
System verification using randomized exploration of
large state spaces
N. Abed∗, S. Tripakis†, J. M. Vincent∗

∗ LIG, 51, avenue Jean Kuntzmann, 38330 Montbonnot Saint-Martin, France
† Cadence Research Laboratories, 2150 Shattuck, Avenue 10thFloor, Berkeley, CA 94704

Nazha.Abed@imag.fr, Tripakis@cadence.com, Jean-Marc.Vincent@imag.fr

Abstract— System verification is a technique used to improve
the correctness of hardware and software systems. It aims to
discover bugs in early development steps. A common approach
of system verification consists of exploring and analyzing the
reachable states graph, which represents the system behavior
in an exhaustive manner. This graph is often too large to be
entirely explored: its size grows exponentially in the number of
system components. The verification task then becomes a task
of partial exploration, subject to constraints on memory and
verification time. Several methods of random partial exploration
have been proposed based mostly on random walk. In this paper
1, we present a general strategy of randomized algorithms, in
particular a Uniform Random Search to perform partial, but
considerable, state space exploration with little memory and time
requirements.

I. I NTRODUCTION

To verify system correctness, one can proceed by
exhaustive verification (e.g. model checking) or testing.
Model checking [1] [2] [3] -the problem of deciding whether
a property holds in a system specification- has gained wide
acceptance within the hardware and protocol verification
communities, and is witnessing increasing application in the
domain of software verification. When the state space of the
system under investigation is finite, model checking may
proceed in a fully automatic, push-button fashion. Moreover,
should the system fail to satisfy the formula, a counter
example trace leading the user to the error state is produced.
Model checking however is not without its drawbacks,
the most prominent of which is state space explosion: the
phenomenon where the size of a system’s state space grows
exponentially in the size of its specification. State space
explosion can render the model-checking problem intractable
for many applications of practical interest.

Testing, on the other hand, is typically performed directlyon
the implemented system. This has the advantage of checking
the “real” system instead of a model of it. The disadvantage
is that anomalies are detected often too late, resulting in high
costs to correct them. Testing is inherently incomplete, as
there is no guarantee of covering the state space even after
several experiments.

Researchers have developed a plethora of techniques

1This work is partially supported by the ANR SETIN Check-Bound and
the Region Rhône-Alpes, France.

aimed at curtailing state space explosion, by reducing the
amount of memory necessary for states storage or reducing
the state space to explore. Examples of the approaches made
to reach the first goal are hash compaction [25] and bi-state
hashing [22] which consists of encoding the graph states
by the memory bits via a hash function. The methods that
aim to reduce the state space include partial-order reduction
methods [26]; which are based on the observation that
executing two independent events in either order results inthe
same global state and symmetry reduction [27]; which uses the
existence of nontrivial permutation group that preserves the
state transition graph. There is alsosymbolicmodel checking
techniques that operate on sets of states rather than individual
states, and represent such sets symbolically, for instance,
using binary decision diagrams (BDDs) [6]. In this paper we
focus on explicit enumerative state space exploration methods.

Other techniques aim to equilibrate the exploration of
the state transition graph. In particular, the techniques of
partial exploration based on random algorithms. These
techniques have been shown to be very effective in practice
to find errors or explore transition graphs. A randomized
algorithm is one which contains an assignment to a variable
based on the outcome of tossing a fair coin or a random
number generator. Randomized algorithms are extensively
used, basically for two reasons: simplicity and speed [4].
A consequence of using randomization is the fact that the
correctness or termination statements is given with some
controlled probability.

The randomized algorithms proposed in the literature
are –in their quasi-totality– based on random walk. A random
walk on a graph is a stochastic process of type ”Markov
chain”. The algorithm starts from the initial state, and at each
step, it chooses in a uniform way a successor of the current
state and visits it. This choice is independent to the traversal
history, which is characteristic of a Markov chain. When the
random walk encounters a deadlock point, it restarts from the
initial state. The algorithm terminates when a target stateis
reached or when the expected number of the visited states
reaches a certain limit. This method stores only an actual
state and does not keep any information about previously
visited states, thus it has very little memory requirements.

This simple form of random walk has been exploited for
verification tasks either for graph covering and reachability
analysis. It was applied first to model-checking by West in
1986 [8] which demonstrates that efficient sampling of the
reachable state space by random walk suffices to ensure the
effectiveness of testing real models. In the last few years,
the studies succeeded in exploring this scheme, and random
walk has been used for verification in the model checker
Lurch [9]. Some theoretical results are given when working
on a restricted class of graphs. For example, in [12], an upper
bound of the number of steps needed by Random walk to
ensure, with probability1 − ε, the covering of all the graph
is provided. It is given by:

1

ε
|V ||E| (1)

whereV denotes the set of the graph states andE the graph
edges. This bound is very large in practice and holds only
for closed strongly connected graphs. These results are so
restricted and not very useful in model checking. In general,
the most results are based on experimentation performed on
real and random graphs.

In [10], the authors definePz as the probability of detecting
a bug in one run of the random walk. This probability
depends naturally on the existence of the bug and also on
the capacity of the algorithm to detect it. An upper bound
of the numberN of repetitions needed by random walk to
detect a counter-example, with probability1 − δ, under the
assumption thatPz ≥ ε, is given by:

N =
ln(δ)

ln(1 − ε)

If, after N iterations, no bug is detected, the algorithm reports
that the probability of finding bugs trough further sampling,
under the assumption thatPz ≥ ε is less thanδ. Note that
Pz is, in general, unknown and difficult to estimate. Then, in
order to ensure the required assumption, one has to chooseε
little enough, which can renderN too large.

Because it is completely memory free, the random walk
method cannot distinguish between visited and not visited
states, and so it may spend large time to visit repeatedly
some few states (the redundancy property). Because of this,
covering the entire graph (or a high portion of it) may
need a prohibitively large amount of time (see equation 1
above). Also, the frequency (probability) of visits may be
very variable from one state to another (some states are more
frequently visited than others). This frequency depends on
the graph structure as well as the algorithm behavior. Several
methods have been proposed to avoid these drawbacks. Some
of these methods try to force exploration direction, like the
re-initialization methods that restart the random walk process
periodically to avoid blocking in a small closed components
for a long time. The re-initialization can be made from a
random state of the previous walk and not necessary from the

initial state. This has the advantage to minimize redundancy
and reach deep states [11]. The local exhaustive search
combined to random walk [14] explores better some regions
of interest (dense regions for example) which can not be
well explored with only simple random walk. This may be
the case for example if one know that it is near to a target
node. Guided search decides of the next exploration direction
based on general information about the graph and the system
semantic. In [15], the authors use a metric to estimate
reachability probability of a target node. To gain in memory
and time, the parallelization method of random walk seems
to be very useful and efficient. It explores more states [14]
and reduces significantly the error probability [12]. Other
methods use some additional memory to keep a subset of
the visited states. These states are used to report the counter
example trace as done in tracing methods or to limit revisits
of same nodes and improve the coverage as done in caching
methods [16] [17]. Caching is an exploration algorithm that
focuses on the strategy of nodes storing and deletion from the
cache. The exploration scheme can be made in a deterministic
fashion (BFS, DFS) or by random methods. In [20], the
proposed algorithm uses a BFS exploration method with a
randomized partial storage. When the memory is over, the
algorithm proceeds at a lower speed but do not give up the
verification. As reported in [20], this algorithm can save 30%
of the memory with an average time penalty of 100%.

As we have seen, all these methods based on Random
Walk improve the redundancy of exploration but the cover
time still very large, in general. In this paper, we propose
methods that aim to further improve exploration by avoiding
redundancy and reducing the cover time. First, a general
scheme that encompasses all previously mentioned methods
is given. Then, a Uniform Random Search (URS) algorithm is
proposed based on a different selection function than random
walk (RW). While RW is a depth-oriented algorithm, our
algorithm can go in depth, in breadth or in a uniform fashion.
We can also control the rate of depth or breadth exploration
by tuning a mixing parameter.

A major novelty of our randomized exploration scheme
lies in the fact that it explicitly uses a parameterN which
represent the maximum number of states that can be stored
in main memory at any given time. Thus, our algorithms
are resource-aware. Main memory is the main bottleneck in
exhaustive verification, for reasons we explain below.

The random algorithms proposed are sound, which means
that if a bug is found then the model is indeed incorrect.
As in [12], [10], they are probabilistically complete, in the
sense that if after several iterations no bugs are found, then
the system is correct with some probability which depends
on the number of iterations and visited states.

The rest of the paper is organized as follows: The proposed
scheme and algorithm are detailed in section II. Section

III gives some general theoretical results that are projected
on two cases of regular graphs in sections IV and V.
Experimental results are summarized in section VI, while
section VII contains our conclusion.

II. CONTEXT AND ALGORITHMS

We model a system as a directed transition graph
G(M, v0,Succ), where,M is a finite set of nodes representing
the system states,v0 is the initial node(v0 ∈ M) andSucc is
the transition function: it takes as input a nodev and returns
as output the set of all successors ofv. We do not dispose
of the entire transition graph. We can, however, construct
and explore it gradually by means of the initial state and
the transition functionSucc. We assume that the available
memory can store at mostN states.N can be computed by
dividing the size of the memory, by the size of the memory
representation of each state. To generate random algorithms,
a pseudo-random numbers generator is given. The generated
numbers can be considered as uniformly distributed on[0, 1],
based on which, other distribution laws can be generated if
necessary.

To verify a given safety property stated as an invariant
φ, the simplest method is to explore the graphG and verifyφ
for each states ∈ G. If we choose an exhaustive deterministic
exploration, the computer’s memory will be rapidly filled
by the N first reachable states (whereN depends on the
available memory as said above). Then, the computer will
typically spend most of its time inswappingmemory to/from
disk with very few additional states explored. Instead, we
choose a randomized partial exploration, and repeat it several
times with different paths (consequence of randomization)to
cover as many reachable states as possible.

One wishes, naturally, that the random algorithm explores
the state space efficiently, i.e., quickly and using reasonable
memory resources. Since the memory size is given and finite,
a good exploration is defined mainly according to the time
it takes: one can hope to cover with a random algorithm a
considerable percentage of the reachable graph in less time
than with the exhaustive algorithm which will be quickly
blocked because of the swapping.

A. A generic randomized exploration scheme

A random exploration algorithm can be cast into the
general scheme shown in figure 1.P represents the algorithm
parameters, for example the memory sizeN , the number
of initial parallel runs in the case of a parallel random
walk [14], ect. This last parameter, among others, can be
modified during the algorithm execution according to the
available resources and exploration needs. The setI contains
global information on the graph structure, for instance, mean
number of successors per node, mean number of loops,
strongly connected components, etc. Note that this type of
information can be collected on the fly and used to guide and
optimize the exploration [15].

General Random Exploration Algorithm

V : set of stored nodes (visited);
P : algorithm parameters;
I : global information ;
v : node;

V ← V0; //Set of initial nodes
P ← Par; //Algorithm parameters
I ← I0; //Initial global information

While (not stop condition) do
v ← select(V, P, I);
check(v); //verify if the property holds
(V, I) ← update(V, v, P, I);

done

Fig. 1. The general random algorithm

A specific algorithm that fits the above scheme is defined
by specifying thestop condition and the two functions
select and update. With these three parameters, one can
define many variants of the general algorithm, including
many found in the literature. Thestop condition can be,
for example, the presence of a deadlock, exhaustion of the
expected number of steps or simply reaching a target state.
Some algorithms in the literature emphasize state storage
and deletion strategies (FIFO, LFU, LRU, random ...), like
the caching techniques, so they focus in optimizing the
update function. Theupdate function modifies the setsV
andI in order to optimize the consumed resources and make
the evolution of the exploration effective. As mentioned
in the introduction, our interest is mainly the exploration
strategy itself, that is theselect function. Theselect function
chooses at each step the next nodev, to be visited from
the set of successors ofV ; the already visited states still
in memory. This choice can be guided by the information inI.

In this scheme, the random walk algorithm has as
stop condition the reachability of a deadlock point or
the reach of a target node according to the algorithm goal.
The select function is a uniform random choice between the
successors of the current node (the single stored inV), when
the update function consists on simply replacing the current
node by the one lastly chosen. In presence of a deadlock, the
current node takes the value of the initial state and so on.

As we are interested in the exploration strategy, we
propose a Uniform Random Search URS algorithm based
on a newselect function. URS is shown in Figure 2. We
have a setV of already visited states.V is of size N : that
is, the algorithm ensures that there are never more thanN

Uniform Random Search URS

V : set of stored nodes (visited);
N : Maximum size of V ;
n : Maximum number of steps;
v, u : nodes;
i, j : integer;

V ← {v0};
i ← 0;
j ← 0;

While ((j ≤ N) and (i ≤ n)) do
u ← pick uniformly one node fromV ;
If (Succ(u) 6= ∅) then

v ← pick uniformly one node fromSucc(u);
If (v /∈ V) then

check(v);
V ← V ∪ {v};
j ← j + 1;

end If
end If
i ← i + 1;

done

Fig. 2. The URS algorithm

states inV . Initially this set contains the initial statev0. At
each stepi, the URS algorithm picks uniformly one visited
stateu from V , and then uniformly chooses one successorv
of u. Note that this does not imply a uniform choice from
all the visited node successors. Ifv is not already visited
then it is checked with respect to the safety property and
added to the set of visited states. The algorithm stops, and
eventually restars, when the memory is full (j = N) or when
the expected number of steps is reached. This stop condition
that takes into account the parameterN is very important in
improving the exploration.

[11] presents an extended random-walk based algorithm
called Deep Random Search (DRS). Thestop condition of
DRS does not consider the limited memory size and supposes
that all non-closednodes2 – in each step of the algorithm –
can be stored in the available memory, which is not always
the case in practice. In this paper we use a simplified version
of DRS, that we call SDRS. The latter, like URS, uses a
parameterN modeling an upper bound on the number of
states that can be stored at any given time. This puts the two
algorithms in the same framework and allows comparisons.
SDRS (see Figure 3), has asstop condition the exhaustion of
the states in memory. Theselect andupdate functions are the
same as the simple random walk except the re-initialization
of the current node (update function) which is made by a
node chosen randomly inV and not by the initial node.

2A closednode is one that has all its successors visited.

Simplified Deep Random Search SDRS

V : set of stored nodes (visited);
N : Maximum size of V ;
n : Maximum number of steps;
v : current node;
i, j : integers;

V ← {v0};
v ← v0;
i ← 0;
j ← 0;

While ((j ≤ N) and (i ≤ n)) do
If (Succ(v) = ∅) then

v ← pick uniformly one node fromV ;
else

v ← pick uniformly one node fromSucc(v);
If (v /∈ V) then

check(v);
V ← V ∪ {v};
j ← j + 1;

end If
end If
i ← i + 1;

done

Fig. 3. The SDRS algorithm

SDRS will be studied in detail and compared to the
URS algorithm described above. According to [11], DRS
outperforms the simple RW, because when blocked, it is
reinitialized from a random visited state instead of the
initial one and uses additional memory to distinguish from
visited and non visited states which avoid much of redundant
explorations. For this reason, we omit comparison with simple
RW here and only compare with SDRS.

When the main memory is full, the algorithms are stopped,
the memory is emptied and the algorithms are restarted.
This can be repeated several times. The re-initialization can
be done from the initial state or from another randomly
chosen state from the setV of states visited during the last
exploration. Note that the initialization from the initialstate
often does not result in a very high degree of redundancy
because the number of states in each repetition is very large
and can usually match the graph’s depth. In the rest of the
paper, we will consider two situations in our analysis and
experimental results. In one situation we suppose that the
main memory is large enough to contain the entire state space
of the graph under exploration. In this case, we will speak
of the versions of the algorithms URS and SDRS where
these do not have to be reinitialized. In the second, more
realistic case for industrial-size examples, the main memory
cannot store the entire state space, and the algorithms are
run multiple times, after re-initialization as described above.
In this case, we will denote the algorithms by RURS and

RSDRS to emphasize the fact that they are re-initialized.

B. Evaluation criteria

The used evaluation criteria are based on our initial
objective, which is to come up with more robust exploration
algorithms. On one hand, improve the cover time of existing
randomized algorithms and on the other hand improve
the reachability and the coverage of existent exhaustive
methods. We define our criteria in two ways: stochastic and
experimental.

One considered criterion to study the algorithms performance
is themean cover time. The cover time is the number of steps
needed by a given algorithm which starts at the initial stateto
cover some percentage or all the graph nodes (i.e., to reach
some coverage level). For undirected graphs, the mean cover
time of any graph is polynomial [24]. For directed graphs
–like the ones arising in model checking– it is in general
exponential, except for some restricted classes of directed
graphs [12]. These classes are so restricted that they are not
very interesting for model checking. The mean cover time
gives a good indication on the capacity of the algorithm to
reach states and explore most of the graph. It informs us on
the estimated time to reach all nodes. A random algorithm
that has a better average cover time, has less redundancy in
its exploration. Cover time also reflects what can be termed
response time, with an errorε. For example, if one needs
a response about the system correctness with probability of
error ε = 0.05, the necessary time for giving this response
is the cover time of 95% of the graph. Some exploration
algorithms will provide this answer in less time than others.

When the number of all reachable nodes is unknown,
as is the case with very large real models, we compare the
number ofcoverednodes (i.e., visited nodes). As the number
of the visited nodes increases, the probability that a node
already visited either is revisited increases (redundancy). It
results from this, that the number of newly visited nodes
decreases according to the execution timeTe. From this fact,
the coverage progression is, typically, a logarithmic curve
according toTe. This is confirmed by our theoretical and
experimental results.

Another possible criterion consists of theminimum
reachability probabilityover all reachable nodes. Reachability
probability models the capacity of an algorithm to reach a
target state. Indeed the problem of the model checking can
be seen as the search of an error state in the state space.
Due to the fact that the considered exploration algorithms are
random, the list of the visited nodesV is a random variable
that depends on the algorithm and the particular graph
structure. It results from this, that the membership of a given
node v to V is a random variable of which the probability
PG,A(v) for a given graphG and a given algorithmA differs
from a node to another. The minimum reachability probability

criterion is the minimum over all nodes of these probabilities.

πmin(G, A) = min
v

PG,A(v)

In general, reiterating the random algorithm improves the
probability of reaching states and finding errors.

In practice, there are several types of graphs, and an
algorithm performs differently depending on the form of the
explored one. To compute precise analytic results, we have
analyzed regular classes of graphs: trees and grids. Regular
graphs are suitable to study analytically the behavior of
exploration algorithms for several reasons:

• Although the model checking graphs are not regular, they
contain frequently regular components [7].

• One can manipulate regular graphs to compute probabilis-
tic measures analytically, which is practically impossible
for graphs of irregular topology.

• By tuning the two parameters of a regular tree (depth
and degree), we can get large or deep graphs and define
a density factor suitable to our study.

• Trees and grids constitute two extreme cases of general
graphs. In trees, there is no intersections between the
successors, and in grids, there is intersection between
all successors. Other graphs can be considered as an
intermediate case between this two ones. In fact, one may
say that practical graphs, arising in model-checking cases
are, in some manner, a combination of trees and grids.

III. G ENERAL THEORETICAL RESULTS

This section aims to efficiently compute various statistics
for our algorithm URS in some interesting cases of study.
We also provide some results for the algorithm SDRS. This
set of results allows a preliminary, theoretical, comparison of
the two algorithms and demonstrates a superiority of URS
in most studied cases. More precisely, what we investigate
here, is exact computations of the mean cover time, the mean
number of covered nodes and other related criteria such as
reachability probabilities, for URS and SDRS. This will be
done for two extreme types of graphs. The first one is trees.
Many trees will be considered and parameterized by a density
factor which the comparison results depend upon. The second
one is grids. In contrast to tree graphs, a multi-dimensional
grid represents many intersections between nodes which a
priori can lead to significant change in the behaviour of the
algorithms and therefore in their performances. Nevertheless,
we will show that URS outperforms SDRS in most cases
of trees and grids. Before we analyze the case of trees and
grids separately, we first provide in this section some general
results that apply to any graph.

For URS, the ordered sequenceVn = (v1, ..., vn) of
visited nodes inn steps can be represented as follows:

w1,
α1

︷︸︸︷... , w2,
α2

︷︸︸︷..... , w3,
α3

︷︸︸︷..... , ..., wk−1,
αk−1

︷︸︸︷..... , wk
︸ ︷︷ ︸

Wn=(w1,...,wk)

,
αk

︷︸︸︷...

where eachwi corresponds to a novel visited node followed
by αi redundant visits, that is the considered sequence
Vn is constituted byn − k repeated nodes interlaced in
an ordered set ofk distinct nodeswk = (w1, ..., wk). Let
wk−1 = (w1, ..., wk−1) and denote byF (wi) (resp.C(wi))
the set of fathers (resp. children) of the nodewi, i = 1, .., k.

Lemma 1:The probabilityP(wk, n) to coverwk in n steps
by the URS algorithm is:

P(wk, n) = α(wk)P(wk, n − 1) + β(wk)P(wk−1, n − 1)

α(wk) =
1

k

k∑

i=1

|C(wi) ∩ wk|

|C(wi)|

β(wk) =
1

k − 1

∑

v∈F (wk)∩wk−1

1

|C(v)|

Note thatα(wk) is a redundancy factor, no node is newly
covered at stepn, while β(wk) is an innovation factor
expressing the probability to cover at stepn a new node,
which must bewk, since the setwk is stored in order of visits.

Proof: The probability α(wk) to revisit a node among
wk is the sum, for eachwi in wk, i = 1, ..., k, of 1/k, which
is the probability to choose the fatherwi, multiplied by the
factor |C(wi)∩wk|

|C(wi)|
expressing the probability to choose a child

of wi in wk. For β(wk), the factor 1
k−1 corresponds to the

choice of a fatherv of wk in wk−1, and then the choice of
wk, with probability 1

|C(v)| . This ends the proof.

Now, let Vn = (v1, ..., vn) be the ordered sequence of visited
nodes inn steps with respect to SDRS. It can be represented
as follows:

l0=h+1
︷ ︸︸ ︷
? ? ... ? ◦

γ1

︷ ︸︸ ︷
• • ...◦

l1≤h+1
︷ ︸︸ ︷

(?|•)∗◦ ...

γq

︷ ︸︸ ︷
• • ...◦

lq≤h+1
︷ ︸︸ ︷

(?|•)∗◦
︸ ︷︷ ︸

n

where the bullet marks represent repeated nodes organized on
sequences of lengthγi. Each sequence corresponds tori walks
containing only repeated nodes from the re-initializationuntil
reaching an empty node (circle mark). Star marks represent
the k distinct nodes belonging to the sequences of length
li. This sequences correspond, each one, to a non entirely
repeated sequence (:(?|•)∗) ending with an empty node.

With more details, eachγi is organized as follow:

γi =

a1,i

︷ ︸︸ ︷
• • ... • ◦

a2,i

︷ ︸︸ ︷
• • ... • ◦ ...

ari,i

︷ ︸︸ ︷
• • ... • ◦

The elementary recursion forSDRS is a bit more complicated
than for URS and one must distinguish closed and open
points of exploration. The exploration is said to be in a closed
point at stepn, if it has reached a deadlock at stepn − 1,

it attempted, unsuccessfully, in stepn to choose a successor
from this deadlock and so it will be reinitialized in stepn+1
from a uniformly randomly chosen state ofVn. An open
point is a simple point of the walk which is not a closed point.

Lemma 2:Let P(wk, n, C) (resp. P(wk, n, O, v) be the
probability to cover inn steps the set of nodeswk and to
be, by stepn, in a closed point (resp. in an open point at node
v). Then:

P(wk, n, C) =
|D(wk)|

k
P(wk, n− 1, C) +

∑

v∈D(wk)

P(wk, n− 1, O, v)

P(wk, n, O, v) =
∑

u∈F (v)∩wk

[
P(wk, n− 1, O, u)

|C(u)|
+

P(wk, n− 1, C)

k|C(u)|

+1wk
(v)

(
P(wk−1, n− 1, O, u)

|C(u)|
+

P(wk−1, n− 1, C)

(k − 1)|C(u)|

)]

where D(wk) is the set of deadlock nodes inwk and
1wk

(v) = 1 if v = wk and1wk
(v) = 0 otherwise.

Proof: See appendix A.

Note that the elementary recursion in lemma 1 (resp. in
lemma 2) is satisfied by URS (resp. by SDRS) algorithm
for any graph. In the next two sections, we specialize these
results to trees and grids. The algorithms URS and SDRS
will be analyzed, and then compared, with respect to two
criteria. The first is the redundancy of each algorithm due
to its exploration scheme. To compute it, it is not necessary
to consider the algorithms with re-initialization, we compare
only the redundancy of the algorithms URS and SDRS applied
without repetition. This redundancy analysis will be done in
function of the timen, or the number of successive steps,
needed to cover a given numberk of nodes in the considered
graph. The direct relation between redundancy and covering
time is the following:

redundancy =
n − k

n

In fact, an exploration algorithm, at each step of its run, can
only visit a novel node or repeat an already visited one. In
the first case, either the timen and the number of covered
nodesk are incremented by one, while in the second case
the time is incremented but not the number of covered nodes,
which increases the redundancy. The mean cover time will
be exactly and efficiently computed meaning the recursions
provided in theorem 1.

The second criterion of analysis is the mean number of
covered nodes. This will be considered for the repeated
versions of the algorithms, i.e. RURS and RSDRS. This
corresponds to the more actual case, when the graph to be
explored is too large with respect to the memory size. In
this case our algorithm URS reinitialize itself each time the
memory is full. Note that in [11], the re-initialization of the

algorithm DRS is not considered and the case of memory
shortage is not studied. Here we place the two algorithms in
the same context where re-initialization is applied each time
the number of covered nodes reaches a prefixed threshold,
which is, in our case, the memory size.

In the context of large graphs, it is not easy to reach a
coverage level up to100%. Also, the graph sizes can be
unknown, so, we consider the number of covered nodes rather
than the coverage level. The algorithms RURS and RSDRS
will be compared in terms of the mean number of covered
nodes for a given time of exploration, which constitutes an
equivalent criterion to the mean time for a given coverage
that we applied for URS and SDRS. The mean number of
covered nodes, function of time, will be exactly computed
for RURS and RSDRS thanks to theorem 2.

Note that in our theoretical study we will consider hereafter
graphs with medium to small sizes but which are more than
5 times greater than the considered memory size. The results
obtained on these prototypes can then be scaled to more
great graphs taking the same proportions of memory to graph
size. The use of large size graphs is very heavy because the
theoretical formula are recursive in the steps number and take
much memory size to be computed.

IV. CASE OFTREES

We place ourselves first in the context of am-ary tree of
depthh, that is, every non-leaf node hasm successor nodes,
and every path from the root to a leaf node has lengthh.
Recall thatn denotes the number of successive steps in a run
of the algorithm.

In the case of a regular tree, the elementary recursion
in lemma 1 (resp. in lemma 2) leads to a much more
simplified one, depending only on the numbers of nodes
of wk in each level of the tree and not onwk itself.
ConsiderKn = (K1

n, ..., Kh
n), the vector of random variables

expressing the number of explored nodes at each level
j = 1, ..., h, at stepn, and letPurs(Kn = k) the probability
to cover the vectork = (k1, ..., kh) in n steps by URS
algorithm. For SDRS, we distinguishPsdrs(Kn = k, C) and
Psdrs(Kn = k, O) that denote the probabilities of covering
k in the closed and open cases respectively. For URS for
example, the aggregation (summation) of the elementary
recursion in lemma 1 on the set of all sequenceswk having
kj nodes in the levelj, j = 1, ..., h, gives the following
simplified recursion :

Purs(Kn = k) = α(k) Purs(Kn−1 = k)

+

h∑

j=1

βj(k) Purs(Kn−1 = k − 1j)

wherek − 1j = (k1, ..., kj − 1, ..., kh), 1 ≤ j ≤ h.

In the r.h.s. of this equation, as in the elementary one,

two terms appears. The first onePR
urs(Kn = k) =

α(k) Purs(Kn−1 = k) is a redundancy term, that is
no novel node is visited in stepn, while the second
P

I
urs(Kn = k) =

∑h
j=1 βj(k) Purs(Kn−1 = k − 1j) is the

innovation term, so a new nodes is visited at stepn. The
repetition factorα(k) is equal to the probability to revisit
a node at stepn and so given byα(k) = mkh+k−1

mk
. The

innovation ones corresponds to the case where, at stepn, a
novel node is covered at some levelj, j = 1, ..., h, so that
βj(k) =

mkj−1−kj+1
m(k−1) .

Similarly, for Psdrs(Kn = k, C) and Psdrs(Kn = k, O),
simplified recursions were obtained by summation of the
elementary equation in lemma 2 on the same set of sequences
wk (see the proof of theorem 1). The same notations are
used for the redundancy and innovation terms and one sets
P

I

sdrs(Kn = k) = P
I

sdrs(Kn = k, C) + P
I

sdrs(Kn = k, O).
These recursions were, in fact, computed in the goal to
obtain the result of theorem 1 below related to the mean
cover time. The mean timeTA(k) to cover k nodes by an
algorithmA (URS or SDRS) can be expressed in function of
the innovation probabilities as following:

TA(k) =
∑

|k|=k

TA(k)

TA(k) =

∞∑

n=k

nP I

A(Kn = k)

With some further investigation, the cover time is computed
in function of the following intermediate statistics givenre-
cursively as:

S0
urs(k) =

h∑

i=1

βi(k)

1 − α(k)
S0

urs(k − 1i)

S1
urs(k) =

1

1 − α(k)
S0

urs(k) +

h∑

i=1

βi(k)

1 − α(k)
S1

urs(k − 1i)

and for the SDRS algorithm :

S0
sdrs(k) =

h∑

j=1

γ0
j (k)S0

sdrs(k − 1j,h)

S1
sdrs(k) =

h∑

j=1

(

γ1
j (k)S1

sdrs(k − 1j,h)

+ δj(k)S0
sdrs(k − 1j,h)

)

+ µ(k)S0
sdrs(k)

where, γ0
j (k), γ1

j (k), δj(k) and µ(k) are explicited in the
proof of theorem 1. Then, the mean timesTurs(k) and
Tsdrs(k) of coveringk by URS and SDRS, respectively, are
given in the following theorem:

Theorem 1:

Turs(k) = (1− α(k))S1
urs(k)− α(k)S0

urs(k)

Tsdrs(k) =
h∑

j=1

h∑

l=j

[

cj,l(k)S1
sdrs(k − 1j,l) + dj,l(k)S0

sdrs(k − 1j,l)
]

+ a(k) S
1
sdrs(k)− b(k) S

0
sdrs(k)

k − 1j,l = (k1, ..., kj − 1, ..., kl − 1, ..., kh)

Proof: See appendix B for the proof and the explicit
formula of the coefficientsa(k), b(k), cj,l(k) anddj,l(k).

Applying the previous result, we obtain the mean cover time
computed exactly for URS and SDRS and shown in figure
4 below for three parameterized trees. The notationT (h, m)
means that the considered tree is of heighth and degree
m. Note that the mean cover time is traced in function of
the coverage level rather than the number of covered nodes.
Giving the fact that our interest is focused here on the
redundancy comparison, the case of a set of covered nodes
going beyond the memory size is not considered. It was,
then, possible to make the comparison up to the full coverage
where we obtained the more significant difference in term of
mean cover time between the two algorithms.

We can see in figure 4 that the URS algorithm takes

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Coverage level

M
ea

n
co

ve
r

tim
e

Theoretical cover mean time, URS vs. SDRS, Tree

URS, T(10,2)
SDRS, T(10,2)
URS, T(6,4)
SDRS, T(6,4)
URS, T(5,6)
SDRS, T(5,6)

Fig. 4. Mean Cover Time for Tree

in average less time than SDRS to cover a given proportion
of the graph. This can be observed mainly for proportions
more than70% and for large trees. We define thedensity
factor DF of an m-ary tree of depthh by the ratio m

h
. In

fact, the higher the density factor is, the larger the difference
between the cover times of the algorithms is. In the case of
a “thin” tree, which has smallDF (typically < 0.05) the
SDRS algorithm can perform better than URS but this can be
obtained only for extremely thin graphs.

In the following of this section we return to the more

actual case, when the graph to explore is too large with
respect to the memory size. We start by noting the relation
in lemma 3, that holds for all algorithmA on all graphG,
between the probabilityPA(Kn = k) to cover k nodes in
n steps and the reachability probabilitiesPA(v|Kn = k) to
have, inn steps, reaching a nodev and covering exactlyk
nodes. Note that, in the case of trees, these last probabilities
depend only on the node leveli and not on the nodev itself,
because of symmetry. In the case of a grid, we must compute
the probability to reach corner and non corner nodes at each
level i.

Lemma 3:

PA(Kn = k) =
1

k

∑

v∈G

PA(v|Kn = k)

Proof: We denote byΩk
A,n the set of thek-length

sequencesw that the algorithmA can perform inn steps.
Let 1w the characteristic function ofw: 1w(v) = 1 if v ∈ w
and1w(v) = 0 otherwise. Note that

∑

v∈G 1w(v) = k for all
w ∈ Ωk

A,n. Then,

PA(Kn = k) =
∑

w∈Ωk
A,n

PA(w) =
∑

w∈Ωk
A,n

∑

v∈G
1w(v)

k
PA(w)

=
1

k

∑

v∈G

[
∑

w∈Ωk
A,n

1w(v)PA(w)] =
1

k

∑

v∈G

PA(v|Kn = k).

which ends the proof.

As we said above, the criterion considered here is the mean
number of covered nodes function of time. Thanks to lemma 3,
this can be computed basing on reachability probabilities that
we first compute by returning to the elementary recursions
of the algorithms. In fact, as previously, by summing these
recursions on the set of the sequenceswk, containing the
node i and having in each levelj = 1, ..., h, kj nodes,
one obtains recursive formula for the reachability probabilities
Purs(i|Kn = k), Psdrs(i|Kn = k, C), Psdrs(i|Kn = k, O),
and then Psdrs(i|Kn = k) = Psdrs(i|Kn = k, C) +
Psdrs(i|Kn = k, O). These probabilities are defined exactly
as previously except the fact that the nodei is now considered
to be covered. Note that these probabilities are associatedwith
URS and SDRS without repetition and then computed for
a number of covered nodesk less than the re-initialization
threshold (the memory size)N . For example, for URS, one
obtains, withγ(k) = 1

m(k−1) , :

Purs(i|Kn = k) =

α(k) Purs(i|Kn−1 = k) +

h∑

j=1

βj(k) Purs(i|Kn−1 = k − 1j)

+γ(k)
[

Purs(i− 1|Kn−1 = k − 1i)− Purs(i|Kn−1 = k − 1i)
]

Once, these probabilities are calculated, one sets

PA(i, s) =
∑

|k|≤N

PA(i|Ks = k)

P ∗
A(i, s) =

∑

|k|=N

PA(i|Ks = k)

whereN denotes the memory size andA denotes indifferently
one of the algorithms URS or SDRS. Their repeated versions
will be notedRA. Then, the mean number of covered nodes
of RA in function of timen is given in the theorem 2 below:

Theorem 2:If N is the memory size or a prefixed threshold
of re-initialization, then the mean number of covered nodesby
RA is given in function of timen as:

Cov(n) =

h∑

i=0

m
i
PRA(i, n),

where

PRA(i, n) = PA(i, n)

+
n∑

n1=M

[P∗

A(i, n1) + (1− P
∗

A(i, n1))PRA(i, n− n1)]

Proof: By lemma 3, one has: Cov(n) =
∑h

v∈G PRA(v, n). So, all we need to show is the second
equality which is a recursive expression ofPRA(i, n) meaning
P
∗
A and PA. In this expression the second termPA(i, n)

corresponds to the case where no repetition occurred during
the time n, while the sum onn1 corresponds to the case
of some re-initializations, such that the first one occurred
at stepn1. Then, there is two possibilities :i was reached
before stepn1, which has a probabilityP∗

A(i, n1) to occur,
or i is not reached untiln1 and must be reached after in
the n − n1 remaining time, which leads to a probability
(1 − P

∗
A(i, n1))PRA(i, n − n1). This ends the proof.

We observe in figure 5, the evolution of the number of
covered nodes in function of time. These curves, representing
the behavior of the repeated algorithms RURS and RSDRS,
are traced for three trees. The repeated algorithms are
experimented for a memory size (N) of 15% w.r.t. the
size of the graph. We have considered other memory
sizes (10% and 20%), but the results are similar: RURS
algorithm performs, clearly, better than RSDRS, especially
near to the total coverage rate. We observe also that the
difference between RURS and RSDRS in the number of
covered nodes is more important as more as theDF is greater.

Note that by using the reachability probabilitiesPA(i, n)
(resp.PRA(i, n)), one can compute the minimum reachability
probabilities for URS and SDRS (resp. for RURS and RSDRS)
in function of time. This criterion can be very interesting in
practice if, in order to detect efficiently an eventual bug inthe
system, which corresponds to a defective node in the modeling
graph, one can take account of the worst case where the bug is
localized in a node of minimum reachability probability. Note
that the number of such nodes can be great as in the case of
tree like graphs.

V. CASE OFGRIDS

We place ourselves here in the context of multi-dimensional
grid. As in the previous section, we are interested in efficient
computations of statistics like the mean covering time, the

0 2000 4000 6000 8000 10000
0

500

1000

1500

Time

M
ea

n
nb

. o
f c

ov
er

ed
 n

od
es

Theoretical mean nb. of covered nodes, Memory: 15%

URS, T(10,2)
SDRS, T(10,2)
URS, T(6,4)
SDRS, T(6,4)
URS, T(5,6)
SDRS, T(5,6)

Fig. 5. Mean number of covered nodes for Tree

mean coverage and the reachability probability for URS and
SDRS. We will analyse this matter basing on the fundamental
recursion in lemma 1 and 2. We first note that all possible
(macroscopic and then less difficult to compute) recursion for
URS or SDRS should be a summation of the corresponding
elementary one on some suitably chosen setSk of sequences
wk: the coefficients in the elementary recursion must be
constant onSk and the set of thewk−1’s, whenwk ∈ Sk, must
be easy to identify. For clarity sake, we analyse in details the
equation in lemma 1 for our algorithmURS. The coefficients
α(wk) and β(wk) in this recursion must be constant onSk

and the set of thewk−1’s, when wk ∈ Sk, must be easily
parameterizable. This seems to be very difficult to obtain, or
impossible, even in the case of infinite, oriented, grid, butthis
problem will be overcame as explained below. In this case the
output degree of the nodes is the same, sayd, and one has:

α(wk) =

∑k
i=1 |C(wi) ∩ wk|

k.d

β(wk) =
|F (wk) ∩ wk−1|

(k − 1).d

Note that:

k∑

i=1

|C(wi) ∩ wk| = k − 1 + Int(wk)

where Int(wk) is the number of intersections inwk. So
unlike the case of a graph without intersections (e.g. tree
graph), this sum is not constant on the set of k-length
sequences. If we try to consider the set of sequences that
keep invariant this sum, the problem is that this set is too
difficult to identify and more is the set of the corresponding
wk−1’s.

Note also that:

k∑

i=1

|C(wi) ∩ wk| =

k∑

i=1

|F (wi) ∩ wk|

and then the coefficientsα(wk) and β(wk) depend only
on the set of father’s numbersfi = |F (wi) ∩ wk|. But,
again, the set of sequences corresponding to a given tuple
(f1, ..., fk) of father’s numbers is difficult to identify and
the corresponding set of thewk−1’s does not correspond to
(f1, ..., fk−1) becausefi is the number of fathers ofwi in
wk which is different of that ofwi in wk−1.

In order to more analyse this issue, we noted also that
when reiterated with respect to the time index fromn to k,
the elementary equation reads, when the out-degree of the
nodes is the same, as :

P(wk, n) = P(wk, k)
∑

|γ|=n−k

k∏

j=1

(Mj)
γj

where

P(wk, k) =
f1...fk

(k − 1)!dk−1
, Mj =

f1,j + ... + fj,j

j.d

and fi (resp.fi,j) is the number of fathers ofwi situated in
{w1, ..., wi−1} (resp. in{w1, ..., wj}). When we look to this
explicit expression, it evidently appears the difficulty totreat
it in a recursion manner. The set of invariance of this equation
can correspond for example to a given productf1....fk and a
given set of redundancy rates{Mj, j = 1, ..., k}, but it is not
easy to identify and process with such a set.

These difficulties to sum the elementary recursion satisfied
by URS and SDRS, are due essentially to the great rate
of communications (intersections) in the case of the grid.
However, this is the same reason for which these recursions
are useful in practice to calculate exact exploration statistics
in this case, especially by meaning some managements
explained below. In fact due to intersections, the number
of ordered sequences, with distinct nodes, generated by
the algorithms is reasonable in many cases of study. Note
also that the sizes of grids to be considered are in general
little, as are grids in model-checking domain. In order to
easily use the elementary equations, some managements
seems to be necessary to compute the exact statistics for
URS and SDRS in the case of multi-dimensional grids.
First, the k-length sequences are obtained, recursively, each
one by adding a node to a (k-1)-length sequence which
is registered until their children are generated. Secondly,
the coefficients in the elementary equations, like the sums
∑k

i=1(|C(wi)∩wk|)/|C(wi)|, are registered and incremented
when a novel nodewk is considered and then the probabilities
are updated. Third, in order to obtain rapidlyC(w) andF (w),
one must index efficiently the nodes of the grid. Suppose
that the grid is of dimensiond and lengthL on each side.
So, the total number of nodes isN = Ld. These nodes will
be indexed from0 to N − 1 as following: if w is a node of
coordinates(x1, ..., xd), 0 ≤ xi ≤ L − 1, then it receives
the index ind(w) =

∑d
i=1 xiL

i−1. Consequently, one has
the following lemma where we identify the nodes with their

indexes:

Lemma 4:Let q a node in the grid. Its coordinates
are notedxi, i = 1, ..., d. Then, having only the index
q, one can compute the setsIin(q) = {i, xi ≥ 1} and
Iout(q) = {i, xi ≤ L − 2} in 2d operations only.

Proof: Since belonging to{0, ..., L − 1}, the xi’s are
simply theL-ary decomposition coefficients of the integerq.
These can be computed as following: fori = d, ..., 1, xi =
E(q/Li) andq = q − xiL

i. This ends the proof.

Since the degreed is always limited, these computations
are not consuming at all even for grids of many thousands
of nodes. Recall that grids in model-checking are always of
limited sizes. Then, using lemma4, one obtains the following
results :

Proposition 1: The children and the fathers of a nodeq are
given respectively by:

C(q) = {q + Li−1, i ∈ Iout(q)}

F (q) = {q − Li−1, i ∈ Iin(q)},

The output degree (resp. the input degree) ofq is then
|C(q)| = |Iout(q)| (resp.|C(q)| = |Iin(q)|).

Moreover, in order to easily verifying if these children/fathers
are covered, and so calculating|C(wi) ∩ wk| and
|F (w) ∩ wk−1|, the sequences are stored in a stratified
manner with respect to their level in the grid: ifwi is stored
in the levell and the added nodewk is child of wi, thenwk

will be stored in the levell + 1 below.

Figure 6 gives the results of comparisons of the mean
covering time for three grids, whereG(L, d) means that the
grid is of degreed and the length of each side isL + 1.
It is clear that the URS algorithm outperform SDRS. Its
superiority is even more clear than in the case of graphs
without intersections (tree).

Moreover, for the repeated algorithms RURS and RSDRS,
the mean number of covered nodes has been traced in function
of time for different grids. The reported result in figure 7
corresponds to a memory size of 15% w.r.t. the size of the
graph. As for trees, the algorithms RURS and RSDRS are
experimented for three grid graphs and for three memory
sizes (N) of 10%, 15% and 20% w.r.t. the size of the
graphs. The results are similar for the three memory sizes:
the performances RURS are clearly better than RSDRS. The
superiority of RURS is more marked for high coverage and
great values of theDF . This superiority is, again, more clear
for grids than for trees.

VI. EXPERIMENTAL RESULTS

We complement our theoretical analysis with a set of
experimental results. We implemented the two algorithms

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Coverage level

M
ea

n
co

ve
r

tim
e

Theoretical mean cover time, URS vs. SDRS, Grid

URS, G(2,8)
SDRS, G(2,8)
URS, G(7,3)
SDRS, G(7,3)
URS, G(11,2)
SDRS, G(11,2)

Fig. 6. Mean Cover Time for Grid

0 2000 4000 6000 8000 10000
50

100

150

200

250

300

350

Time

M
ea

n
nb

. o
f c

ov
er

ed
 n

od
es

Theoretical mean nb. of covered nodes, Memory: 15%

URS, G(16,2)
SDRS, G(16,2)
URS, G(7,3)
SDRS, G(7,3)
URS, G(4,4)
SDRS, G(4,4)

Fig. 7. Mean number of covered nodes for Grid

URS and SDRS on the model checker IF [28] and run them
on several examples. Several measures were computed for
each algorithm. The examples have been chosen according
to the experiments needs. First, to compute the mean cover
time, we have chosen some examples of medium size, in
order to be able to repeat the algorithms a sufficient number
of times to achieve full coverage of the reachable state space.
These examples have differentdensity factors, which allows
us to analyse their behavior according to this parameter.
Second, in order to compare the randomized algorithms
with the exhaustiveBFS algorithm implemented inIF ,
we have chosen some examples of very large (unknown) sizes.

Our implementations of URS and SDRS use a hash
table to keep visited nodesV . This facilitates the storage
and the search. When a node is completely explored (having
all its successors visited), it will be deleted from the table
to avoid redundant revisits. In this work, we have described
the URS and SDRS algorithms, but our implementation is
more general, following the generic scheme of Figure 1, in

Example Quicksort Token Fischer Server

Size (no. states) 6032 20953 34606 35182
Diameter 19 72 14 28
DF (density factor) 0.083 0.016 0.150 0.052

TABLE I

GRAPHS DESCRIPTION

Cov. level Algo Quicksort Token Fischer Server

60% URS 0.389 3.283 1.841 4.490
60% SDRS 0.641 0.752 4.070 7.441

70% URS 0.609 4.301 2.765 5.507
70% SDRS 0.871 1.084 5.726 8.893

80% URS 0.882 5.744 3.809 6.821
80% SDRS 1.411 1.584 8.173 11.966

90% URS 1.703 8.047 5.955 9.974
90% SDRS 4.202 2.480 13.327 19.158

100% URS 7.723 21.247 46.097 41.452
100% SDRS 12.459 25.221 125.091 99.460

TABLE II

MEAN COVER TIME (SECONDS)

particular in terms of the select function. Other variants of
this scheme apart from URS and SDRS will be reported in
future work. Our implementation allows the user to define the
rate of leaves or internal nodes to be explored –which reflects
depth- or breadth-oriented exploration– by tuning a mixing
parametermx. Choosing this parameter appropriately may
require an a-priori knowledge of the graph structure (density
and diameter), although, in some cases, this parameter may
be computed and adaptedon the fly.

A. Cover time

Each algorithm was tested on different graph examples: the
Quicksortalgorithm, theToken Ring Protocol, Fischer’s Mu-
tual Exclusion Protocoland aClient/Server Protocol. Table I
shows the size (i.e., number of states) and the diameter (i.e.,
length of the longest acyclic path) of each example. The table
also shows the density factor of the graph of each example,
defined as

DF =
m

h
,

whereh is the graph diameter and the degreem is computed
approximately by reference to a regular tree where the size
of the tree isM ≈ mh. Thus, for a graph of sizeM , we let
m be theh-root of M .

For each case, we repeated the experiment 100 times
and we computed the mean cover time of 60%, 70%, 80%,
90% and 100% of the graph. The resulting time for each case
study is reported in Table II.

We observe that the URS algorithm performs better in
large graphs, for which theDF > 0.07. For a small
DF < 0.03, SDRS performs better for non total coverage

(coverage at 60%, 70%, 80% and 90%). For medium values
of DF ≈ 0.05, URS performs better also. These results are
reported in the following curves which are compatible with
the theoretical ones.

60 65 70 75 80 85 90 95 100
0

20

40

60

80

100

120

140

Coverage level

M
ea

n
co

ve
r

tim
e(

s)

Mean cover time, URS, SDRS

URS, Quicksort
URS, Token
URS, Fischer
URS, Server
SDRS, Quicksort
SDRS, Token
SDRS, Fischer
SDRS, Server

Fig. 8. Experimental Mean Cover Time (seconds)

B. Partial vs. Exhaustive

We have also experimented on very large graphs of
unknown reachable size. We have runBFS exhaustive
exploration, and RURS, RSDRS partial algorithms on each
one. The number of explored states was collected over all
runs and compared to the exhaustive execution. So, the
execution evolution curves have been drawn as a function of
time.

We observe in Figure 9, that the exhaustive BFS exploration
stagnates after a certain number of explored nodes. This limit
corresponds to the number of states supported by the available
memory. The repeated partial exploration algorithms URS
and SDRS go beyond this limit, and can explore up to 40%
more nodes than their deterministic counter part. Notice that
the BFS limit occurs at a different number of nodes for each
of the three case studies, even though they all use the same
amount of main memory. This is because in each case study
the amount of bytes needed to store a single state is different:
it is higher in Token than in Server, and slightly higher in
Server than in Fischer. The URS algorithm is generally better
than SDRS but we think that this depends on the graphDF
which is unknown here.

We observe that in some cases (e.g., Figure 9: Fischer),
the randomized exploration algorithms also stagnate aftera
certain amount of time. According to our previous experiments
on medium-size graphs, this happens when reaching close
to 90% of the graph. In this case, exploring the “last” states
becomes increasingly difficult because of redundancy.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9
x 10

5

Time (min)

N
b.

 o
f c

ov
er

ed
 n

od
es

Number of covered nodes, Token

RURS
RSDRS
BFS

BFS limit after 9h50

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Time (min)
N

b.
 o

f c
ov

er
ed

 n
od

es

Number of covered nodes, Fisher

RURS
RSDRS
BFS

BFS limit after 9h50

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

6

Time (min)

N
b.

 o
f c

ov
er

ed
 n

od
es

Number of covered nodes, Server

RURS
RSDRS
BFS

BFS limit after 9h50

Fig. 9. The number of covered nodes evolution

VII. C ONCLUSION

We have presented a generic randomized state space
exploration scheme that unifies many randomized exploration
algorithm variants. In particular, we have proposed the
Uniform Random Search algorithm that we believe to be
the first randomized algorithm that explicitly uses main
memory resource limits to guide its behavior. URS is also not
performing a typical random walk, in the sense that it may
choose to “branch” from different nodes along a random walk

path. We have compared URS with a simplified version of
Deep Random Search, a performant and optimized algorithm
based on random walk [11]. We also propose “reinitialized”
variants of the above two elementary algorithms, called
RURS and RSDRS, where each time the memory is full the
algorithm is restarted and repeated several times. We have
used a density factor parameter to classify graphs into ”thin”
and ”large”. We performed a detailed theoretical study to
compute the mean cover time of URS and SDRS and the
mean number of covered nodes of RURS and RSDRS. Many
of our results are available only for special classes of graphs,
namely trees and grids, but may give some insight of what
happens in more general graph structures.

Both our theoretical and experimental results show that
the URS algorithm explores in a more uniform fashion and so
covers the state graph more rapidly in most cases. However,
in some cases, in particular when the graph is thin, SDRS
performs as well or better than URS. We have also shown
via experiments, that these two algorithms, when repeated
several times, can –in the case of very large graphs exceeding
the size of main memory– explore a state space of more than
40% in addition to that explored by an exhaustive exploration
based on breadth-first search.

REFERENCES

[1] J. P. Queille and J. Sifakis. ”Specification and verification of concurrent
systems in Cesar”. InProceedings of the International Symposium in
Programming, volume 137 of Lecture Notes in Computer Science,
Berlin, 1982. Spriner-Verlag.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla. ”Automatic Verification
of finite state concurrent systems using temporal logic specifications”.
In ACM TOPLA, 8(2),1986.

[3] E. M. Clarke, O. Grumberg, and D. Peled. ”Model Checking”. MIT
Press, 1999

[4] M. O. Rabin. “Probabilistic algorithms”. InJ. Traub, editor, Algorithms
and Complexity: New Directions and Recent Results, pages 2-39. Aca-
demic Press, New York, 1976.

[5] R. Motwani, P. Raghavan. ”Randomized Algorithms”. Cambridge Uni-
versity Press 2005

[6] J. Burch, E. Clarke, D. Dill, L. Hwang, and K. McMillan. ”Symbolic
model checking:1020 states and beyond”. In5th Conference on Logic
In Computer Science (LICS), pages 428-439, june 1990

[7] R. Pelánek, T. Haňzl, I. Černá, and L. Brim. Enhancing Random
Walk state space exploration. InFMICS ’05: Processing of the 10th
international workshop on formal methods for industrial critical systems,
pages 98-105. ACM Press, 2005

[8] C. H. West. Protocol validation by random state exploration. In Inter-
national Symposium on Protocol Specification, testing and Verification,
1986

[9] D. Owen. and T. Menzies Lurch. A lightweight alternativeto model
checking. InProc. of Software Engineering and Knowledge Engineering
(SEKE’2003), pages 158-165

[10] R. Grosu and S. A. Smolka. ”Monte Carlo model-checking”. In Proc. of
Tools and Algorithms for Construction and Analysis of Systems (TACAS
2005), volume 3440 ofLNCS, pages 271-286. Springer, 2005.

[11] R. Grosu, X. Huang, S.A. Smolka, W. Tan and S. Tripakis. ”Deep
Random Search for Efficient Model Checking of Timed Automata”.
In Proc. of MW’06, the 7th Monterey Workshop on Composition of
Embedded Systems, pages 37-48, Paris, October 2006

[12] P. Haslum. Model checking by random walk. InProc. of ECSEL
Workshop, 1999

[13] M. Mihail and C. H. Papadimitriou. ”On the random walk method for
protocol testing”. InProc. Computer-Aided Verification (CAV 1994),
volume 818 of LNCS, pages 132-141, 1994.

[14] H. Sivaraj and G. Golpalakrishnan. Random walk based heuristic algo-
rithms for distributed memory model checking. InProc. of Parallel and
Distributed Model Checking (PDMC’03), volume 89 ofENTCS, 2003

[15] A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Probabilistic state
space search. InProc. of Computer-Aided Design (CAD 1999), pages
574-579. IEEE Press, 1999.

[16] J. Geldenhyus. State caching reconsidered. InSPIN Workshop, volume
2989 ofLNCS, pages 23-39, 2004

[17] P. Godefroid, G. J. Holzmann, and D. Pirottin. ”State space caching
revisited”. InProc. of Computer Aided Verification (CAV 1992),volume
663 of LNCS, pages 178-191, 1992

[18] P. Godefroid. Using partial orders to improve automatic verification
methods. InProc. 2nd International Conference on Computer Aided
Verification,volume 531 ofLNCS, pages 176-185, 1990

[19] P. Godefroid. On the costs and benefits of using partial order methods
for the verification of concurrent systems. InProc. Workshop on Partial
Order Methods in Verification,DIMACS series, volume 29, pages 289-
303, 1996

[20] E. Tronci, G. D. Penna, B. Intrigila, and M. Venturini. AProbabilistic
approach to automatic verification of concurrent systems. In Proc. of
Asia-Pacific Software Engineering Conference (ASPEC 2001), 2001

[21] F. Lin, P. Chu, and M. Liu. Protocol verification using reachability anal-
ysis: The state space explosion problem and relief strategies.Computer
Communication Review. volume 17(5):126-134, 1987

[22] G. J. Holzmann. An analysis of bi-state hashing. InProc. of Protocol
Specification, Testing and Verification, pages 301-314, 1995

[23] G. J. Holzmann. Automated protocol validation in Argos, assertion
proving and scatter searching. InIEEE trans. on Software engineering,
volume 13(6):683-696, 198717(5):126-134, 1987

[24] U. Feige. ”A Tight Upper bound on the cover time for Random walks
on graphs”. InRandom Structures and Algorithms. Volume 6(1), pages
51-54, 1995

[25] U. Stem, and D. L. Dill. Improved probabilistic verification by hash
compaction. InAdvanced Research Working Conference on Correct
Hardware Design and Verification Methods, pages 206-224, 1995

[26] R. Nalumasu, and G. Gopalakrishnan. An efficient partial order reduction
algorithm with an alternative provision implementation. In Formal
Methods for System Design, volume 20(3), pages 206-224, 1995

[27] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry
in temporal logic model checking.Form. Methods Syst. Des., 9(1-2):
77-104, 1996

[28] M. Bozga, J. C. Fernandez, L. Ghirvu, S. Graf, J. P. Krimm, and
L. Mounier. ”IF: a Validation Environment for Timed Asynchronous
Systems”. InProc. Computer-Aided Verification (CAV 2000), volume
1855 ofLNCS, pages 543-547, 2000

APPENDIX

A. Proof of lemma 2

Let P(wk, n, C) (resp. P(wk, n, O, v) be the probability
to cover inn steps the set of nodeswk and to be, at the end
of stepn, in a closed point (resp. in an open point at node
v). We denote byD(wk) the set of deadlock nodes inwk
and we set1wk

(v) = 1 if v = wk and1wk
(v) = 0 otherwise.

Then for P(wk, n, C), since it must be in a closed point, no
node is newly reached at stepn: at stepn − 1 the algorithm
reached a deadlock node and at stepn it, unsuccessfully,
looked for a successor of this node so that it will be in a
closed point by stepn. So there is two cases: by stepn − 1,
the exploration is in a closed point or in an open point at
some deadlock nodev. In the first case, it must restart at step
n, with probability 1

k
, from a deadlock point, which gives the

term |D(wk)|
k

. In the second case, the exploration is open at
nodev, so it must continue in the set of successors ofv. This
set is empty so the exploration reaches a close point with
probability 1. This gives the recursion:

P(wk, n, C) =
|D(wk)|

k
P(wk, n− 1, C) +

∑

v∈D(wk)

P(wk, n− 1, O, v)

For P(wk, n, O, v), there is4 cases for the algorithmSDRS:

- Case 1: no new node is covered at stepn and, by
stepn−1, it was in an open point at some nodeu: sou must
be in F (v) ∩ wk (i.e. a father ofv in wk) and at stepn, v
is chosen uniformly amongC(u) (: with probability 1

|C(u)|).
This gives the first term in the recursion (below).
- Case 2: no new node is covered at stepn and, by step
n − 1, it was in a closed point: so at stepn, it chooses, with
probability 1

k
, a nodeu in F (v) ∩ wk and picksv uniformly

amongC(u). This gives the second term in the recursion.
- Case 3: a new nodev is covered at stepn, it must bewk

since the sequence is stored in visiting order, and, by step
n − 1, the exploration was in an open point at some node
u: so u must be inF (v) ∩ wk−1 and at stepn, v is chosen
uniformly among C(u). This gives the third term in the
recursion. Note that the term1wk

(v) expresses the fact that
one must havev = wk, otherwise the third and fourth terms
are not considered in the recursion.
- Case 4: a new node is covered at stepn and, by step
n − 1, it was in a closed point: so at stepn, it chooses,
with probability 1

k−1 , a nodeu in F (v) ∩ wk−1 and picks
v uniformly amongC(u). This gives the fourth term in the
recursion.
This ends the proof and one obtains the underlined recursion
for SDRS:

P(wk, n, O, v) =
∑

u∈F (v)∩wk

[
P(wk, n− 1, O, u)

|C(u)|
+

P(wk, n− 1, C)

k|C(u)|

+1wk
(v)

(
P(wk−1, n− 1, O, u)

|C(u)|
+

P(wk−1, n− 1, C)

(k − 1)|C(u)|

)]

B. Proof of theorem 1

We start by showing the first statement:

Turs(k) = (1− α(k))S1
urs(k)− α(k)S0

urs(k)

First, we have already obtained, before the statement of
the theorem 1, the following recursion that expresses the
probability to cover the vectork = (k1, ..., kh) in n steps by
respect to URS Algorithm:

Purs(Kn = k) = α(k) Purs(Kn−1 = k)

+

h∑

j=1

βj(k) Purs(Kn−1 = k − 1j) (2)

The mean cover time of URS is then given by:

Turs(k) =
∞∑

n=k

nP
I

urs(Kn = k)

=
∞∑

n=k

n

h∑

i=1

βi(k) Purs(Kn−1 = k − 1i)

=

h∑

i=1

βi(k)

∞∑

n=k

n Purs(Kn−1 = k − 1i)

=
h∑

i=1

βi(k)× S(k − 1i),

with

S(k − 1i) =
∞∑

n=k

((n− 1) + 1) Purs(Kn−1 = k − 1i)

=

∞∑

n=k

Purs(Kn−1 = k − 1i)

+
∞∑

n=k

(n− 1) Purs(Kn−1 = k − 1i)

=

∞∑

n=k−1

Purs(Kn = k − 1i)

+
∞∑

n=k−1

n Purs(Kn = k − 1i)

= S
0
urs(k − 1i) + S

1
urs(k − 1i),

where

S
0
urs(k) =

∞∑

n=k

Purs(Kn = k)

S
1
urs(k) =

∞∑

n=k

n Purs(Kn = k)

Then:

Turs(k) =
h∑

i=1

βi(k)
(

S
0
urs(k − 1i) + S

1
urs(k − 1i)

)

(3)

Using the recursion 2, one obtains:

S
0
urs(k) =

∞∑

n=k

Purs(Kn = k)

=
∞∑

n=k

[α(k) Purs(Kn−1 = k)

+

h∑

i=1

βi(k) Purs(Kn−1 = k − 1i)]

= α(k)
∞∑

n=k

Purs(Kn−1 = k)

+
h∑

i=1

βi(k)
∞∑

n=k

Purs(Kn−1 = k − 1i)

Note that forn = k, Purs(Kn−1 = k) = 0, because ink− 1
steps the algorithm cannot cover more thank − 1 nodes, so
it cannot cover the vectork which containsk nodes. Then

S
0
urs(k) = α(k)

∞∑

n=k+1

Purs(Kn−1 = k)

+
h∑

i=1

βi(k)
∞∑

n=k

Purs(Kn−1 = k − 1i)

So, by the variable changen := n − 1, one has:

S
0
urs(k) = α(k)

∞∑

n=k

Purs(Kn = k)

+
h∑

i=1

βi(k)
∞∑

n=k−1

Purs(Kn = k − 1i)

= α(k)S0
urs(k) +

h∑

i=1

βi(k)S0
urs(k − 1i)

Then,

S
0
urs(k) =

1

1− α(k)

h∑

i=1

βi(k) S
0
urs(k − 1i) (4)

Similarly,

S
1
urs(k) =

∞∑

n=k

nPurs(Kn = k)

=
∞∑

n=k

Purs(Kn = k) +
∞∑

n=k

(n− 1)Purs(Kn = k)

= S
0
urs(k) +

∞∑

n=k

(n− 1)[α(k) Purs(Kn−1 = k)

+
h∑

i=1

βi(k) Purs(Kn−1 = k − 1i)]

= S
0
urs(k) + α(k)

∞∑

n=k

(n− 1)Purs(Kn−1 = k)

+

h∑

i=1

βi(k)

∞∑

n=k

(n− 1)Purs(Kn−1 = k − 1i)

Then as previously, by making the variable changen := n−1,
one obtains:

S
1
urs(k) = S

0
urs(k) + α(k)

∞∑

n=k+1

(n− 1)Purs(Kn−1 = k)

+
h∑

i=1

βi(k)
∞∑

n=k

(n− 1) Purs(Kn−1 = k − 1i)

= S
0
urs(k) + α(k)

∞∑

n=k

nPurs(Kn = k)

+
h∑

i=1

βi(k)
∞∑

n=k−1

n Purs(Kn = k − 1i)

= S
0
urs(k) + α(k)S1(k) +

h∑

i=1

βi(k)S1(k − 1i)

and then,

S
1
urs(k) =

1

1− α(k)

(

S
0
urs(k) +

h∑

i=1

βi(k) S
1
urs(k − 1i)

)

(5)

Consequently, by equation(3), one has:

Turs(k) =
h∑

i=1

βi(k)S0
urs(k − 1i) +

h∑

i=1

βi(k)S1
urs(k − 1i)

and then by applying equations(4) and (5), one obtains:

Turs(k) = (1− α(k))S0
urs(k) + [(1− α(k))S1

urs(k)− S
0
urs(k)]

= (1− α(k))S1
urs(k)− α(k)S0

urs(k)

Now for the second recursion, related to SDRS, we
first established similar recursions for the probability
Psdrs(Kn = k, C) (resp. Psdrs(Kn = k, O)) of covering
k = (k1, ..., kh) (i.e. ki nodes are covered at each level
i = 1, ..., h) in n steps and being in a closed (resp. an open
point) of the exploration:

Psdrs(Kn = k) = Psdrs(Kn = k, C) + Psdrs(Kn = k, O)

and

Psdrs(Kn = k, C) =

h+1∑

s=1

1

ms−1

[

α(k, C) Psdrs(Kn−s = k, C)

+
h∑

j=h−s+2

βj(k, C) Psdrs(Kn−s = k − 1j,h, C)
]

(6)

where:

α(k, C) =
kh

k

βj(k, C) =
mkj−1 − (kj − 1)

(k − h + j − 1)mj−h

1j,j′ = 1j + 1j+1.... + 1j′ .

Psdrs(Kn = k, O) =
h∑

s=1

1

ms

[

α(k, O) Psdrs(Kn−s = k, C)

+
h∑

j=1

min(s+j−1,h)
∑

l=max(j,0)

βj,l(k, O) Psdrs(Kn−s = k − 1j,l, C)
]

(7)

where:

α(k, O) =
ks + ... + kh

k

βj,l(k, O) =
mkj−1 − (kj − 1)

(k − l + j − 1)mj−l

Then, the mean cover time of SDRS is given by:

Tsdrs(k) =
∞∑

n=k

nP
I

sdrs(Kn = k)

Note that the innovation probability forSDRS is composed
by two terms:

P
I

sdrs(Kn = k) = P
I

sdrs(Kn = k, C) + P
I

sdrs(Kn = k, O)

where

P
I

sdrs(Kn = k, C) =

h+1∑

s=1

1

ms−1

[h∑

j=h−s+2

βj(k, C)×

×Psdrs(Kn−s = k − 1j,h, C)
]

P
I

sdrs(Kn = k, O) =
h∑

s=1

1

ms

[h∑

j=1

min(s+j−1,h)
∑

l=max(j,0)

βj,l(k, O)×

×Psdrs(Kn−s = k − 1j,l, C)
]

Then, as previously,Tsdrs can be expressed in function of
mean statisticsS0

sdrs andS1
sdrs, where:

S
0
sdrs(k) =

∞∑

n=k

Psdrs(Kn = k, C)

S
1
sdrs(k) =

∞∑

n=k

n Psdrs(Kn = k, C)

From equations(6) and (7), one obtain the recursions:

S
0
sdrs(k) =

h∑

j=1

γ
0
j (k) S

0
sdrs(k − 1j,h)

S
1
sdrs(k) =

h∑

j=1

(

γ
1
j (k)S1

sdrs(k − 1j,h) + δj(k)S
0
sdrs(k − 1j,h)

)

+ µ(k)S0
sdrs(k)

where,

γ
0
j (k) = γ

1
j (k) =

d0(h− j + 1, h)βj(k, C)

1− d0(0, h)α(k, C)

δj(k) =
d1(h− j + 1, h)

d0(h− j + 1, h)
γ

0
j (k)

µ(k) =
d0(0, h)α(k, C)

1− d0(0, h)α(k, C)

d0(j, j
′) =

1
mj−1 −

1

mj′

m− 1

d1(j, j
′) =

m

m− 1
d0(j, j

′ + 1) +

j

mj−1 + j′+2

mj′

m− 1

Finally similar computations as those made forURS
algorithm, give the requested equation forSDRS:

Tdrs(k) =
h∑

j=1

h∑

l=j

[

cj,l(k) S
1
drs(k − 1j,l) + dj,l(k) S

0
drs(k − 1j,l)

]

+ a(k) S
1
drs(k)− b(k) S

0
drs(k)

where the coefficients in this equation are given by:

cj,l(k) = βj,l(k, O)d0(l − j, l)

dj,l(k) = βj,l(k, O)(d1(l − j, l)− d0(l − j, l))

a(k) = 1− d0(0, h)α(k, C)

b(k) = d1(0, h)α(k, C)

