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Abstract. This paper presents a disk-based explicit state model check-
ing algorithm that uses an approach called layered duplicate detection.
In this approach, states encountered during a breadth-first traversal of
the graph of the transition system are stored in memory according to
the layer of the graph in which they are first encountered. With this lay-
ered organization of memory, transition locality is exploited by checking
only the most recent layers for duplicates. In RAM, exploiting transi-
tion locality in this way saves time. In external memory, it saves space.
In addition, a layered structure allows an easy method of counterexam-
ple reconstruction in disk-based model checking. We prove a worst-case
linear bound on the redundant work performed by our approach. Ex-
perimental results indicate that average case redundant work is much
better than the worst-case. The implemented model checker has been
used to verify a transition system that required more than 275 GBs of
disk storage.

1 Introduction

Explicit state model checking is a methodology for verifying the properties of a
system by a systematic search for error states in a state graph that represents
the behavior of the system. An “on-the-fly” algorithm for searching the state
graph begins with a queue that contains the start state, removes states from the
queue in an order that depends on the search strategy (e.g., depth-first, breadth-
first, or best-first), and generates the successors of each state and adds them to
the queue. Generated states are also stored in a hash table that is used for
duplicate detection, that is, for determining whether or not a newly-generated
state is a duplicate of a previously-generated state before adding it to the queue.
A complete search of the graph is needed to verify a system. Therefore, the
memory required is proportional to the number of states in the model. Thus,
memory is a bottleneck for model checking.

One solution is to use external memory. When RAM is full, states can be
moved to an external memory device. Delayed duplicate detection (DDD) is an
approach to external memory graph search that writes duplicates temporarily to
disk and eventually eliminates them [1–3] Because disk is accessed most quickly



in a sequential manner, allowing temporary duplicates can save time compared
to accessing disk randomly to eliminate the duplicates immediately. But DDD
still incurs significant overhead.

When searched in a breadth first manner, most graphs exhibit transition lo-
cality [4]. Transition locality means that transitions tend to be in local levels of
a breadth first visit [5]. In other words, newly-generated states are more likely
to be duplicates of a state in a recent layer than a state in a more distant layer.
We introduce layered duplicate detection as an approach to exploiting transition
locality in eliminating duplicates in external-memory search. By layered dupli-
cate detection, we mean storing the search graph in layers and only saving and
checking the most recent layers for duplicates. This approach is useful both in
deciding which states to store in a RAM cache, and in deciding which states
to store on disk. We show that layered duplicate detection makes it possible
to improve the running time of an external-memory model checker, as well as
decrease the amount of disk storage it needs. When not all layers of the search
graph are stored on disk, we use a divide-and-conquer approach to counterexam-
ple reconstruction and we show that this is facilitated by the layered organization
of stored states that we adopt.

The paper is organized as follows. Section 2 gives an overview of relevant
background and related work. Section 3 presents the new algorithm as an ex-
tension of the Murφ model checker [1]. Section 4 reports experimental results.
Section 5 concludes the paper and discusses potential future directions.

2 Background

There are many approaches to addressing the state explosion problem in model
checking. Two of the most relevant approaches for this paper are partial storage
methods and external memory model checking.

2.1 Cached Model Checking

Cached model checking is a method of model checking where the closed list is
not maintained in its entirety. Instead, a partial cache of the closed list is used.
Partial caching creates the possibility of searching parts of the state space more
than once. To limit the amount of redundant searching, the algorithm must
wisely choose what to keep in cache. Correct caching choices reduce the amount
of redundant work occurring.

We distinguish three types of partial storage methods: Depth-first search
(DFS) approaches, breadth-first search (BFS) without duplicates, and BFS with
duplicates. A depth first cached search always has a complete counter example
at the time of discovering an error state, but DFS is not guaranteed to find the
shallowest error state [6]. BFS has the advantage of always finding the shallowest
error, if an error exists. Also BFS takes advantage of the property of transition
locality [4]. A disadvantage of Cached BFS is that counter examples may need
to be reconstructed.



Depth-first approaches Depth first search explores a branch as far as possible
before backtracking. Cached DFS methods allow duplicates, but use various
method to limit the number of duplicate states. Geldenhuys et al. [7] were able
to bound the number of duplicates by caching all states in certain ‘strata’ based
on distance from the start state. Godefroid et al. [8] preferentially cached newer
states, in an attempt to exploit something like transition locality, though it is
not clear if transition locality is observed in DFS. Alternatively stateless model
checking [9] uses complicated pruning mechanisms to prune duplicate states.

Breadth-first without duplicates There are breadth-first methods that delete
states in such a way that no duplicates are allowed. These searches use various
properties that exist in certain graphs to determine what states are necessary to
cache. Kristensen and Mailund exploit ordering in models where states can be
ordered, either with a total ordering [10] or a partial ordering [11]. Parshkevov
and Yantchev [12] searched graphs where all states have the same number of par-
ent states, removing states when all parents had been observed. Frontier search
exploits the fact that in some graphs duplicates may be guaranteed to only exist
in the most recent L layers [3, 13]. Whatever the graph property exploited, states
can be removed from the cache without risking duplicate states. These methods
are domain dependent because not all graphs exhibit these properties.

Breadth-first with duplicates Breadth-first search with duplicates is are
easy to implement in a domain independent manner. These methods allow some
duplicates but use various methods to limit the number of duplicates that occur.

Hash Collisions Tronci et al. attempted to maintain a cache of only the most
local states in memory [5]. In Tronci’s approach the state cache is maintained
in memory as a hash table. When two states (s, s′) collide in the hash table,
the older state (s) is removed and the newer state (s′) is remembered. This
replacement strategy is attempting to exploit transition locality [4], by keeping
the most recent states in the cache. While this method of caching the most local
states may work in some cases, mere hash collision of the states does not signify
that s is an old state. In fact s may be a quite recent state, thus very local; in
this case, deleting s would counter the transition locality property.

Layered Duplicate Detection Zhou and Hansen [14] altered frontier search for di-
rected graphs. The new approach is called layered duplicate detection. In layered
duplicate detection they propose keeping one or more previous layers. While the
number needed to prevent all duplicates depends on the structure of the graph.
They do not attempt to catch all duplicates, because number of layers to elimi-
nate all duplicates cannot be known a priori. However, they theoretically bound
on duplicates for layered search is h

k
where h is the height of the graph and k

is the number of layers cached. Zhou and Hansen exploit transition locality by
keeping the most recent layers in the RAM cache.



2.2 External Memory Search

Using external memory increases the maximum number of states that can be
stored. External memory search increases the memory available to the algorithm
from ∼ 4 GB to ∼ 1.5 TB. This allows for larger state spaces to be completely
explored. External memory searches involve a method for eliminating duplicates
on disk. Often this is performed by delayed duplicate detection (DDD) [1].

External Memory Bucketing Bao and Jones determined that state compar-
isons, not disk I/O, took the majority of time in external memory search [15].
In a brute force external memory search, DDD took O(mn) time where m is
the number of states on the disk and n is the number of candidate states to
be checked. One way to improve external memory model checking is to split
the state space into several chunks called buckets. All duplicate states will be
assigned to the same bucket. Therefore DDD only need to be performed within
buckets. This reduces the amount of time for DDD to O(Σmini), where mi is the
states previously assigned to bucket i and ni is the candidate states in bucket i.
In most cases, O(Σmini) � O(mn). Several different methods of bucketing the
states have been employed. Including hash functions [2], heuristics [16], transi-
tion locality [17–19] and graph structure [20]. All of these algorithms speed the
search by reducing the number of state comparisons necessary to perform DDD.

Transition Locality in External Memory Model Checking Some exter-
nal memory model checkers perform DDD on only the most recent states. These
algorithms were attempting to exploit transition locality, However neither algo-
rithm discussed here was fully successful.

Locality in RAM Cache Hammer and Weber [21] implemented an external mem-
ory search that takes a cue from the partial storage algorithms. The Hammer
algorithm uses a function to guess which states are less likely to be duplicated
and swaps them to external memory. They tried several selection functions. The
best performing functions used a state’s age as part of the criteria, with older
states more likely to be sent to disk. Unfortunately, Hammer and Weber’s algo-
rithm is not truly BFS due to their special treatment of single successor states.
The properties of transition locality have only been shown to exist in BFS.

Locality in DDD Della Penna et al. [17–19] extend Tronci’s [5] cached memory
model checker for use with external memory. When a child state is generated, it
is checked immediately for membership in the RAM cache. When Della Penna’s
algorithm has a hash collision, the oldest of the two colliding states is written
to disk. External memory is partitioned by the order states are written. DDD
is usually performed on only the most recent portion of the states in external
memory. Occasionally a full DDD was performed to removed duplicates missed
in the partial DDD. By checking the candidate states against only the most
recently written parts of the closed list, Della Penna et al. were attempting to



exploit transition locality in external memory. However, the states are written
to disk when a hash collision occurs; hash collisions are not a good measure of
locality. Therefore the states checked may not be the most local.

3 Algorithm

The starting point for our implementation is the Murφ model checker, a domain-
independent tool that takes a description of a model as input and uses breadth-
first search to verify that the model is correct [22]. If an error is found, it returns
an error trace.

3.1 Breadth-first search with layered duplicate detection

In our algorithm we bucket the states by two criteria. First by g-cost, which
is a measure of a states distance from the start state. This allows us to take
advantage of transition locality. The second bucketing criteria is a hash function
that gives an approximately even distribution among buckets. Like bucketing
discussed in section 2.2, this second bucketing criteria improves the speed of
DDD, with a penalty of increased usage of external memory.

1 sequence LDDD(ErrorStates)
2 depth := 0
3 shallow := 0
4 s := start state
5 Bucket[hash(s)][depth].add(s)
6 Refined[hash(s)][depth].add(s)
7 Q[hash(s)][depth].enqueue(s)
8 while(¬∀D∀B Q[B][D].empty())
9 for(all buckets c)
10 while(¬Q[c][depth].empty())
11 s := Q[c][depth].dequeue()
12 For( all children s′ of s )
13 if(RAM FULL())
14 for ( all buckets b )
15 delete Bucket[b][shallow]
16 if(depth + 1 > shallow) shallow ++
17 if(∀depth+1

i=shallow s′ 6∈ Bucket[hash(s′)][i])
18 Bucket[hash(s′)][depth+1].add(s′)
19 candidate[hash(s′)][depth+1].add(s′)
20 if(s′ ∈ ErrorStates) return counter example reconstruction(s′)
21 depth++
22 DDD(depth,shallow)

23 return ∅

Fig. 1. Pseudo-code for Layered Delayed Duplicate Detection



Figure 1 contains the pseudo-code for Layered Delayed Duplicate Detection.
Bucket is the closed list kept in RAM. Refined is the closed list kept in external
memory. The queue acts like pointers into the refined list. Candidate is a list of
all candidate states and is also kept in external memory. The algorithm proceeds
as follows, while we still have elements in the queue, line 8, we loop through all
the buckets, line 9. We cycle through all states in each queue at the current
level, line 10. For each dequeued state, all children states are generated, line 12.
If RAM is full we delete all buckets at the shallowest depth currently in RAM,
line 15. Shallow states are closest to the start state and are the least likely to
be duplicated. When layers are large we sometimes delete the portions of the
next layer that have already been generated, line 16. If the generated states
are not found in RAM they are added to the proper bucket in RAM and the
candidate list, line 18. If a violation of the property is found, the counter example
is reconstructed, line 20. At the end of every layer DDD is performed, line 22.

3.2 Delayed Duplicate Detection

1 DDD(depth, shallow)
2 for ( all buckets b )
3 l := shallow - L

4 while ( l < shallow )
5 offset[l]=0
6 l + +
7 sort candidate[b][depth]
8 e := 0
9 while ( e < candidate[b][depth].size())
10 if(candidate[b][depth].element(e)6=candidate[b][depth].element(e − 1))
11 if(¬ inPreviousLayer(candidate[b][depth].element(e),b,offset)
12 Q[b][depth].enqueue(candidate[b][depth].element(e))
13 Refined[b][depth].add(s)
14 e + +

15 delete candidate[b][depth]

Fig. 2. Pseudo-code for Delayed Duplicate Detection

The code for performing delayed duplicate detection is in Figure 2. DDD
loops through all states of the candidate buckets. Each state is checked for re-
dundancy, line 11. States not detected as duplicates are put into the queue,
line 12 and the refined list. The code for checking for duplicate states in external
memory is in Figure 3.

Performing the DDD is the most time consuming part of a DDD search [15].
DDD takes even more time than disk I/O, which is notoriously slow [15]. There-
fore it is in our best interest to perform additional work that will reduce the
time spent in DDD. One way to do this is to sort all states stored in external



1 boolean inPreviousLayers(s,b,offset)
2 layer := shallow-1
3 while ( layer > shallow - L )
4 while s < Refined[b][layer].element(offset[layer])
5 offset[layer] ++
6 if s == Refined[b][layer].element(offset[layer])
7 return true
8 layer - -;

9 return false

Fig. 3. Checking for a state in the L most recent layers in external memory.

memory. If a bucket is sorted, DDD takes O(n+m) time instead of O(nm). The
cost of an external sort is O(n ∗ (1 + dlogB−1d

n

B
ee)), where n is the number of

candidate states, m is the number of states in the bucket and B is the number
of states cached by the external sort.

Sorting the buckets makes this task easier in three ways. First, all duplicates
within a bucket will be stored consecutively once sorted. Thus, a duplicates in
the current bucket can be found by merely comparing a state to its neighbors.
Therefore, the states are checked against the previous state in the candidate

bucket, Figure 2 line 10. Detected duplicates are not added to the refined bucket.
Another way sorting helps is when eliminating duplicates in external memory.
We can compare the candidate state against the previous L layers one state
at a time, Figure 3 lines 4 and 6. If we reach a state that sorts greater than
the candidate state we know the candidate has no match in that layer and do
not have to check any more states in that layer. The third help has to do with
how candidate states are checked. Because the candidates are sorted the next
candidate state checked will sort greater than the current candidate, thus we
can resume checking the layer from the same location, recorded in the offset
array, line 5, rather than starting at the beginning of the layer. We know all
states in the layer previously checked, sort less than the current candidate state,
and are therefore not matches. During a DDD that uses sorting, we load a
state from external memory in to RAM no more than once. A brute force DDD
compares every candidate state to every state in external memory. Thus, every
state in external memory may be loaded into RAM once for every candidate

state. Sorting is well worth the minor overhead it costs.

3.3 Counter Example Reconstruction

The pseudo-code for reconstruction of the error trace is in Figure 4. In a standard
RAM only search, each state usually includes a pointer back to its parent state.
With parent pointers reconstructing an error trace is a matter of tracing back
those pointers to the start state. In external memory search some states on
the error trace may not be located in RAM. This makes reconstructing the
error trace more complicated. Instead of a parent pointer we include two items



1 sequence counter example reconstruction(error)
2 trace:=∅
3 traceDepth:=depth
4 cur:=error
5 while(traceDepth>shallow)
6 trace:=trace & cur
7 traceDepth - -
8 cur:=Bucket[cur.parentHash][traceDepth].element(cur.parentPosition)
9 while(traceDepth>0)
10 trace:=trace & cur
11 traceDepth - -
12 cur:=Refined[cur.parentHash][traceDepth].element(cur.parentPosition)
13 trace:=trace & cur

14 return trace

Fig. 4. Pseudo-code for reconstructing error traces.

of information with each state, We remember the parents hash, to determine
which bucket the parent is in, and the parents location in the bucket, line 8.
With these two items of information we can find parent states in both RAM and
external memory. Since the deepest states will be in RAM we first work from
the error state to the shallowest layer in RAM, see line 5. The remaining states
in the trace exist only in external memory. The process for finding them is very
similar, line 12, but will take longer due to slower I/O speeds.

3.4 Termination

Because the search is breadth-first, if an error is found, the error trace is guaran-
teed to be the shortest path to the error state. If an error exists, our algorithm
will always find it. If no error is found, the search terminates when there are
no more states of the graph to explore, i.e. the open list is empty, see Figure 1,
line 8. If the search terminates in this way the model is verified. However, when
only the most recent layers are checked for duplicates, the search is no longer
guaranteed to terminate with an empty open list, even if the graph is finite. It
is possible, when no error states exist, for the search to continue forever because
of missed duplicate states. Thus, our algorithm, like many partial memory al-
gorithms, is Las Vegas in nature. Answers produced are always correct, but in
some cases no answer is produced.

This points to a second way to detect termination and verify a model. If the
model is verified for a depth that is equal to or greater than the diameter of
the graph, called the completeness threshold, verification is complete. Various
methods for determining a completeness threshold have been explored in the lit-
erature on bounded model checking, and can be applied in our layered approach.
This method of detecting termination is similar to that used in bounded model
checking, which uses satisfiability testing to verify that a model does not have



any errors up to some depth k [23]. Such a bound would eliminate the Las Vegas
nature of the algorithm.

4 Results

We implemented layered duplicate detection in the Murφ model checker, which
uses a RAM cache to immediately eliminate as many duplicates as possible
and uses delayed duplicate detection to eventually eliminate duplicates that are
written to disk. When our implementation of the model checker finds a error, it
uses the the divide-and-conquer technique to return the counterexample.

Our experiments were performed on a 3.0 GHz dual-core Xeon processor with
two gigabytes of RAM and one terabyte of disk storage.

Num Num Duplicates Time Disk
Model States Layers RAM DDD Missed BFS Trace GB

Verified

newlist 80,109,359 110 346,175,576 116,341,341 288,695 14:35:00 N/A 22
ldash 254,935 64 2,391,696 7 2 3:28:42 N/A 41
directory 1,071,401,426 113 479,609,483 78,501,871 28 1:22:16:29 N/A 279

Error Detected

adashe 2,156,280 16 3,329,518 169,981 0 4:02:17 7:39 5
arbiter 90,913,223 31 378,993,079 64,426,284 0 6:17:41 1 26

Table 1. Performance results using layered delayed duplicate detection, with a maxi-
mum of 50 layers stored on disk. The column Num states shows the number of unique
states of the model that are visited during the search. The column Num layers shows
the depth of the search. The column RAM records the number of duplicates elimi-
nated in RAM, and the column DDD shows the number of duplicates written tem-
porarily to disk and later eliminated by DDD. The column Missed shows the number
of duplicates missed by our algorithm because not all layers of the search graph are
stored on disk. The column BFS shows the CPU time for the search, and the col-
umn Trace shows the CPU time to reconstruct the error trace. Time is reported as
Days:Hours:Minutes:Seconds. The column Disk shows the amount of external memory
required to store the complete state space, reported in gigabytes.

The results reported in Table 1 show the performance of the algorithm in
verifying five models. Three models were verified. For the other two models, an
error was found and the error trace was returned. For all of the models except
ldash, the largest layer of the search graph exceeded RAM capacity; this means
that RAM cache contained less than one layer at times. A maximum of 50
layers of the search graph were stored on disk at a time to check for duplicates.
Table 1 shows the number of unique states of the model. Because the algorithm
checks a bounded number of layers for duplicates, and thus could miss some
duplicates, the number of unique states of the model was was determined by a
post-processing step.



Despite often caching less than a layer in RAM, our results show that more
duplicates can be detected in RAM than there are unique states in the model.
Fewer duplicates are eliminated in DDD; this is good, since DDD is relatively
expensive. The number of duplicates missed because not all layers are stored on
disk is typically small, and much less than the number eliminated by DDD. We
report the amount of time taken by the algorithm, broken down by how much
time was spent on the search and how much time was spent reconstructing the
error trace if an error state was discovered. Counter example reconstruction usu-
ally takes a small portion of the total time. The counter example reconstruction
for arbiter is remarkably fast; in this case, the error trace is sorted near the be-
ginning of the refined files. Finally, we report the amount of gigabytes required
to completely store the state space. While all these models exceed the RAM we
have available, the directory model is particularly large, requiring 279 GB to
completely store the state space.

4.1 Effective RAM Caching Saves Time and Space

Delayed
Model Cache Time Duplicates

ldash RAM Cache 1:02:42 7
No Cache 9:03:25 1,536,918

adashe RAM Cache 4:02:17 172,184
No Cache 6:12:45 3,459,785

arbiter RAM Cache 6:17:41 66,980,652
No Cache 22:15:19 413,937,369

Table 2. Performance with and without a layered RAM cache. The column Time shows
the overall time to perform the search, and is reported in Hours:Minutes:Seconds. The
column Delayed Duplicates shows the number of duplicates eliminated during DDD.

Having an effective RAM cache saves both time and space. Table 2 shows
that without a RAM cache, there is a large increase in the number of duplicates
written temporarily to disk and eliminated during DDD, as well as a correspond-
ing increase in the running time of the model checker. In addition, writing these
duplicates to disk increases the amount of disk storage required by the algorithm.

4.2 Layer Sizes

Figure 5 shows the size of each layer of the search graph for the directory model.
As Pelánek [4] earlier observed, the distribution of layers usually has a near bell
curve shape, with most states in the middle layers. For this model, 40% of the
states are in layers 62 to 72, out of a total of 113 layers. In fact, layer 66 alone
contains almost 5% of the states in the model. Although disk provides much



Fig. 5. The number of states at each depth of the directory model.

more storage than internal memory, it is also limited. In our experiments, we
have not yet reached the limits of our available disk storage, but increasingly
large models will test these limits. For example, Korf and Schultze [3] describe
a complete breadth-first search of the Fifteen Puzzle that requires 1.4 terabytes
of disk just to store the largest single layer of the graph. When model checking
considers problems that approach this size, it will become important to conserve
external memory. One way to economize in the use of external memory is by
using our partial DDD algorithm. Since our algorithm only checks a subset of
all previous layers during DDD, and only keeps this subset of layers on disk, it
can use much less disk storage.

4.3 Transition Locality in Partial Delayed Duplicate Detection

Table 3 shows the result of running our algorithm on four large models and
varying the number of layers stored on disk and checked in DDD. If too few
layers are checked, large numbers of duplicates are never eliminated, increasing
the running time of the algorithm. But it is possible to store more layers than
necessary, although this usually doesn’t increase the running time of the algo-
rithm much since most duplicates are caught before checking the older layers.
For all of these models, the best space-time performance is achieved by storing
and checking only a bounded number of layers, but the optimal number of layers
is model-dependent and cannot be known a priori.



4.4 Model Descriptions

All of our models are based on complex protocols. The following explains the
protocols used to create the models.

1 arbiter : model of a mutual exclusion algorithm with an arbiter that allocates
resources [24]. We used a model with 13 resources.

2 dash: model of the Dash Communication Protocol [25]. This protocol has
two variant models.
– adashe: abstraction of the dash protocol. This variant has been changed
to include error states. Adashe was tested on a model that had 1 cluster with
memory, 2 clusters without memory, 2 address in the memory cluster, and
2 value types to be saved.
– ldash: concrete model of the dash protocol. We tested a model with 1
cluster with memory, 4 clusters without memory, 1 address per cluster could
be locked, with message buffer of size 30.

3 directory : model of a directory-based cache protocol [26]. This is a model
created by IBM and used for evaluating the protocol for use in servers. We
tested a model with 14 clients.

4 newlist : protocol for a distributed linked list that covers maintaining co-
herency in the list and controlling adjustments as the list is sorted. We used
a system with 8 distributed nodes.

4.5 Theoretical Results

We next prove some bounds on the number of duplicates that can be generated
when not all all layers of the search graph are stored and checked for duplicates.
First, we bound the number of duplicates that are never eliminated in the search.
We call these redundant states. Then we bound the number of duplicates that
will be eliminated in delayed duplicate detection. In our experiments, observed
performance is much better than these worst-case bounds.

Bounds on Redundant States Zhou and Hansen [14] give some conditions
under which no duplicates will be generated, using layered duplicate detection.
In the worst-case, the number of times a state can be regenerated is bounded by
the depth of the search (d) and the number of layers checked in DDD (L), and
no state can be duplicated more than d/L times.

Theorem 1. In layered external memory search, the worst-case number of times

a state can be regenerated is bounded by d

L

Proof. Let L ≥ 1 be the number of layers checked by the algorithm. No duplicates
can exist in these L layers. New states are checked against those L layers before
being inserted into the open list. The least layers a duplicate state s can reappear
is at layer g∗(s)+L where g∗(s) is the first layer at which state s is encountered.
State s may then appear every L layers for the rest of the search. If the depth of
the search is d, the state s can appear a maximum of j times where g∗(s)+j∗L ≤



d. Thus, state s may recur at most d

L
times, which assumes the state appears in

layer 0 and every L layer thereafter.

Theorem 2. In layered breadth-first search, the worst-case number of number

of states that can be regenerated is bounded by S∗d

L
.

Proof. This is a small step from Theorem 1. Since a state s can be duplicated
no more than d

L
times and there are S states, no more than S∗d

L
states can be

searched. Since searching S∗d

L
states would mean that every state in the graph

is duplicated the maximum times allowed by the bound in Theorem 1.

Note as well if L = d then S states are searched, i.e. each state is searched once.
Since L = d in a traditional BFS this result is appropriate.

Theorem 3. In layered breadth-first search, the worst-case redundant work fac-

tor is bounded by d

L
.

Proof. The redundant work factor is a metric used by Geldenhuys [7]. The metric
is the ratio of reported states to actual states. Actual states are S. Reported
states are bounded by Theorem 2 to S∗d

L
. Thus, the redundant work factor is

bounded by
S∗d

L

S
which reduces to d

L
.

Therefore, according to Theorem 3, if L = d, the redundant work factor is 1,
which is, again, what we would expect from a traditional search. In the worst-
case L = 1 making rwf = d.

Bounds on Delayed Duplicates Temporary duplicates are duplicates that
are not eliminated immediately in RAM cache, but are eventually eliminated
during DDD. Each temporary duplicate adds to the overhead of our search.
We can bound the number of temporary duplicates by similar reasoning as in
Theorem 1. We simply switch the number of layers checked in DDD (L) for the
number of layers cached in RAM (k).

Theorem 4. In layered external memory search, the worst-case number of times

a state can be temporally duplicated is bounded by d

k

Proof. If k is the number of layers cached by the algorithm. No duplicates will be
temporarily missed in these k layers. New states will be checked against those k
layers immediately. When a layer is larger than our RAM cache, i.e. k < 1, states
may be repeated more than once per layer. Still, the least layers a duplicate state
s can reappear is at layer g∗(s) + k where g∗(s) is the first layer at which state
s is encountered. State s may then appear every k layers for the rest of the
search. If the depth of the search is d, the state s can appear a maximum of j
times where g∗(s) + j ∗ k ≤ d. Thus, state s may recur at most d

k
times, which

assumes the state appears in layer 0 and every k layer thereafter. This bound is
applicable whether k ≥ 1 or 1 > k.



Theorem 5. In layered breadth-first search, the worst-case number of number

of states that can be temporary duplicates is bounded by S∗d

k
.

Proof. This is a small step from Theorem 4. Since a state s can be a temporary
duplicate no more than d

k
times and there are S states, no more than S∗d

k
states

can be seen during the search. Since S∗d

k
temporary duplicates states would mean

that every state in the graph is duplicated the maximum times allowed by the
bound in Theorem 4.

5 Conclusion and Future Work

External layered duplicate detection improved on previous work in several ways.
First, layered duplicate detection is easy to implement in a domain independent
way. Second, the layered framework allows us to exploit transition locality in
the RAM cache. The vast majority of duplicates are identified instantly in RAM
because the most recent states are cached in RAM. This is even true when only
a small portion of the state space is cached. On our largest model, directory

we eliminated 86% of duplicates in RAM while caching approximately 1% of
the state space. Transition locality is clearly a good metric for caching. Third,
transition locality can also be exploited in external memory. In external memory
we can still rely on most duplicates occurring in the most recent layers. If we
only perform DDD on the L most recent layers, we can save large amounts of
space in external memory while insignificantly increasing time requirements, in
the case of ldash we require approximately one quarter of the disk space needed
to store the entire state space, with a delay of 11 minutes, out of a search taking
three and a half hours. Fourth, we generate several worst-case linear bounds on
the amount of redundant work performed by our algorithm. Results are well
below the bound. Finally, a layered approach lends itself to a speedy counter
example reconstruction. In adashe reconstruction takes 3% of the overall time.

Besides testing this approach on larger and more varied models, we hope
to eventually extend it in several ways. We pointed out that only the L layers
checked in DDD must be retained in our search. But up to this point we do not
delete old layers because they are used during counter example reconstruction.
We will extend our tool to allow complete search of graphs that do not fit on
disk. This will include reconstructing parts of the counter example that have
been removed from disk using a divide and conquer method [14].

We would also like a better hashing function. Jabbar and Edelkamp [16]
use a hashing function that limits a bucket’s successors to a few other buck-
ets. The successor guarantees were used to parallelize the search. Completed
buckets could be refined by delayed duplicate detection in parallel with bucket
expansions. Their hash is domain dependent, however. We would like a hash that
limited the number of successor buckets but works in a domain independent way.

Another valuable addition would be to bound the diameter of the graphs.
This bound could be used to prune the search deeper than the bound. Such a
bound would eliminate the Las Vegas nature of the algorithm. If error states



exist they would always be found before the bound. If all active states were
pruned by the bound, the model would be verified.

A final addition would be a system for dynamically varying the number
of layers checked in DDD. Since the ideal number of layers checked differs for
every model, it would be desirable to determine the optimal number of layers
automatically. We propose a system that would vary the number of layers checked
based on the maximal back edge length observed.
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Layers CPU Time Disk Storage

adashe

15 4:02:17 5.00
10 3:48:25 4.99
5 3:53:46 4.56
0 4:04:00 2.04

arbiter

30 6:04:49 26.00
25 6:05:09 25.99
20 6:05:35 25.93
15 6:03:22 25.68
10 6:18:58 25.72
5 7:17:08 25.22
0 6:07:12 8.46

ldash

46 1:07:15 40.88
26 1:03:51 37.58
10 1:03:34 20.50
8 1:01:43 17.09
6 1:11:05 13.39
5 1:12:46 11.41
4 2:21:06 9.44
2 >8:34:22 >6.23

newlist

88 19:22:47 22.00
66 19:15:24 21.96
44 19:51:39 21.70

Table 3. Tradeoffs for checking a bounded number of previous layers for duplicates,
as the number of layers is varied. The column Layers gives the number of previous
layers used in DDD. The column CPU Time gives the amount of time the algorithm
took, reported in Hours:Minutes:Seconds. The column Disk Storage gives the maximum
amount of external memory required for the algorithm to complete the search, reported
in gigabytes.


