultinggh h%?_ate and YISIIS. . This chgpe 's independent tq the tsaler

h Testing is inherentI' incomplete history, which is characteristic of a Mar_kov_cham. When the
fr?SrtZ itsO n%ogﬁgtratnteerg.of covegring the stateyspace gven,a? nrdom walk encounte_rs a dead_lock point, it restarts from th
several experiments inftial state. The algorithm terminates when a targgt siaite

' reached or when the expected number of the visited states
reaches a certain limit. This method stores only an actual
'Wite and does not keep any information about previously
LThis work is partially supported by the ANR SETIN Check-Bduand Visited states, thus it has very little memory requirements

the Region Rhone-Alpes, France.

Researchers have developed a plethora of techniq

This simple form of random walk has been exploited fanitial state. This has the advantage to minimize redunganc
verification tasks either for graph covering and reach@gbiliand reach deep states [11]. The local exhaustive search
analysis. It was applied first to model-checking by West icombined to random walk [14] explores better some regions
1986 [8] which demonstrates that efficient sampling of thef interest (dense regions for example) which can not be
reachable state space by random walk suffices to ensure wedl explored with only simple random walk. This may be
effectiveness of testing real models. In the last few yeatbe case for example if one know that it is near to a target
the studies succeeded in exploring this scheme, and randomde. Guided search decides of the next exploration dinecti
walk has been used for verification in the model checkbased on general information about the graph and the system
Lurch [9]. Some theoretical results are given when workingemantic. In [15], the authors use a metric to estimate
on a restricted class of graphs. For example, in [12], an uppeachability probability of a target node. To gain in memory
bound of the number of steps needed by Random walk @ad time, the parallelization method of random walk seems
ensure, with probabilityl — ¢, the covering of all the graph to be very useful and efficient. It explores more states [14]

is provided. It is given by: and reduces significantly the error probability [12]. Other
1 methods use some additional memory to keep a subset of
—|VI|E| (1) the visited states. These states are used to report theecount
€

example trace as done in tracing methods or to limit revisits
whereV denotes the set of the graph states @&nthe graph of same nodes and improve the coverage as done in caching
edges. This bound is very large in practice and holds oniyethods [16] [17]. Caching is an exploration algorithm that
for closed strongly connected graphs. These results arefgeuses on the strategy of nodes storing and deletion frem th
restricted and not very useful in model checking. In generglache. The exploration scheme can be made in a deterministic
the most results are based on experimentation performedf@shion (BFS, DFS) or by random methods. In [20], the
real and random graphs. proposed algorithm uses a BFS exploration method with a

randomized partial storage. When the memory is over, the
In [10], the authors defind’, as the probability of detecting algorithm proceeds at a lower speed but do not give up the
a bug in one run of the random walk. This probabilityerification. As reported in [20], this algorithm can saveé¥30
depends naturally on the existence of the bug and also @nthe memory with an average time penalty of 100%.
the capacity of the algorithm to detect it. An upper bound
of the numberN of repetitions needed by random walk toaAs we have seen, all these methods based on Random
detect a counter-example, with probability— ¢, under the \walk improve the redundancy of exploration but the cover

assumption thal’, > ¢, is given by: time still very large, in general. In this paper, we propose
In(8) methods that aim to further improve exploration by avoiding
N = redundancy and reducing the cover time. First, a general

In(—e) scheme that encompasses all previously mentioned methods

If, after N iterations, no bug is detected, the algorithm reports given. Then, a Uniform Random Search (URS) algorithm is
that the probability of finding bugs trough further sampjingproposed based on a different selection function than rando
under the assumption thdt, > ¢ is less thand. Note that walk (RW). While RW is a depth-oriented algorithm, our
P, is, in general, unknown and difficult to estimate. Then, ialgorithm can go in depth, in breadth or in a uniform fashion.
order to ensure the required assumption, one has to clvood&e can also control the rate of depth or breadth exploration
little enough, which can rendéY too large. by tuning a mixing parameter.

Because it is completely memory free, the random wak major novelty of our randomized exploration scheme
method cannot distinguish between visited and not visitdids in the fact that it explicitly uses a paramet®r which
states, and so it may spend large time to visit repeatedpresent the maximum number of states that can be stored
some few states (the redundancy property). Because of this,main memory at any given time. Thus, our algorithms
covering the entire graph (or a high portion of it) mayre resource-awareMain memory is the main bottleneck in
need a prohibitively large amount of time (see equation exhaustive verification, for reasons we explain below.

above). Also, the frequency (probability) of visits may be

very variable from one state to another (some states are mohe random algorithms proposed are sound, which means
frequently visited than others). This frequency depends timat if a bug is found then the model is indeed incorrect.
the graph structure as well as the algorithm behavior. SéveAs in [12], [10], they are probabilistically complete, ineth
methods have been proposed to avoid these drawbacks. Septese that if after several iterations no bugs are founah the
of these methods try to force exploration direction, like ththe system is correct with some probability which depends
re-initialization methods that restart the random walkgess on the number of iterations and visited states.

periodically to avoid blocking in a small closed components

for a long time. The re-initialization can be made from &he rest of the paper is organized as follows: The proposed
random state of the previous walk and not necessary from deheme and algorithm are detailed in section Il. Section

Il gives some general theoretical results that are prepbc

on two cases of regular graphs in sections IV and
Experimental results are summarized in section VI, whi

V.
e General Random Exploration Algorithm

section VIl contains our conclusion. o
V : set of stored nodes (visited)

P : algorithm parameters;
I : global information;
bhv : node

)

II. CONTEXT AND ALGORITHMS

We model a system as a directed transition graf
G(M,vp, Succ), where,M is a finite set of nodes representing
the system statesy is the initial node(vy € M) and Succ is
the transition function: it takes as input a nodend returns
as output the set of all successorswfWe do not dispose
of the entire transition graph. We can, however, constry
and explore it gradually by means of the initial state arn
the transition functionSucc. We assume that the available
memory can store at mos$t{ states.N can be computed by
dividing the size of the memory, by the size of the memo
representation of each state. To generate random algaith
a pseudo-random numbers generator is given. The generated
numbers can be considered as uniformly distributedOom],
based on which, other distribution laws can be generated if
necessary.

V «— Vjy; IISet of initial nodes
P — Par; IIAlgorithm parameters
1 — Io; /lInitial global information

Ctwhile (not stop condition) do
d v «— selectV, P, I);
checkg); /Iverify if the property holds
(V. 1) — updateV, v, P, I);
done

y

Fig. 1. The general random algorithm

To verify a given safety property stated as an invariant
¢, the simplest method is to explore the gragtand verify¢ A specific algorithm that fits the above scheme is defined
for each state € G. If we choose an exhaustive deterministiby specifying thestop condition and the two functions
exploration, the computer’'s memory will be rapidly filledselect and update. With these three parameters, one can
by the N first reachable states (whem€ depends on the define many variants of the general algorithm, including
available memory as said above). Then, the computer witlany found in the literature. Thetop condition can be,
typically spend most of its time iswappingmemory to/from for example, the presence of a deadlock, exhaustion of the
disk with very few additional states explored. Instead, wexpected number of steps or simply reaching a target state.
choose a randomized partial exploration, and repeat iraevesome algorithms in the literature emphasize state storage
times with different paths (consequence of randomization) and deletion strategies (FIFO, LFU, LRU, random ...), like
cover as many reachable states as possible. the caching techniques, so they focus in optimizing the
update function. Theupdate function modifies the sety
One wishes, naturally, that the random algorithm exploresd in order to optimize the consumed resources and make
the state space efficiently, i.e., quickly and using reaskenathe evolution of the exploration effective. As mentioned
memory resources. Since the memory size is given and finite, the introduction, our interest is mainly the exploration
a good exploration is defined mainly according to the tim&rategy itself, that is theelect function. Theselect function
it takes: one can hope to cover with a random algorithmchooses at each step the next nadeto be visited from
considerable percentage of the reachable graph in less tine set of successors df; the already visited states still
than with the exhaustive algorithm which will be quicklyin memory. This choice can be guided by the informatiof.in
blocked because of the swapping.
))) In this scheme, the random walk algorithm has as
A. A generic randomized exploration scheme stop condition the reachability of a deadlock point or
A random exploration algorithm can be cast into ththe reach of a target node according to the algorithm goal.
general scheme shown in figure B.represents the algorithm The select function is a uniform random choice between the
parameters, for example the memory side the number successors of the current node (the single storeld)inwvhen
of initial parallel runs in the case of a parallel randonthe update function consists on simply replacing the current
walk [14], ect. This last parameter, among others, can bede by the one lastly chosen. In presence of a deadlock, the
modified during the algorithm execution according to theurrent node takes the value of the initial state and so on.
available resources and exploration needs. Thd semntains
global information on the graph structure, for instanceameAs we are interested in the exploration strategy, we
number of successors per node, mean number of loopsppose a Uniform Random Search URS algorithm based
strongly connected components, etc. Note that this type @fi a newselect function. URS is shown in Figure 2. We
information can be collected on the fly and used to guide ahdve a sefl” of already visited stated/ is of size N: that
optimize the exploration [15]. is, the algorithm ensures that there are never more fkan

Uniform Random Search URS

V : set of stored nodes (visited)
N : Maximum size of V;

n : Maximum number of steps
v, u : nodes

1,7 @ integer;

V —A{w};
1+ 0;
J <0

While ((j < N) and ¢ < n)) do
u «— pick uniformly one node froni/;

Simplified Deep Random Search SDRS

V : set of stored nodes (visited)
N : Maximum size of V;

n : Maximum number of steps
v @ current node;

i,7 @ integers

Ve {vo};
v < 0,
1« 0;
J<0

While ((j < N) and ¢ < n)) do

If (Suce(u) # 0) then If (Succ(v) = 0) then
v « pick uniformly one node fromSucc(u); | v < pick uniformly one node froni/;
If (v ¢ V) then else
checkg); v «— pick uniformly one node fromSucc(v);
V — VU {v} If (v ¢ V) then
J—ij+1 checkg);
end If V — VU {v};
end If J—Jj+1
=i+ 1 end If
done end If
i — 141,

done

Fig. 2. The URS algorithm
Fig. 3. The SDRS algorithm

states inV. Initially this set contains the initial state,. At
each stepi, the URS algorithm picks uniformly one visited
stateu from V/, and then uniformly chooses one successorSDRS will be studied in detail and compared to the
of u. Note that this does not imply a uniform choice frorJRS algorithm described above. According to [11], DRS
all the visited node successors. dfis not already visited outperforms the simple RW, because when blocked, it is
then it is checked with respect to the safety property ameinitialized from a random visited state instead of the
added to the set of visited states. The algorithm stops, aniial one and uses additional memory to distinguish from
eventually restars, when the memory is fyll=€ N) or when Vvisited and non visited states which avoid much of redundant
the expected number of steps is reached. This stop condit@xplorations. For this reason, we omit comparison with $mp
that takes into account the parametéris very important in RW here and only compare with SDRS.
improving the exploration.
When the main memory is full, the algorithms are stopped,
[11] presents an extended random-walk based algoritihe memory is emptied and the algorithms are restarted.
called Deep Random Search (DRS). T#tep condition of This can be repeated several times. The re-initializatiam c
DRS does not consider the limited memory size and suppo$ss done from the initial state or from another randomly
that all non-closednode$ — in each step of the algorithm —chosen state from the sét of states visited during the last
can be stored in the available memory, which is not alwagxploration. Note that the initialization from the initiatate
the case in practice. In this paper we use a simplified versiofien does not result in a very high degree of redundancy
of DRS, that we call SDRS. The latter, like URS, uses laecause the number of states in each repetition is very large
parameterN modeling an upper bound on the number cind can usually match the graph’s depth. In the rest of the
states that can be stored at any given time. This puts the tpaper, we will consider two situations in our analysis and
algorithms in the same framework and allows comparisorexperimental results. In one situation we suppose that the
SDRS (see Figure 3), has &®p condition the exhaustion of main memory is large enough to contain the entire state space
the states in memory. Thelect andupdate functions are the of the graph under exploration. In this case, we will speak
same as the simple random walk except the re-initializatiofi the versions of the algorithms URS and SDRS where
of the current nodewupdate function) which is made by a these do not have to be reinitialized. In the second, more
node chosen randomly i@ and not by the initial node. realistic case for industrial-size examples, the main mgmo
cannot store the entire state space, and the algorithms are
run multiple times, after re-initialization as describeubeae.

2A closednode is one that has all its successors visited. In this case, we will denote the algorithms by RURS and

RSDRS to emphasize the fact that they are re-initialized. criterion is the minimum over all nodes of these probaletiti

Tmin (G7 A) = min PG,A(U)
B. Evaluation criteria v
In general, reiterating the random algorithm improves the

The used evaluation criteria are based on our initiﬂ'obability of reaching states and finding errors.
objective, which is to come up with more robust exploration

algorithms. On one hand, improve the cover time of existing practice, there are several types of graphs, and an

randomized algorithms and on the other hand IMprovg,rithm performs differently depending on the form of the
the reachability and the coverage of existent exhaustiygsiored one. To compute precise analytic results, we have
methods. We define our criteria in two ways: stochastic ar&%alyzed regular classes of graphs: trees and grids. Regula

experimental. graphs are suitable to study analytically the behavior of
exploration algorithms for several reasons:

« Although the model checking graphs are not regular, they
contain frequently regular components [7].

One can manipulate regular graphs to compute probabilis-
tic measures analytically, which is practically impossibl

for graphs of irregular topology.

By tuning the two parameters of a regular tree (depth
and degree), we can get large or deep graphs and define
a density factor suitable to our study.

Trees and grids constitute two extreme cases of general
graphs. In trees, there is no intersections between the
successors, and in grids, there is intersection between
all successors. Other graphs can be considered as an
intermediate case between this two ones. In fact, one may
say that practical graphs, arising in model-checking cases
are, in some manner, a combination of trees and grids.

One considered criterion to study the algorithms perforrean
is themean cover timeThe cover time is the number of steps
needed by a given algorithm which starts at the initial state
cover some percentage or all the graph nodes (i.e., to reach
some coverage level). For undirected graphs, the mean cover
time of any graph is polynomial [24]. For directed graphs
—like the ones arising in model checking— it is in general °
exponential, except for some restricted classes of didecte
graphs [12]. These classes are so restricted that they &re no
very interesting for model checking. The mean cover time *
gives a good indication on the capacity of the algorithm to
reach states and explore most of the graph. It informs us on
the estimated time to reach all nodes. A random algorithm
that has a better average cover time, has less redundancy in
its exploration. Cover time also reflects what can be termed
response timewith an errore. For example, if one needs

a response about the system correctness with probability of I1l. GENERAL THEORETICAL RESULTS
error e = 0.05, the necessary time for giving this response
is the cover time of 95% of the graph. Some exploratio]%
algorithms will provide this answer in less time than others

This section aims to efficiently compute various statistics
r our algorithm URS in some interesting cases of study.
We also provide some results for the algorithm SDRS. This
. set of results allows a preliminary, theoretical, comparisf

When the number of all reachable nodes is unknow fle two algorithms and demonstrates a superiority of URS

as is the case with very large real models, we compare t| ®most studied cases. More precisely, what we investigate

number pfpoverednodgs (ie., visited nodes)._As the numb rere, is exact computations of the mean cover time, the mean
of the visited nodes increases, the probability that a node

. . . o . umber of covered nodes and other related criteria such as
already visited either is revisited increases (redundanicy reachability probabilities, for URS and SDRS. This will be

es) ;
. :) one for two extreme types of graphs. The first one is trees.
?heecrsgsgrsaagcorrglng;(;_(t)r:]e _gxetC”F'C‘;'l‘l tﬂ?g; Tgog]r.:mi.iagr Many trees will be considered and parameterized by a density
accord;/n tg(])Tp T?ﬂs isl colnf’irrr?gtld b y,our tr?eolreticlal an(\;factor which the comparison results depend upon. The second

ding e y one is grids. In contrast to tree graphs, a multi-dimengiona
experimental results.

grid represents many intersections between nodes which a
. . . - riori can lead to significant change in the behaviour of the
Another possible criterion consists of theninimum P g 9

reachability probabilityover all reachable nodes. Reachabilit)allgo\:\llmrgi svcdt;g?rafgrse g]u:gglrrf oeilogqsggeisﬁ ’\rfg:fiig es
probability models the capacity of an algorithm to reach

. r nd grids. Before we analyze th f tr n
target state. Indeed the problem of the model checking cgfnt ees and grids. Before we analyze the case of trees and

be seen as the search of an error state in the state sp égjéiﬁg{?gg’l;’\t’s 2;‘3 grrgl\ont?e in this section some ganer
Due to the fact that the considered exploration algorithres a '
o b o e ot URS, the rdered sequends, — (1.1, of

) . "aRiSited nodes im steps can be represented as follows:
structure. It results from this, that the membership of a&giv
nodev to V is a random variable of which the probability o as as -1 ay
P¢, 4(v) for a given graphG and a given algorithnd differs W1, 7T, W, T 3y e
from a node to another. The minimum reachability probapilit Wo=(w1,...,wg)

where eachw; corresponds to a novel visited node followedt attempted, unsuccessfully, in stepto choose a successor

by «; redundant visits, that is the considered sequenfrem this deadlock and so it will be reinitialized in stept 1

V, is constituted byn — k repeated nodes interlaced infrom a uniformly randomly chosen state &f,. An open

an ordered set of distinct nodesw, = (wi,...,wy). Let pointis a simple point of the walk which is not a closed point.

wy_, = (wi,...,wy—1) and denote byF'(w;) (resp.C(w;))

the set of fathers (resp. children) of the nadg i =1, .., k. Lemma 2:Let P(w,n,C) (resp. P(w,,n,0,v) be the

probability to cover inn steps the set of nodes, and to

Lemma 1:The probabilityP(w,, n) to coverw, in n steps be, by step:, in a closed point (resp. in an open point at node

by the URS algorithm is: v). Then:
Plwen) = alw)Pwen - 1)+ APy 1 n-1) Plgn0) = 22w 01,0043 P10,
k vED (w,,)
1 o [Cwi) Nwy ’
alw,) = —27 P O.v) — P(w,,n—1,0,u) P(w,,n—1,C)
3 s 10y) - +
k = |C(wy)] 1 (i, 0,0) HEF%% ()] KIC(w)]
ﬁ(wk) = 7 7 Z P(wk—lvn —1,0,u) P(ﬂk—hn -1,0)
- vEF (wi)Nw,, _, |C(1})| Fluy (’U)< |C(u)| + (k - 1)|C(u)| >:|

where D(w,,) is the set of deadlock nodes iw, and

Note thata(w,) is a redundancy factor, no node is newl)i () = 1if v = wy, and1,, (v) = 0 otherwise
W - - v W - .

covered at stepn, while fG(w,;) is an innovation factor
expressing the probability to cover at stepa new node,

. . . . o Proof: See appendix A.
which must bewy, since the sety,, is stored in order of visits. PP

[|
Note that the elementary recursion in lemma 1 (resp. in
lemma 2) is satisfied by URS (resp. by SDRS) algorithm
for any graph. In the next two sections, we specialize these

|C (w) N, |) - _results to trees and grids. The algorithms URS and SDRS

factor =z, 5y expressing the probability to choose a childyyi pe analyzed, and then compared, with respect to two
of w; in wy. For f(wy), the factor 1y corresponds to the criteria. The first is the redundancy of each algorithm due
choice of a fathew of wy in w,_,, and then the choice of g jts exploration scheme. To compute it, it is not necessary
wg, with probability =757. This ends the proof. to consider the algorithms with re-initialization, we coane

B only the redundancy of the algorithms URS and SDRS applied
Now, letV,, = (v1,...,v,) be the ordered sequence of visiteqyithout repetition. This redundancy analysis will be done i
nodes inn steps with respect to SDRS. It can be represent@¢hction of the timen, or the number of successive steps,
as follows: needed to cover a given numbenf nodes in the considered
ly<h+1 graph. The direct relation between redundancy and covering
time is the following:

Proof: The probability a(w,) to revisit a node among
w,, is the sum, for eacly; in w,, i =1, ..., k, of 1/k, which
is the probability to choose the father;,, multiplied by the

lo=h+1 7 =il

Y
%*k..x0 ®e..0 (x|e)"0 ...00..0 (x|e)*0

n redundancy = n_k;
where the bullet marks represent repeated nodes organized o . _ " .
sequences of length. Each sequence corresponds tovalks In fact_, an exploration algorithm, at each step Qf.ItS rum ca
containing only repeated nodes from the re-initializatioil only _V's't a nove_:l node or repeat an already visited one. In
reaching an empty node (circle mark). Star marks represgﬁ? first case, either the time and the_ nl_meer of covered
the k distinct nodes belonging to the sequences of leng de_sk are incremented by one, while in the second case
l.. This sequences correspond, each one, to a non enti _tlm_e is incremented but not the number of covere(_:i node_s,
repeated sequence«te)*) ending with an empty node. which increases the. redundancy. The mean cover tlme.W|II
be exactly and efficiently computed meaning the recursions
provided in theorem 1.

With more details, each; is organized as follow:

aii az,i Qry i The second criterion of analysis is the mean number of
Vi=ee..00%e..00..00.. 00 covered nodes. This will be considered for the repeated

versions of the algorithms, i.e. RURS and RSDRS. This
The elementary recursion f&tD RS is a bit more complicated corresponds to the more actual case, when the graph to be
than for URS and one must distinguish closed and opeexplored is too large with respect to the memory size. In
points of exploration. The exploration is said to be in a etbs this case our algorithm URS reinitialize itself each time th
point at stepn, if it has reached a deadlock at step— 1, memory is full. Note that in [11], the re-initialization olfi¢

algorithm DRS is not considered and the case of memadmwo terms appears. The first one* (K, = k) =

urs \—mn

shortage is not studied. Here we place the two algorithmsdrk) P, (K, ; = k) is a redundancy term, that is

the same context where re-initialization is applied eaofeti no novel node is visited in stem, while the second

the number of covered nodes reaches a prefixed threshd@fl, (K, = k) = E;’.‘Zl Bi(k) Purs(K,,_; =k —1;) is the

which is, in our case, the memory size. innovation term, so a new nodes is visited at stepThe
repetition factora(k) is equal to the probability to revisit

In the context of large graphs, it is not easy to reach anode at step. and so given bya(k) = % The

coverage level up tal00%. Also, the graph sizes can beinnovation ones corresponds to the case where, atrstep

unknown, so, we consider the number of covered nodes ratherel node is covered at some levglj = 1,..., h, so that

than the coverage level. The algorithms RURS and RSDR(k) = ™2t =1st.

will be compared in terms of the mean number of covered

nodes for a given time of exploration, which constitutes agimilarly, for P4,s(X,, = k,C) and Pyu,.s(K, = k,O),

equivalent criterion to the mean time for a given coveraggmplified recursions were obtained by summation of the

that we applied for URS and SDRS. The mean number efementary equation in lemma 2 on the same set of sequences

covered nodes, function of time, will be exactly computed, (see the proof of theorem 1). The same notations are

for RURS and RSDRS thanks to theorem 2. used for the redundancy and innovation terms and one sets

Pgdrs(Kn = E) = Pgdrs(Kn = E’ C) + Pgdrs(Kn = E’ O)

Note that in our theoretical study we will consider hereaftefhese recursions were, in fact, computed in the goal to

graphs with medium to small sizes but which are more thatain the result of theorem 1 below related to the mean

5 times greater than the considered memory size. The resgliser time. The mean timé&4 (k) to coverk nodes by an

obtained on these prototypes can then be scaled to mafgorithm A (URS or SDRS) can be expressed in function of

great graphs taking the same proportions of memory to grajbie innovation probabilities as following:

size. The use of large size graphs is very heavy because the

theoretical formula are recursive in the steps number akal ta Ta(k) Z Ta(k)

|E|=k

much memory size to be computed.
Tak) = > nPi(K,=k)
n==k

IV. CASE OFTREES

We place ourselves first in the context ofraary tree of
depthh, that is, every non-leaf node has successor nodes,
and every path from the root to a leaf node has length \yiin some further investigation, the cover time is computed

Recall tham denotes the number of successive steps in a N synction of the following intermediate statistics givee-
of the algorithm. cursively as:

In the case of a regular tree, the elementary recursion

in lemma 1 (resp. in lemma 2) leads to a much morgo ;) _ zh: Bilk) o (k—1:)

simplified one, depending only on the numbers of nodes”* ™ —l-oalk) "

of w, in each level of the tree and not ow, Iitself. h

Considerk,, = (K}, ..., K), the vector of random variablesgl () = 1 SO (k) + Z pi(k) S (k—1;)
expressing the number of explored nodes at each level 1—a(k) —~ 1—a(k)

j=1,.., h, at stepn, and letP,,(K,, = k) the probability
to cover the vectork = (ki,...,kn) in n steps by URS and for the SDRS algorithm :
algorithm. For SDRS, we distinguishsq,s(K,, = k,C) and
P.irs(K, = k,O) that denote the probabilities of covering
k in the closed and open cases respectively. For URS for S0, (k) =
example, the aggregation (summation) of the elementary

recursion in lemma 1 on the set of all sequenegshaving

k; nodes in the levelj, j = 1,...,h, gives the following s, (k) =
simplified recursion :

|
M=

’Y;)(E) S.gdrs (E - 1j7h)
1

<.
Il

M=

(3 () Sk = 15)
1

]Purs (Kn = E) - OZ(E)]Purs (Kn_l = E) + 5] (E) Sg(h’s (E - 1j,h)) + N(E)Seo(he (E)

<.
Il

h
+ Zﬁi(@ Purs(Kpy =k — 1) where, v} (k), vj(k), d;(k) and u(k) are explicited in the
proof of theorem 1. Then, the mean tim&s,. (k) and
wherek — 1; = (k1,....,k; — 1,...,kp), 1 < j < h. Tsars(k) of coveringk by URS and SDRS, respectively, are
given in the following theorem:
In the r.h.s. of this equation, as in the elementary one,

Theorem 1: actual case, when the graph to explore is too large with
_ 1 _ 0 respect to the memory size. We start by noting the relation
Turs(B) = (i (1) Sura(l) = k) Sura(B) in lemma 3, that holds for all algorithm on all graphG,

Toars(k) = [le S (ke — 10) + dy1 (k) S s (— 1j’l)} between the probability’s (K, = k) to coverk nodes in
iz n steps and the reachability probabilitiés (v| K, = k) to
+ a(@ S;m(@ —b(k) 5%, (k) have, inn steps, reaching a node and covering exactly

nodes. Note that, in the case of trees, these last proliedbilit
depend only on the node leveland not on the node itself,
because of symmetry. In the case of a grid, we must compute

Proof: See appendix B for the proof and the exp“CFZeeT)robablhty to reach corner and non corner nodes at each
formula of the coefficients(k), b(k), ¢, (k) andd; (k). '

k=150 = (ki,onky — 1, ki — 1, . k)

. . . . Lemma 3:
Applying the previous result, we obtain the mean cover time
computed exactly for URS and SDRS and shown in figure Pa(Kn =k) = 1 ZPA(” K, =
4 below for three parameterized trees. The notafigh, m) ki
means that the considered tree is of heighand degree Proof. We denote by , the set of thek-length

m. Note that the mean cover time is traced in function Cgequencegu that the a_|gor|thmA can perform inn steps.
the coverage level rather than the number of covered nodkest 1,, the characteristic function ab: 1 ()=1lifvew

Giving the fact that our interest is focused here on thand 13() = 0 otherwise. Note thaEveg w(v) =k for all
redundancy comparison, the case of a set of covered nodes Q,’Zm, Then,

going beyond the memory size is not considered. It was,

then, possible to make the comparison up to the full coverage(x, = k) = Z Pa(w) = Z MPA(M)

where we obtained the more significant difference in term of weak wek | F
mean cover time between the two algorithms. 1
=3 DY lu@Pa)] = Z Z Pa(v|Kn = k).
We can see in figure 4 that the URS algorithm takes ved weay ved
which ends the proof.
x 10" Theoretical cover mean time, URS vs. SDRS, Tree m
35 T T T T
o ggg;;lgg)z))/ As we said above, the criterion considered here is the mean
3 URS, T(6.4) /A number of covered nodes function of time. Thanks to lemma 3,
TR // this can be computed basing on reachability probabilities t
25| — — SDRS,T(56) / 1 we first compute by returning to the elementary recursions

of the algorithms. In fact, as previously, by summing these
recursions on the set of the sequencgs containing the
node i and having in each levef = 1,..,h, k; nodes,
one obtains recursive formula for the reachablllty proh?m
urs(|K k) sdrs(|K = E C) sdrs(|K - E O)
and then]P’gd,g(z| = k) = Pus(i|K, = kC)+
Poars(i|K,, = k,O). "These probabilities are defined exactly
as previously except the fact that the nade now considered
to be covered. Note that these probabilities are assocrtad
o 20 4 o e 70 8 e 1o URS and SDRS without repetition and then computed for
Coverage level a number of covered nodés less than the re-initialization
threshold (the memory 5|ze7)f For example, for URS, one
obtains, with~y (k) =

Mean cover time

Fig. 4. Mean Cover Time for Tree m(k 1
Purs(i| K, = k) =
in average less time than SDRS to cover a given proportion
of the graph. This can be observed mainly for proportions(k) Purs(i|/,,_, = k) +Zﬁ] Purs (Il K,y =k — 1)
more than70% and for large trees. We define thiensity
factor DF' of an m-ary tree of depthh by the ratio 7. In (k—}[wrs(t— UK, | =k—1;) —Pus(i|K, |, =k— 11-)]

fact, the higher the density factor is, the larger the déffere .
between the cover times of the algorithms is. In the case &nce, these probabilities are calculated, one sets
a “thin” tree, which has smalDF (typically < 0.05) the

SDRS algorithm can perform better than URS but this can be Pa(i,s) =) Pa(ilK, =k)
obtained only for extremely thin graphs. |k|<N
Pi(i,s) = > Pa(ilK,=k)

In the following of this section we return to the more |k|=N

whereN denotes the memory size adddenotes indifferently 1500 Theoretical mean nb. of covered nodes, Memory: 15%
one of the algorithms URS or SDRS. Their repeated versions o URsTuoD)
will be noted RA. Then, the mean number of covered nodes URS, T(6.4)
of RA in function of timen is given in the theorem 2 below:

— — - SDRS, T(6,4)
URS, T(5,6)
— — SDRS, T(5,6)

1000 -

Theorem 2:1f N is the memory size or a prefixed threshold
of re-initialization, then the mean number of covered ndues
RA is given in function of timen as:

3

=]

=]
T

Mean nb. of covered nodes

Cov(n ZmPRAzn

where
Pra(i,n) =Pa(i,n) % 2000 2000 Timeeobo 5000 10000
+) [PA,n) + (1= Pa(i,m))Pra(i,n —ni)]
e Fig. 5. Mean number of covered nodes for Tree
Proof: By lemma 3, one has:Cov(n) =

Zﬁec Pra(v,n). So, all we need to show is the second
equality which is a recursive expressionlat 4 (i,7) meaning mean coverage and the reachability probability for URS and
P* and P4. In this expression the second terfy(i,n) SDRS. We will analyse this matter basing on the fundamental
corresponds to the case where no repetition occurred duriiegursion in lemma 1 and 2. We first note that all possible
the time n, while the sum onnl corresponds to the case(macroscopic and then less difficult to compute) recursion f
of some re-initializations, such that the first one occurradRS or SDRS should be a summation of the corresponding
at stepn,. Then, there is two possibilities i: was reached elementary one on some suitably chosen$%ebf sequences
before stepnl, which has a probability®* (i,n;) to occur, w,: the coefficients in the elementary recursion must be
or i is not reached untilh; and must be reached after inconstant or,, and the set of the,_;'s, whenw,, € Sk, must
the n — n; remaining time, which leads to a probabilitybe easy to identify. For clarity sake, we analyse in dethiés t
(1 =P%(i,n1))Pra(i,n — n1). This ends the proof. equation in lemma 1 for our algorithii RS. The coefficients

B o(w,) and 5(wy,) in this recursion must be constant &h
We observe in figure 5, the evolution of the number aind the set of thev, ;'s, whenw, € Sk, must be easily
covered nodes in function of time. These curves, reprasgntparameterizable. This seems to be very difficult to obtain, o
the behavior of the repeated algorithms RURS and RSDRBpossible, even in the case of infinite, oriented, grid, thig
are traced for three trees. The repeated algorithms @m®blem will be overcame as explained below. In this case the
experimented for a memory sizeV] of 15% w.r.t. the output degree of the nodes is the same, gagnd one has:
size of the graph. We have considered other memory i
sizes (10% and 20%), but the results are similar: RURS alw,) = 2imy [C(wi) Ny
algorithm performs, clearly, better than RSDRS, espsciall o k.d
near to the total coverage rate. We observe also that the Blwy) [P (wr) N w4 |
difference between RURS and RSDRS in the number of (k—1).d
covered nodes is more important as more as/ilieis greater. Note that:

k
D IC(w) Ny | =k — 1+ Int(wy,)

=1

Note that by using the reachability probabiliti®s, (i, n)
(resp.Pra(i,n)), one can compute the minimum reachability
probabilities for URS and SDRS (resp. for RURS and RSDRS)
in function of time. This criterion can be very interesting i where Int(w,,) is the number of intersections iw,. So
practice if, in order to detect efficiently an eventual budghia unlike the case of a graph without intersections (e.g. tree
system, which corresponds to a defective node in the magleligraph), this sum is not constant on the set of k-length
graph, one can take account of the worst case where the bugdguences. If we try to consider the set of sequences that
localized in a node of minimum reachability probability. tdo keep invariant this sum, the problem is that this set is too
that the number of such nodes can be great as in the casdlififcult to identify and more is the set of the corresponding
tree like graphs. Wy_1'S.

V. CASE OFGRIDS Note also that:

We place ourselves here in the context of multi-dimensional &
grid. As in the previous section, we are interested in effiicie Z| wi) Nw,| = Z |F(w;) N w,|
computations of statistics like the mean covering time, the =

and then the coefficients((w,) and f(w,) depend only indexes:
on the set of fathers number§ = |F(w;) N w,|. But,
again, the set of sequences corresponding to a given tupléemma 4:Let ¢ a node in the grid. Its coordinates
(f1,..., fr) of father's numbers is difficult to identify andare notedx;, ¢ = 1,...,d. Then, having only the index
the corresponding set of the, ,’s does not correspond tog, one can compute the sefs,(¢) = {i,z; > 1} and
(f1,-, fx—1) becausef; is the number of fathers ofy; in J,u:(q) = {é,2; < L — 2} in 2d operations only.
w,;, which is different of that ofw; in w;,_;.
Proof: Since belonging to{0,...,L — 1}, the z;’s are

In order to more analyse this issue, we noted also thginply the L-ary decomposition coefficients of the integer
when reiterated with respect to the time index franto k, These can be computed as following: foe d, ..., 1, x; =
the elementary equation reads, when the out-degree of #g;/L?) andq = q — x; L. This ends the proof.
nodes is the same, as : []

Since the degreel is always limited, these computations

k are not consuming at all even for grids of many thousands
P(wy,n) = P(w,, k) Z H(Mj)%‘ gf podes_,. Recall that grids in model—chec.king are alwgys of
[y|=n—k j=1 limited sizes. Then, using lemmia one obtains the following
where results :
P(w,, k) = %7 M; = M Proposition 1: The children and the fathers of a nogare
(k—1)id j.d given respectively by:

and f; (resp. f; ;) is the number of fathers ab; situated in _ i1
{w1, ..., w;—1} (resp. in{ws,...,w;}). When we look to this Cla) ={a+ Li_f Z. € Jout(9)}

explicit expression, it evidently appears the difficultytteat F(g)={q—L"", i€ In(a)},

it in a recursion manner. The set of invariance of this eguati 1o output degree (resp. the input degree)qofs then
can correspond for example to a given prodfict.. fr and a 1C(q)] = [Tout(q)| (rESP.|IC(Q)] = |Tin(q)))-

given set of redundancy rat¢d/;,j = 1,...,k}, but it is not

easy to identify and process with such a set. Moreover, in order to easily verifying if these childreriffars

o) . are covered, and so calculatingC(w;) N w,| and
These difficulties to sum the elementary recursion sansﬁgsl(w) N w,_,|, the sequences are stored in a stratified

by URS and SDRS, are due essentially to the great rgiynner with respect to their level in the grid:if, is stored

of communications (intersections) in the case of the grigh the levell and the added node;, is child of w;, thenwy,,
However, this is the same reason for which these recursiQ pe stored in the level + 1 below.

are useful in practice to calculate exact exploration stiaf

in this case, especially by meaning some managemepi§ure 6 gives the results of comparisons of the mean
explained below. In fact due to intersections, the ”Umb€6vering time for three grids, whei@(L, d) means that the
of ordered sequences, with distinct nodes, generated @’Yd is of degreed and the length of each side & + 1.

the algorithms is reasonable in many cases of study. N¢{€js clear that the URS algorithm outperform SDRS. Its

also that the sizes of grids to be considered are in geneggheriority is even more clear than in the case of graphs
little, as are grids in model-checking domain. In order tQ;ithout intersections (tree).

easily use the elementary equations, some managements

seems to be necessary to compute the exact stalistics fOyioreover, for the repeated algorithms RURS and RSDRS,
URS and SDRS in the case of multi-dimensional gridghe mean number of covered nodes has been traced in function
First, the k-length sequences are obtained, recursivelii) € of time for different grids. The reported result in figure 7
one by adding a node to a (k-1)-length sequence whigRresponds to a memory size of 15% w.rt. the size of the
is registered until their children are generated. Secondbfaph. As for trees, the algorithms RURS and RSDRS are
thi coefficients in the elementary equations, like the SUrBRperimented for three grid graphs and for three memory
i1 (|C(wi) Ny) /|C(wi)|, are registered and incrementedjzes (v) of 10%, 15% and 20% w.rt. the size of the
when a novel nodey, is considered and then the probabilitiegaphs. The results are similar for the three memory sizes:
are updated. Third, in order to obtain rapidlyw) and F'(w), the performances RURS are clearly better than RSDRS. The
one must index efficiently the nodes of the grid. Suppos@periority of RURS is more marked for high coverage and

that the grid is of dimension and lengthL, on each side. great values of thé F. This superiority is, again, more clear
So, the total number of nodes 1§ = L?. These nodes will ¢, grids than for trees.

be indexed fronD) to N — 1 as following: if w is a node of

coordinates(z, ...,z4), 0 < z; < L — 1, then it receives VI. EXPERIMENTAL RESULTS

the indexind(w) = Zf':l x;L'~1. Consequently, one has We complement our theoretical analysis with a set of
the following lemma where we identify the nodes with theiexperimental results. We implemented the two algorithms

Theoretical mean cover time, URS vs. SDRS, Grid | Example | Quicksort | Token | Fischer| Server |

10000

: URS,‘G(Z,S) ‘ ‘ ‘ ‘ ‘ ‘) Si_ze (no. states) 6032 20953 | 34606 | 35182
9000 | — — SDRS, G(2,8) / Diameter 19 72 14 28
URS, G(7.3) / DF (density factor)| 0.083 0.016 | 0.150 0.052
8000} | — — SDRS, G(7,3) ;4
URS, G(11,2) /
70001| — — SDRS, G(11,2) ;o TABLE |

.E 6000 - // s GRAPHS DESCRIPTION

% 5000 - //

g oo e 1 [Cov. level | Algo | Quicksort| Token] Fischer] Server |
30001 put 1 60% URS 0.389 3.283 1.841 | 4.490
000l 7] 60% | SDRS 0.641| 0.752| 4.070| 7.441
Lol 70% | URS 0.609] 4.301] 2.765] 5.507

B - T 70% | SDRS 0.871 1.084 5.726 8.893

% 2 w2 4 0 f!o | 0 8 s 100 80% | URS 0.882] 5.744| 3.800| 6.821
overageeve 80% | SDRS 1.411| 1584 8173 11.966

90% URS 1.703 8.047 5.955 9.974

Fig. 6. Mean Cover Time for Grid 90% | SDRS 4.202 2.480 13.327 | 19.158

100% URS 7.723 | 21.247 | 46.097 | 41.452

100% | SDRS 12.459 | 25.221 | 125.091| 99.460

Theoretical mean nb. of covered nodes, Memory: 15%
350 T T

— URS, G(16,2)
~ — SDRS, G(16,2) TABLE Il

L URS, G(7,3)]

3001 T GhRs o 3) - MEAN COVER TIME (SECONDY
—— URS, G(4,4) —-
— - — - SDRS, G(4,4) -

N

a

=]
T

particular in terms of the select function. Other variants o
this scheme apart from URS and SDRS will be reported in
future work. Our implementation allows the user to define the
rate of leaves or internal nodes to be explored —which raflect
depth- or breadth-oriented exploration— by tuning a mixing
parametermx. Choosing this parameter appropriately may

200

N

o

=]
T

Mean nb. of covered nodes

1001

50, 200 s oo) o000 require an a-priori knowle_dge of the graph s.tructure (dgnsi
Time and diameter), although, in some cases, this parameter may
be computed and adapted the fly
Fig. 7. Mean number of covered nodes for Grid A. Cover time

Each algorithm was tested on different graph examples: the

Quicksortalgorithm, theToken Ring ProtocolFischer's Mu-
URS and SDRS on the model checker IF [28] and run thefi,| Exclusion Protocohnd aClient/Server ProtocolTable |

on several examples. Several measures were computeddfQhyys the size (i.e., number of states) and the diameter (i.e
each algorithm. The examples have been chosen accordigenih of the longest acyclic path) of each example. Theetabl

to the experiments needs. First, to compute the mean Co¥ely shows the density factor of the graph of each example,
time, we have chosen some examples of medium size, jBfined as

order to be able to repeat the algorithms a sufficient number pE="
of times to achieve full coverage of the reachable stateespac h’
These examples have differeténsity factorswhich allows wheref is the graph diameter and the degrees computed
us to analyse their behavior according to this parametapproximately by reference to a regular tree where the size
Second, in order to compare the randomized algorithro§the tree isM ~ m”. Thus, for a graph of sizé/, we let
with the exhaustiveBF'S algorithm implemented in/F, m be theh-root of M.
we have chosen some examples of very large (unknown) sizes.

For each case, we repeated the experiment 100 times
Our implementations of URS and SDRS use a hasimd we computed the mean cover time of 60%, 70%, 80%,
table to keep visited nodek. This facilitates the storage 90% and 100% of the graph. The resulting time for each case
and the search. When a node is completely explored (havistgdy is reported in Table II.
all its successors visited), it will be deleted from the éabl
to avoid redundant revisits. In this work, we have describedVe observe that the URS algorithm performs better in
the URS and SDRS algorithms, but our implementation large graphs, for which theDF > 0.07. For a small
more general, following the generic scheme of Figure 1, iF < 0.03, SDRS performs better for non total coverage

(coverage at 60%, 70%, 80% and 90%). For medium values x10° Numberofcovered nodes, Token
of DF ~ 0.05, URS performs better also. These results are
reported in the following curves which are compatible with
the theoretical ones. 7"

Mean cover time, URS, SDRS
140

T T
— URS, Quicksort
URS, Token
URS, Fischer A
URS, Server /
— - — SDRS, Quicksort /

BFS limit after 9h50

120+

Nb. of covered nodes

1001 | - — — SDRS, Token /7 2l il
> — — SDRS, Fischer /
g — — SDRS, Server / RURS
£ sof , , 1r RSDRS |7
@ — BFS
> /
3 0 n
2 eol / 1 0 5 10 15 20 25 30
g / Time (min)
= /

x 10° Number of covered nodes, Fisher
; ; ; ;

N

[
©
T

=
o
T

60 65 70 75 80 85 90 95 100
Coverage level

=
>
T

=
N
T

Fig. 8. Experimental Mean Cover Time (seconds)

[N
T

BFS limit after 9h50

0.8¢/ q

Nb. of covered nodes

14
)
T
I

RURS
RSDRS |
— BFS

I
>
T

B. Partial vs. Exhaustive

I
)

5 10 15 20 25 30 35 40

We have also experimented on very large graphs of ° Time (min)
unknown reachable size. We have rupF'S exhaustive . Number of covered nodes. Server
exploration, and RURS, RSDRS partial algorithms on each 22/ ‘ ‘ ‘ —
one. The number of explored states was collected over all ol -]

runs and compared to the exhaustive execution. So, the
execution evolution curves have been drawn as a function of
time.

181

161

14f I - B

We observe in Figure 9, that the exhaustive BFS exploration

stagnates after a certain number of explored nodes. This lim

corresponds to the number of states supported by the aleilab

memory. The repeated partial exploration algorithms URS 08 |

and SDRS go beyond this limit, and can explore up to 40% 06}

more nodes than their deterministic counter part. Noti@ th s ‘ ‘ ‘ ‘

the BFS limit occurs at a different number of nodes for each 0 5 Y et 2 30

of the three case studies, even though they all use the same

amount of main memory. This is because in each case study

the amount of bytes needed to store a single state is differen Fig. 9. The number of covered nodes evolution

it is higher in Token than in Server, and slightly higher in

Server than in Fischer. The URS algorithm is generally bette

than SDRS but we think that this depends on the graxh VII. CONCLUSION

which is unknown here. We have presented a generic randomized state space
exploration scheme that unifies many randomized explaratio

We observe that in some cases (e.g., Figure 9: Fischexdgorithm variants. In particular, we have proposed the

the randomized exploration algorithms also stagnate aftetUniform Random Search algorithm that we believe to be

certain amount of time. According to our previous experitaenthe first randomized algorithm that explicitly uses main

on medium-size graphs, this happens when reaching clasemory resource limits to guide its behavior. URS is also not

to 90% of the graph. In this case, exploring the “last” statggerforming a typical random walk, in the sense that it may

becomes increasingly difficult because of redundancy. choose to “branch” from different nodes along a random walk

1.2

BFS limit after 9h50

Nb. of covered nodes

RURS
RSDRS |
— BFS

path. We have compared URS with a simplified version @f4] H. Sivaraj and G. Golpalakrishnan. Random walk basegisiic algo-

Deep Random Search, a performant and optimized algorithm
based on random walk [11]. We also propose “reinitializquS]
variants of the above two elementary algorithms, called

RURS and RSDRS, where each time the memory is full the X)
algorithm is restarted and repeated several times. We hév% J. Geldenhyus. State caching reconsideredSPiN Workshopvolume
used a density factor parameter to classify graphs intem™thi[17]
and "large”. We performed a detailed theoretical study to

compute the mean cover time of URS and SDRS and th_g]
mean number of covered nodes of RURS and RSDRS. Many

of our results are available only for special classes of lggap

namely trees and grids, but may give some insight of wh%?]

happens in more general graph structures.

Both our theoretical and experimental results show thLazP]
the URS algorithm explores in a more uniform fashion and so
covers the state graph more rapidly in most cases. HoweVéH
in some cases, in particular when the graph is thin, SDRS
performs as well or better than URS. We have also shovaz]
via experiments, that these two algorithms, when repea(;[%g
several times, can —in the case of very large graphs exagedin
the size of main memory— explore a state space of more than
40% in addition to that explored by an exhaustive exploratid?4l

based on breadth-first search.

(1]

(2]

(3]
(4]

(5]
6l

(7]

(8]

(9

[20]

[11]

[12]

(23]

[25]

REFERENCES

J. P. Queille and J. Sifakis. "Specification and verifimatof concurrent
systems in Cesar”. IfProceedings of the International Symposium in
Programming volume 137 of Lecture Notes in Computer Science,
Berlin, 1982. Spriner-Verlag.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. "Automatierification
of finite state concurrent systems using temporal logic ifipatons”.

In ACM TOPLA 8(2),1986.

E. M. Clarke, O. Grumberg, and D. Peled. "Model Checkiny!IT
Press 1999

M. O. Rabin. “Probabilistic algorithms”. 1d. Traub, editor, Algorithms
and Complexity: New Directions and Recent Resylégyes 2-39. Aca-
demic Press, New York, 1976.

R. Motwani, P. Raghavan. "Randomized Algorithms”. Caidge Uni-
versity Press 2005

J. Burch, E. Clarke, D. Dill, L. Hwang, and K. McMillan. $8nbolic
model checking:10?° states and beyond”. 16th Conference on Logic
In Computer Science (LICSpages 428-439, june 1990

R. Pelanek, T. Ha#l, I. Cerna, and L. Brim. Enhancing Random
Walk state space exploration. FEMICS '05: Processing of the 10th
international workshop on formal methods for industriatical systems
pages 98-105. ACM Press, 2005

C. H. West. Protocol validation by random state expiorat In Inter-
national Symposium on Protocol Specification, testing aadfivation,
1986

D. Owen. and T. Menzies Lurch. A lightweight alternatite model
checking. InProc. of Software Engineering and Knowledge Engineering
(SEKE’2003) pages 158-165

R. Grosu and S. A. Smolka. "Monte Carlo model-checking’Proc. of
Tools and Algorithms for Construction and Analysis of Syst¢TACAS
2005) volume 3440 ofLNCS pages 271-286. Springer, 2005.

R. Grosu, X. Huang, S.A. Smolka, W. Tan and S. TripakiDeép
Random Search for Efficient Model Checking of Timed Autorhata
In Proc. of MW'06, the 7th Monterey Workshop on Composition of
Embedded Systemgages 37-48, Paris, October 2006

P. Haslum. Model checking by random walk. Proc. of ECSEL
Workshop 1999

M. Mihail and C. H. Papadimitriou. "On the random walk tined for
protocol testing”. InProc. Computer-Aided Verification (CAV 1994)
volume 818 of LNCS, pages 132-141, 1994.

[26]

[27]

(28]

rithms for distributed memory model checking. Pmoc. of Parallel and
Distributed Model Checking (PDMC’03)olume 89 ofENTCS 2003

A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Probéibtic state
space search. IRroc. of Computer-Aided Design (CAD 199@grges
574-579. |IEEE Press, 1999.

2989 of LNCS pages 23-39, 2004

P. Godefroid, G. J. Holzmann, and D. Pirottin. "Stateas caching
revisited”. InProc. of Computer Aided Verification (CAV 1992plume
663 of LNCS pages 178-191, 1992

P. Godefroid. Using partial orders to improve automaterification
methods. InProc. 2nd International Conference on Computer Aided
Verification, volume 531 ofLNCS pages 176-185, 1990

P. Godefroid. On the costs and benefits of using partidelomethods
for the verification of concurrent systems. Pmoc. Workshop on Partial
Order Methods in VerificationDIMACS series, volume 29, pages 289-
303, 1996

E. Tronci, G. D. Penna, B. Intrigila, and M. Venturini. Rrobabilistic
approach to automatic verification of concurrent systemsProc. of
Asia-Pacific Software Engineering Conference (ASPEC 202001

F. Lin, P. Chu, and M. Liu. Protocol verification usingaohability anal-
ysis: The state space explosion problem and relief stegeGomputer
Communication Reviewolume 17(5):126-134, 1987

G. J. Holzmann. An analysis of bi-state hashing.Piroc. of Protocol
Specification, Testing and Verificatiopages 301-314, 1995

G. J. Holzmann. Automated protocol validation in Argasssertion
proving and scatter searching. IEEE trans. on Software engineering,
volume 13(6):683-696, 198717(5):126-134, 1987

U. Feige. "A Tight Upper bound on the cover time for Randaalks
on graphs”. InRandom Structures and Algorithmégolume 6(1), pages
51-54, 1995

U. Stem, and D. L. Dill. Improved probabilistic verifitan by hash
compaction. InAdvanced Research Working Conference on Correct
Hardware Design and Verification Methgdsages 206-224, 1995

R. Nalumasu, and G. Gopalakrishnan. An efficient plotider reduction
algorithm with an alternative provision implementatiom Formal
Methods for System Desigmolume 20(3), pages 206-224, 1995

E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exphgjtisymmetry
in temporal logic model checkingzorm. Methods Syst. Des9(1-2):
77-104, 1996

M. Bozga, J. C. Fernandez, L. Ghirvu, S. Graf, J. P. Krimand
L. Mounier. "IF: a Validation Environment for Timed Asynasmous
Systems”. InProc. Computer-Aided Verification (CAV 2000)olume
1855 of LNCS pages 543-547, 2000

APPENDIX B. Proof of theorem 1

We start by showing the first statement:

A. Proof of lemma 2 Turs(k) = (1 — a(k))Surs(k) — a(k)Se,s (k)

Let P(w;,n,C) (resp. P(w,,n,0,v) be the probability
to cover inn steps the set of nodes, and to be, at the end
of stepn, in a closed point (resp. in an open point at nod
v). We denote byD(w,) the set of deadlock nodes im,
and we setl,,, (v) =1 if v =wy and1,, (v) = 0 otherwise.

First, we have already obtained, before the statement of
e theorem 1, the following recursion that expresses the
robability to cover the vectok = (k1, ..., k) in n steps by
respect to URS Algorithm:

Then forP(w,,n,C), since it must be in a closed point, no

node is newly reached at step at stepn — 1 the algorithm Purs(K,, =k) = a(k) Purs(K,_, = k)
reached a deadlock node and at steft, unsuccessfully,
looked for a successor of this node so that it will be in a + Zgj Purs(K, , =k—1;) (2)

closed point by stem. So there is two cases: by step- 1, -1
the exploration is in a closed point or in an open point at
some deadlock node In the first case, it must restart at stepthe mean cover time of URS is then given by:

n, with probability +, from a deadlock point, which gives the

<.

term L%’“)‘. In the second case, the exploration is open at <
nodew, So it must continue in the set of successors.of his Turs(k) = > nPlo(K, =k)

set is empty so the exploration reaches a close point with
probability 1. This gives the recursion:

1D(wy)l
k

h

nZﬂz u'rs nl_k_l)

= Zﬁi(@ > BulK, =k 1)
i=1 n==k

I
gisk

P(w,,n,C) = P(w,,n —1,C) +Z (wy,,m—1,0,v)

vED (wy,)

For P(w,,, n,O,v), there is4 cases for the algorithlSDRS:

- Case 1. no new node is covered at stepand, by = Zﬁi@ x S(k—1i),
stepn — 1, it was in an open point at some nodeso u must '
be in F'(v) Nw;, (i.e. a father ofv in w,;) and at stem, .

is chosen uniformly among@’(u) (: with probability |c< 57)- with
This gives the first terrg in the recurdsmn (belowgi o o
- Case 2: no new node is covered at stem@mn ste _ —)
n — 1, it was in a closed point: so at step it F(tzﬁrlwoseg, Witﬁ SE-1) 2 ((n=1)+1) Purs (K, =k~ 1)
probability +, a nodew in F(v) Nw; and picksv uniformly

amongC/(u). This gives the second term in the recursion. = Z Purs(K, | =k —1;)
- Case 3: a new node is covered at stem, it must bewy o
since the sequence is stored in visiting order, and, by step oo
n — 1, the exploration was in an open point at some node + Z(n— 1) Purs(K,,_, =k —1;)
u: SO w must be inF(v) Nw,_, and at stem, v is chosen ek
uniformly among C(u). This gives the third term in the oo
recursion. Note that the term,, (v) expresses the fact that = Z Pors (K, =k —14)
one must have = wy, otherwise the third and fourth terms n=k—1
are not considered in the recursion. oo
- Case 4: a new node is covered at stepand, by step + Z nPus(K, =k—1;)
n — 1, it was in a closed point: so at step it chooses, n=k—1
with probablllty L, a nodeu in F(v) Nw,_, and picks = 0. (k— 1))+ Sho(k— 1)),
v uniformly amongC'(u). This gives the fourth term in the o o
recursion. where
This ends the proof and one obtains the underlined recursion
for SDRS: o
]P)(Ekv n—1,0, ’LL)]P)(Ekv n—1, C) Sg‘rs (E) - Z Purs (K" - E)
P =
om0 = 2, |=em -t kewm) =
—k
+1 (v)(]P’(yk_l,n —1,0,u) N P(w,_,,n—1, C))} Surs(k) = Z n Purs (K, = k)
o |C ()] (k = DIC(u)]| et
Then:

h

Turs(k) = 3 Bi(0) (S0alk = 1) + Sl = 10)) @)

1=1

Using the recursion 2, one obtains:

SSJ"S (E)

i Purs(K,, = k)
n=~k

= > [a(k) Purs(K,,_, = k)

n=~k

+ Zﬁz

= ak)d Pus(K, , =k
n=k

h [eS)

+ AW Fuli, =k 1)

i=1

u’r‘s

n==k

Note that forn = k, P,,s(K,,_; = k) = 0, because irk — 1
steps the algorithm cannot cover more thHan 1 nodes, so
it cannot cover the vectdt which containsk nodes. Then

)

Sors(k) = a(k) > Purs(K, , =k)
n=k+1
+ Zﬁz Z u'rsK 1:E_1z)
n==k

So, by the variable change:= n — 1, one has:

[e'e]

S’Ers(k) = a(k) Z]P)“TS(Kn = E)
n=~k
h oo
i=1 n=k—1
= Sgrs + Z ﬁl 527‘5 - 1)
Then,
h
0 0)
Sure(®) = T Z:: k) Sura(k — 13) @)
Similarly,
S’LlL’I‘S (E) = Z n]P)urs(K = k)
n==k
= Z]P)“TS(KW, k)+z(n_1)Purs(Kn :E)
n==k n==k
= @)+ (= Dlak) Pur(K,_, = k)

n==k
h

+ D Bilk) Purs(K, 4 =k — 1,)]

= 52T5 i n—l urs K, *E)
n=k
+ Zﬁz Zn_l u'r‘s nlzk_l)

Then as previously, by making the variable change- n—1,
one obtains:

oo

S}LTS (E) =

h
= Surs(k) + a(k)Si(k) +) Bi(k)S (k —
i=1
and then,
1 _ 1 0

Su'rs (E) - W (Surs + Z Bl u'rs))(5)
Consequently, by equatiof3), one has:

’MTS Z /81 urs - 1 + Z ﬁl Szlj,'rs - Z)

and then by applying equatiorig) and(), one obtains:

Turs(k) = (1—a(k))Surs (k) + Surs (k)]

= (1 —a(k)Surs(k) —

[(1 - a())Surs()
a(k)Surs(k)

Now for the second recursion, related to SDRS, we
first established similar recursions for the probability

Poirs(K,, = k,C) (resp. Psars(K,, = k,0)) of covering
k = (ki,....,kn) (i.e. k; nodes are covered at each level
i =1,...,h) iIn n steps and being in a closed (resp. an open

point) of the exploration:

]P)sdrs (K =

n E) = Psars (K =
and

n E, C) +]P)sdrs(ﬁn = Ea O)

h
Psd'rs (Kn - Ev C) =

1

+

1

ms—1

[Q(E7 C) Psdrs(ﬁnfs - E7 C)

+ > Bk C) Paare(K,_ =k~ 1,,C)] (6)

j=h—s+2
where:
ak,c) =
. o _mkja — (k- 1)
ﬂ] (Ev C) - (k _ h +] _ 1)mj_h
1]-7]-/ = 1 +1j+1....+1j/.
1
]Psdrs K = k' O = Z me [Sd’l‘S(Kn—s 7&7 C)

s=1

h min(s+j—1,h)

DD

j=1 I=max(j,0)

B1a(k, 0) Paaro(K,,_, =k —1,,0)] (@)

where: Finally similar computations as those made forRS
algorithm, give the requested equation D RS:

ks + ...+ kn

T h h

mkj—1 — (k; — 1) Tars(k) = ZZ [le Sdrs = 10) +dj(k) SdTS(—1;0)

(k—1+j—1)ymi-! i=11=j

Then, the mean cover time of SDRS is given by:

ak,0) =

ﬁj,l(&v O) =

+ a’(k) Sd'rs(k) - b(E) Sd'rs(E)
where the coefficients in this equation are given by:

[e'e]

Toars(k) = Y nPlars(K, =k
o) ; el : ciu(k) = Bk, 0)do(l—j,1)
Note that the innovation probability fa§ DRS is composed dji(k) = Bk, 0)di(l - j,1) — do(l = 5, 1))
by two terms: a(k) = 1—do(0,h)a(k,C)
b(k) = di(0,h)a(k,C)

]P)sdrs (K - k)]P)sdrs (Kn = Ea C) +]P)gdrs (Kn = Ea O)
where

h+1
J
Plio(K, = k,C) = EZWSJ §j B, (k, C) x

s=1 j=h—s+2

XPoirs (K, _, = k=11, C)]

h 1 h min(s+j—1,h)

Plas (K, =£0) = Y —[> Y Bulk0)x

s

1 j=1 l=max(j,0)

*Poirs(K,_, =k~ 1,1,0)]

Then, as prewously’,@dm can be expressed in function of

mean statlst|c§0d .. andSL, . where:
Sgdrs (E) = Z]P)sdrs (Kn == E, C)
Ssldrs (E) = Z n]P)sdrs(ﬁn = E, C)

From equationg6) and (7), one obtain the recursions:
Ssars(k) = D7) (B) Slars(k = 15)

Slars(®) = 37 (3 ®)Skaral = 1) + 0, (B) 8%y (k= L))

where,
Q o dolh—j+ 1,h)B;(K,C)
uk) = k) = Ttk O
‘ _ d(h—j+1,h) o
6i(k) = do(h—j+1,h)7j(k)
B do(0, h)a(k, C)
pk) = = do(0, h)a(k, O)
-1 1
doj,5') = E%irfL
L 4 i=2
;i o =
di(4,5") = m— dO(]] +1)+T1]

