
Distributed Dynamic Partial Order Reduction

Based Verification of Threaded Software?

Yu Yang Xiaofang Chen Ganesh Gopalakrishnan Robert M. Kirby

School of Computing, University of Utah
Salt Lake City, UT 84112, U.S.A.

Abstract. Runtime (dynamic) model checking is a promising verifica-
tion methodology for real-world threaded software because of its many
features, the prominent ones being: (i) it avoids the need to extract a
model and instead runs the actual code, and (ii) the precision of infor-
mation available at run-time allows techniques such as dynamic partial
order reduction (DPOR) to dramatically cut down the number of in-
terleavings examined. Unfortunately, DPOR does not have many imple-
mentations for real thread libraries such as POSIX Pthreads, and suffers
from high computational overheads due to a stateless search that re-
quires re-executions. In our previous work [1], we designed a runtime
model checker, inspect, that overcomes the first of these drawbacks.
Inspect has been shown capable of detecting data races, deadlocks and
other incorrect API usages in real-world PThreads C/C++ programs. In
this paper, we describe a distributed version of inspect, which imple-
ments an extended DPOR [2] algorithm. Our two key contributions are:
(i) a practical algorithm for distributed dynamic partial order reduction,
(ii) the innovations that helped distributed inspect attain nearly linear
(with respect to the number of CPUs) speedup on realistic examples.

1 Introduction

Runtime (dynamic) model checking (e.g., as in [3]) is a promising verification
methodology for real-world threaded software because of its many features. It
avoids the (implicit or explicit) overhead of modeling programs that is usually
required by other model checkers [4,5,6,7]. The precision of information available
at run-time allows techniques such as dynamic partial order reduction (DPOR)
(proposed in [2]) to dramatically cut down the number of interleavings exam-
ined. In our previous work [1], we designed a runtime model checker, inspect,
that (to the best of our knowledge) is the first implementation of DPOR that
handles the widely used POSIX Pthreads library. Inspect explores relevant in-
terleavings (generated by DPOR) of a multithreaded C/C++ program with a
specific testing scenario. In this setting, Inspect has detected data races, dead-
locks, and other incorrect API usages in many real-world PThreads C/C++

? Supported in part by NSF award CNS00509379, Microsoft HPC Institute Program,
and SRC Contract 2005-TJ-1318.

programs. However, we observed that run-time is a major limiting factor of
inspect. Inspect explores the state space by executing the program concretely
and observing its visible operations. As it is not easy to capture and restore the
state of a C/C++ program which runs concretely, inspect does not keep the
search history, instead employing stateless search (e.g., [3]) that can incur high
overheads.1

A runtime model checker such as inspect is potentially “embarrassingly
parallel” based on the casual observation that since stateless search does not
maintain the search history, different branches of an acyclic state space can be
explored concurrently, and with very loose synchronizations. We implemented a
parallel version of inspect based on this observation, employing a centralized
load balancer to distribute work among multiple nodes. Unfortunately, we failed
to consistently obtain the linear speedup promised by the apparent parallelism.
Deeper investigation revealed the reasons. These reasons, and other features of
our algorithm are now summarized:

Avoiding Redundant Computations: Despite our use of sleep sets [8] to
avoid redundant interleavings among independent transitions, we found that
redundant (and, in fact, identical) interleavings were being explored among
multiple nodes. The problem was traced to the incremental way of computing
backtrack sets in the standard DPOR algorithm (detailed in the rest of
this paper), which is well suited for a sequential implementation but not
a loosely synchronized distributed implementation. We have developed a
heuristic technique to update backtrack sets more aggressively, as detailed
in Section 3.4.

Work Distribution Heuristics: Numerous heuristics help achieve efficient work
distribution in inspect. These include: (i) the straightforward method of
employing a single load balancing node (process) and N − 1 worker nodes
(processes); (ii) the concept of a soft limit on the number of backtrack points
recorded within a worker node before that node decides to offload work to
another worker; and (iii) minimizing communication by offloading work that
lies deepest within the stack – points from where the largest number of
program-paths are available – so that bigger chunks of work are shipped per
communication.

This paper describes these extensions to the DPOR algorithm proposed in
[2] and detailed in [1]. Our experiments demonstrate almost linear speedup with
increasing number of nodes (CPUs). For example, one of our benchmarks which
has eight threads and requires more than 11 hours to finish checking using se-
quential inspect can be checked by the parallel inspect within 11 minutes
using 65 nodes. The parallel inspect gives a speedup of 63.2 out of 65.

1 Given programs that have cyclic state spaces, a stateless search method (such as used
in inspect) requires depth-bounding or some other technique to ensure termination.
This was not an issue in our practical test programs. In this paper, we focus only on
checking multithreaded programs that have acyclic state spaces.

2

Roadmap: Section 2 presents background information on inspect and DPOR.
Section 3 presents the extended DPOR algorithm used in parallel inspect. Sec-
tion 4 presents implementation detail, and the experiment results, Section 5 the
related work, and Section 6 our concluding remarks.

2 Background

2.1 Overview of Inspect

Modeling the library functions employed in, and the runtime environment of
multithreaded C/C++ programs is non-trivial. To the best of our knowledge,
Verisoft [3] is the only model checker capable of checking concurrent C/C++ pro-
grams without incurring modeling overheads. Unfortunately, Verisoft focuses on
concurrent programs that interact through inter-process communication mech-
anisms. In a multithreaded program, threads can interact not only through ex-
plicit synchronization/mutual exclusion primitives, but also through read/write
operations on shared data objects. Our runtime model checker inspect can
handle these details, and can systematically explore all possible interleavings of
a multithreaded C/C++ program under a specific testing scenario, employing
DPOR.

Scheduler

with

dynamic partial

order reduction

r
e
q
u
e
s
t
/
p
e
r
m
i
t

r
e
q
u
e
s
t
/
p
e
r
m
i
t

request/permit

executable

compile

thread1

thread2

threadn

...

Multithreaded

C/C++

programs

Source Code

Transformer

Instrumented

programs

thread library

wrapper

re-run the program until all

interleavings are explored

report

errors

Fig. 1. Inspect’s workflow

Figure 1 shows the workflow of inspect. The source code transformer in-
struments the program at the source code level to arrange communications with
a scheduler at global interaction points. Here, a thread library wrapper helps in-
tercept thread library calls. Finally, a centralized scheduler embodies the DPOR
algorithm, and controls the interleaved executions of the threads according to
it. In inspect, instrumentation can be done automatically for C programs (Sec-
tion ?? lists some examples). The instrumented program is compiled, and the
executable is run repeatedly under the control of the scheduler until all relevant
interleavings among the threads required by DPOR are explored.

Before performing any operation that might have a side effect on other
threads, the instrumented program sends a request to the scheduler. The sched-
uler can either allow the requesting process to proceed, or block it for any finite
duration by postponing a reply.

3

2.2 Definitions

A multithreaded program can be modeled as a concurrent system, which consists
of a finite set of threads, and a set of shared objects. Threads communicate with
each other only through shared objects. Operations on shared objects are called
visible operations, while the rest are invisible operations. We assume threads
can only be blocked by visible operations. A state of a multithreaded program
consists of the global state of all shared objects and the local state of each thread.
A transition moves the program from one state to the next state by performing
one visible operation of a certain thread, followed by a finite sequence of invisible
operations, ending just before the next visible operation of that thread.

Given a state s and a transition t, we use the following notations:

– t.tid denotes the identity of the thread that executes t.
– next(s, t) refers to the state which is reached from s by executing t.
– s.enabled denotes the set of transitions that are enabled from s. A thread p

is enabled in a state s if there exists some transition t such that t ∈ s.enabled

and t.tid = p.
– s.backtrack refers to the backtrack set at state s (Figure 2). s.backtrack is

a set of thread identities. {t | t.tid ∈ s.backtrack} is the set of transitions
which are enabled but have not been executed from s.

– s.done denotes the set of threads examined at s. Similar to s.backtrack,
s.done is also a set of thread identities. {t | t.tid ∈ s.done} is the set of
transitions that have been executed from s.

2.3 Dynamic Partial Order Reduction

Partial order reduction (POR) techniques [9] are those that avoid interleaving
independent transitions during search.

Given the set of enabled transitions from a state s, partial order reduction
algorithms attempt to explore only a (proper) subset of s.enabled, and at the
same time guarantee that the properties of interest will be preserved. Such a
subset is called persistent set.

Static POR algorithms compute the persistent set of a state s immediately
after reaching it. As for multithreaded programs, persistent sets computed stat-
ically will be excessively large because of the limitations of static analysis. For
instance, if two transitions leading out of s access an array a[] by indexing it
at locations captured by expressions e1 and e2 (i.e., a[e1] and a[e2]), a static
analyzer may not be able to decide whether e1=e2 (and hence whether the
transitions are dependent or not). Flanagan and Godefroid introduced dynamic
partial-order reduction (DPOR) [2] to dynamically compute smaller persistent
sets, capitalizing on runtime information.

In DPOR, given a state s, the persistent set of s is not computed immedi-
ately after reaching s. Instead, DPOR populates the persistent set of s while
searching under s according to depth-first search (DFS). Figure 2 recapitulates
the DPOR algorithm. On line 22, we see how the backtrack state of a state called

4

1: StateStack S;
2: TransitionSequence T ;
3: Transition t;

4: DPOR() {
5: State s = S.top;
6: update backtrack info(s);
7: if (∃ thread p, ∃t ∈ s.enabled, t.tid = p) {
8: s.backtrack = {p};
9: s.done = ∅;

10: while (∃q ∈ s.backtrack \ s.done) {
11: s.done = s.done ∪ {q};
12: s.backtrack = s.backtrack \ {q};
13: let tn ∈ s.enabled, tn.tid = q;
14: T.append(tn);
15: S.push(next(s, tn));
16: DPOR();
17: T.pop back();
18: S.pop();
19: }
20: }
21: }

22: update backtrack info(State s) {
23: for each thread p {
24: let tn ∈ s.enabled, tn.tid = p;
25: let td be the latest transition in T that is dependent and may be co-enabled

with tn;
26: if (td 6= null) {
27: let sd be the state in S from which td is executed;
28: let E be {q ∈ sd.enabled | q.tid = p, or q in T , q happened after td

and is dependent with some transition in T which was executed by
p and happened after q }

29: if (E 6= ∅)
30: choose any q in E, add q.tid to sd.backtrack;
31: else

32: sd.backtrack = sd.backtrack ∪ {q.tid | q ∈ sd.enabled};
33: }
34: }
35: }

Fig. 2. Dynamic partial-order reduction

sd.backtrack is updated while exploring a state s reached from sd.backtrack un-
der DFS. Observe from line 30 that we add to sd.backtrack a thread id q.tid,
where sd is the most recent state, searching back from s, where a transition
that depends on a transition tn that is about to be taken from s occurs. When

5

the DFS unwinds to state sd.backtrack, the backtrack set is consulted and the
threads recorded in there are scheduled, provided ‘done’ is not true (line 10).
Last but not least, in inspect, we employ sleep sets [8] to avoid interleaving
independent actions.

3 Algorithm

In the DPOR algorithm, the thread ids recorded in the backtrack set of a
state s (i.e., s.backtrack) help generate different (non-equivalent) executions
out of s. These executions may be independently explored. It is this insight that
distributed inspect capitalizes. In fact, as DPOR is often best implemented
through stateless search, it is completely safe to explore the different transitions
in the backtrack sets of states concurrently, and with no (or very little) syn-
chronization. With the wide availability of cluster machines, the potential for
distributed verification is very high.

To have multiple nodes explore multiple backtrack points concurrently, each
cluster node must know: (i) the transition to be executed from a backtrack
point; (ii) the portion of the search stack from the initial state to the backtrack
point; (iii) the transition sequence from the initial state to reach the backtrack
point. All this information is easily obtained from the search stack. A centralized
load balancer can help balance the work among multiple nodes, employing very
limited synchronizations.

In this section, we first present an overview of the load balancing algorithm
(Section 3.1) and the computation of each worker (Section 3.2). Our extended
DPOR algorithm is presented over Sections 3.3 and 3.4.

3.1 Load Balancing

In parallel inspect, we assign one node of an N -node cluster as the centralized
load balancer (Figure 3), and the rest of N −1 nodes as workers (a simple initial
approach to ease programming). The load balancer monitors the status of all
workers for the purpose of partitioning the workload. Two classes of workers are
maintained: busy workers – the set of workers busy exploring some parts of the
state space, and idle workers – the set of workers which are available for new
work (initially all workers).

The load balancer chooses an idle worker, starts checking the program under
test on the selected node, and add this node to the busy workers set (Line 6-9).
Then it keeps waiting for messages from busy workers until the busy workers set
is empty (Line 10-26). At this stage, all workers have finished exploring their
part of state space, which means the whole state space has been explored. In
the last step (Line 27-28), the load balancer will send a termination message to
every worker to terminate them and exit.
The messages that the load balancer can receive from the workers fall into two
categories:

– a request from a busy worker to unload some work to idle workers.

6

– a report message from a busy worker after it finishes exploring the assigned
state space.

While exploring the assigned state space, if a worker ends up having more than
a certain number of backtrack points in its stack, it implies that too much
work might have been assigned to this worker. In this situation, this worker will
send a work unloading request to the load balancer. If there are idle workers
available, the load balancer passes along the idle worker’s information (line 17-
24). Otherwise, it tells the requester that there are no idle worker available (Line
17-20).

1: Program P ;
2: WorkerSet busy workers, idle workers;

3: load balance() {
4: idle workers = { all workers in the cluster };
5: busy workers = ∅;
6: let na be a worker, na ∈ idle workers;
7: idle workers = idle workers \ {na};
8: start checking P on na;
9: busy workers = {na};

10: while (busy workers 6= ∅) {
11: receive event e from any worker w;
12: if(e is work finish notification)
13: busy workers = busy workers \ {w};
14: idle workers = idle workers ∪ {w};
15: }
16: else if(e is new work request){
17: if(idle workers = ∅){
18: reply “no idle workers” to w;
19: continue;
20: }
21: let nb be a worker in idle workers;
22: idle workers = idle workers \ {nb};
23: busy workers = busy workers ∪ {nb};
24: send nb’s information to w;
25: }
26: }
27: for each worker ∈ idle workers

28: send a termination message to worker;
29: }

Fig. 3. The load balancing algorithm

7

1: StateStack S;
2: TransitionSequence T ;
3: Transition t;

4: worker node() {
5: while (true) {
6: wait for message;
7: if(msg is terminating)
8: return;
9: receive backtrack point related information;

10: DPOR();
11: send report to the load balancer;
12: }
13: }

Fig. 4. The routine that runs on each worker

3.2 Worker Routine

Each worker (Figure 4) keeps passively waiting for work unloading messages, and
has DPOR-enabled depth first search for each assigned state space (Line 10-12).
Here a modified DPOR routine (detailed in Section 3.3) is used. The worker exits
the while loop and terminates when a termination message is received (Line 7-8).
The message that a worker receives (Line 9) for starting a new backtrack point
includes:

– the portion of the search stack from the bottom until the backtrack point.
– the transition sequence to reach the backtrack point from the initial state.
– the transition to be executed from the backtrack point

The transition sequence is used to help the worker which is assigned the task
to replay the program until the backtrack point. The state stack is necessary
to help the node to avoid exploring the backtrack points that other nodes have
explored.

Figure 5 illustrates how the workers and the load balancer collaborate. Let
a be a busy worker and b an idle one, with a trying to unload some work to b.
First a sends a request to the load balancer. If there are idle nodes, the load
balancer will return an idle node’s id to the worker. In our example, the load
balancer tells a that b is idle, whereupon node a will send an unload message
to b with all the information needed for b to start searching from an unexplored
backtrack point. When b finishes the assigned work, it sends a report to the load
balancer.

3.3 Distributed DPOR

Figure 6 shows our distributed DPOR algorithm. Comparing with the original
DPOR algorithm in Figure 2, we made the following changes:

8

��������� 	�
���
 ����� �����������

����
 ��� ����	��! "���#
 �

$��%�&���&�'��	��! (�����&)��*
 +&�,
 	-�

��	-�! .���0/ ��	��! "���21

3 	�
��546
-�
-��).���

7��8� �-+�	�� �2����9:9#
-� ;

Fig. 5. The message flow between the load balancer and the workers

– add communication and work unloading primitives (Line 7-8 in Figure 6).

– to avoid the redundant exploration of the state space among multiple nodes,
we compute the backtrack points in a different way from the original DPOR
algorithm. We will present this in Section 3.4.

In this distributed DPOR, each time after updating the backtrack points,
we will check whether the number of backtrack points in the search stack has
exceeded a value n (Line 7). Here n is the number of backtrack points in the
search stack. If so, the current node decides to unload some of this excess work
to the other nodes, as captured in Procedure unload work.

To derive the most benefit per exchanged work unloading message, we observe
that backtrack points situated deeper in the stack typically have larger number
of program-paths emanating from them. Based on this heuristic, we choose the
deepest state s in the search stack that satisfies s.backtrack 6= ∅ (Line 29). After
unloading a backtrack point from s, on the current node, we will put the thread
id of the transition in s.done to avoid it being explored by the current node(Line
37-38).

The unload work routine first checks with the load balancer to see if there
are any idle nodes. If not, the routine will return immediately (Line 27-28).
Otherwise, it finds and sends information pertaining to the deepest backtrack
point, along with the transition sequence from the initial state to that backtrack
point, to the idle node. The algorithm in Figure 6 does the unload work request
each time it enters the DPOR routine. This may lead to repeated failures if there
are no idle nodes available for a while (not observed in our experiments). Various
heuristic solutions are possible in case it arises in practice (e.g., send aggregated
requests more infrequently).

9

1: StateStack S;
2: TransitionSequence T ;
3: Transition t;

4: DPOR() {
5: State s = S.top;
6: update backtrack info(s); / modified, details in Section 3.4
7: if (there are more than n backtrack points in the S) / added
8: unload work(); / added
9: if (∃ thread p, ∃t ∈ s.enabled, t.tid = p) {

10: s.backtrack = {p};
11: s.done = ∅;
12: while (∃q ∈ s.backtrack \ s.done) {
13: s.done = s.done ∪ {q};
14: s.backtrack = s.backtrack \ {q};
15: let tn ∈ s.enabled, tn.tid = q;
16: T.append(tn);
17: S.push(next(s, tn));
18: DPOR();
19: T.pop back();
20: S.pop();
21: }
22: }
23: }

24: unload work() {
25: send a work unload request to the load balancer;
26: receive reply rep from the load balancer;
27: if(rep says no idle node available)
28: return;
29: let s be the deepest state in stack S that s.backtrack 6= ∅;
30: let Ts be the transition sequence to reach s from the initial state;
31: let Ss be a copy of the sequence of states from the bottom of S to s;
32: choose t ∈ s.backtrack;
33: let s′ be the last state in Ss (i.e. s′ is a copy of s);
34: s′.backtrack = {t};
35: s′.done = s′done ∪ s.backtrack \ {t};
36: send (Ss, Ts, t) to the idle node;
37: s.backtrack = s.backtrack \ {t};
38: s.done = s.done ∪ {t};
39: }

Fig. 6. DPOR for parallelization

3.4 Updating the Backtrack Set

In dynamic partial order reduction, the persistent set of a given state is com-
puted dynamically. Procedure update backtrack info in Figure 2 shows how the

10

backtrack points are computed. One problem we encountered with the original
DPOR algorithm is that with more than two threads, it may result in redun-
dancy exploration of the same branch in parallel mode.

global: mutex t;

thread t0: thread t1: thread t2:

lock(t); lock(t); lock(t);

unlock(t); unlock(t); unlock(t);

Fig. 7. A simple example

The example in Figure 7 illustrates this problem. The program has three
threads, all of which first acquire the global lock t, and then release the lock.
Obviously, there are 3! = 6 different interleavings for this concurrent program
with DPOR.

s0

s1

s2

s3

s4

s5

s6

({t1},{t0})

({t2},{t1})

t0.lock

t0.unlock

t1.lock

t1.unlock

t2.lock

t2.unlock

(a) the initial trace

n0

s0

s1

s2

({},{t0, t1})

({t2},{t1})

t0.lock

t0.unlock

...

s0

...

(b) distribute tasks between two nodes

n0 n1

({t1},{t0})

s0

s1

s2

s′

3

s0

s′

1

s′

2

({t2},{t0, t1})

({},{t1, t2})

t0.lock

t0.unlock

t2.lock

({t2},{t0, t1})

({t1},{t2})

t1.lock

t1.unlock

t2.lock

...

...

(c) redundant backtrack points

n0 n1

Fig. 8. An example of redundant backtrackings. The sets maintained are
(s.backtrack, s.done)

11

Assume we use a cluster that has only two worker nodes. We also assume that
the bound x in Figure 6 for unloading is 1. Let the two workers be n0 and n1,
and let the three threads be t0, t1 and t2. Figure 8 shows how the work would be
distributed between the two nodes if we follow the update backtrack info routine
shown in Figure 2.

Let n0 start concretely executing the program first, and n1 is idle. When n0

reaches the end of its trace, we can observe the interleaving of three threads as in
Figure 8(a). Here, two backtrack points at s0 and s2 have been recorded. When
the work node n0 detects this (i.e., more than one backtrack point in the search
stack), it will send a request to the load balancer for unloading work. First the
load balancer will tell n0 that n1 is idle. Second, n0 will send the backtrack point,
transition sequence, copy of the search stack to n1, following the unload work

routine in Figure 6. Then the work node n1 will receive the message and ready
for exploring the state space assigned to it. The left half of Figure 8(b) captures
this scenario.

At this point, with respect to the situation in Figure 8(b), n0 will explore
transition t2.lock from the backtrack point s2, while n1 will explore transition
t1.lock from s0. Both nodes will update the backtrack information according to
their own search stacks. The scenario in Figure 8(c) results, in which both n0 and
n1 compute and place t2 in s0.backtrack whose transition should be explored
from s0. This will result in redundant explorations being conducted by n0 and
n1. In the worst case, this kind of redundancy may have all the workers explore
the same interleaving, and result in little or no speedup (Our experiments shown
in Section 4 confirms this).

1: StateStack S;
2: TransitionSequence T ;

3: update backtrack info(State s) {
4: for each thread p {
5: let tn ∈ s.enabled, tn.tid = p;
6: for each td ∈ T that is dependent and may be co-enabled with tn {
7: let sd be the state in S from which td is executed;
8: let E be {q ∈ sd.enabled | q.tid = p, or q in T , q happened after td

and is dependent with some transition in T which was executed by
p and happened after q }

9: if (E 6= ∅)
10: choose any q in E, add q.tid to sd.backtrack;
11: else

12: sd.backtrack = sd.backtrack ∪ {q.tid | q ∈ sd.enabled};
13: }
14: }
15: }

Fig. 9. Modified update backtrack info

12

This problem is caused by the algorithm shown in Figure 2 computing s.backtrack

incrementally with respect to state s. In parallel inspect, when a worker un-
loads work to some idle node, it is possible that the full backtrack set has not
yet been associated with states in the copy of the stack being passed along. To
solve this problem, given a state s, one must attempt to compute all transitions
associated with s.backtrack as aggressively as possible. We observe that the up-

date backtrack info routine shown in Figure 2 only updates the latest state in
the search stack from which the enabled transition in dependent and may be
co-enabled with the next transition (Line 25-32 in Figure 2).

The modified update backtrack info routine is shown in Figure 9. For each to
be executed transition t, the new routine will check the stack to find all states
from which a dependent and may be co-enabled transition was executed (Line 6
of Figure 9), and update the correspondent backtrack set. With the new routine,
we will get the distributed scenario as shown in Figure 10. Note that this is only
a heuristic; we do not know of a way to retain loose synchronizations between
the threads and still avoid this redundancy.

s0

s1

s2

s3

s4

s5

s6

({t1, t2},{t0})

({t2},{t1})

t0.lock

t0.unlock

t1.lock

t1.unlock

t2.lock

t2.unlock

(a) the initial trace

n0

s0

s1

s2

({t2},{t0, t1})

({t2},{t1})

t0.lock

t0.unlock

...

s0

...

(b) distribute tasks between two nodes

n0 n1

({t1},{t0, t2})

Fig. 10. With the modified update backtrack set

Correctness: The soundness of the final DPOR algorithm described (employed
in parallel inspect) follows from the fact that the parallel algorithm is guaran-

13

teed to compute at least all the backtrack set entries computed by the sequential
algorithm for every state. We alter only where this information is computed.

4 Implementation and Experiments

We implemented the parallel inspect using MPI [10,11]. MPI (Message Passing
Interface) is a message-passing library specification, designed to ease the use of
message passing by end users. It is the de facto standard of high performance
computing. MPI makes writing parallel program much easier, and supported by
virtually all supercomputers and clusters. We used the standard MPI routines
MPI Send and MPI Recv for communication between nodes.

One interesting problem we encountered while we implemented the parallel
inspect is that the cluster’s network file system can be a bottleneck for a parallel
runtime checker if there are disk write operations in the program under test. We
note that this problem can be easily avoided by using the local disks.

We conducted our experiments on a 72-node cluster with 2GB memory and
two 2.4GHz Intel XEON processors on each node. We compiled the program with
gcc-4.1.0 and -O3 option. We used LAM-MPI 7.1.1 [12] as the message passing
interface. The runtimes that we report are the average runtimes calculated over
three runs.

Table 1 shows some benchmarks we have used to test the parallel inspect.
In Table 1, the second column is the number of threads in each benchmark,
the third column shows the number of runs needed for runtime checking the
program, and the last column shows the time that the sequential inspect needs
for checking the program.

The first two benchmarks, indexer and fsbench, are from [2]. Indexer captures
the scenarios in which multiple threads insert messages into a hash table concur-
rently. Fsbench is an abstraction of the synchronization idiom in Frangipani file
system. The third benchmark, aget [13] is an ftp client in which multiple threads
are used to download different segments of a large file concurrently. The last
benchmark, bbuf is an implementation of a bounded buffer with four producers
and four consumers that have put/get operations on it.

Table 1. Checking time with the sequential inspect

benchmark threads runs check using sequential inspect (sec)

fsbench 26 8,192 291.32
indexer 16 32,768 1188.73

aget 6 113,400 5662.96
bbuf 8 1,938,816 39710.43

Indexer and fsbench are relatively small benchmarks. Using one node in the
cluster, the sequential inspect takes about 25 minutes to check indexer, and

14

5 minutes to check fsbench. Using parallel inspect and at most 65 nodes (one
node as the load balancer and 64 worker nodes), we can check both of them
within 40 seconds.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

indexer
fsbench

Fig. 11. The speedup of the two benchmarks, indexer and fsbench from [2].

Figure 11 shows the speedup we got using the parallel inspect against the se-
quential inspect on indexer and fsbench. As these two benchmarks are relatively
small, with the number of worker nodes increasing, the communication overhead
increases more rapidly than the time reduction we get from distributing the work
to more nodes. As a result, we see a degradation of speedup when we use more
than 52 nodes to do parallel checking for indexer, and more than 48 nodes for
fsbench. As the performance of using the modified update backtrack info in Fig-
ure 9 does not differ significantly from using the original update backtrack info

in Figure 2, we do not show the comparison in Figure 11.

Figure 12 shows the speedup we got using the parallel inspect on bbuf. The
sequential inspect needs more than 11 hours to finish checking the program.
During this period of time, inspect needs to re-run the program for more than
1.9 million times. As shown in Figure 12, the parallel inspect can give us almost
linear speedup. It turns out that we can get a speedup of 63.2 out of 64 worker
nodes (totally 65 nodes, including the load balancer), and reduce the checking
time to 11 minutes. In this figure, we also show the comparison between the
speedup we got using the modified update backtrack info in Figure 9 and the
original update backtrack info in Figure 2. As we can see, without the modifica-
tion in Figure 9, we get little speedup while the number of nodes increases.

15

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

with algo in Fig. 8
with algo in Fig. 2

Fig. 12. Speedups on the bounded buffer example.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70

sp
ee

du
p

number of nodes

with algo in Fig. 8
with algo in Fig. 2

Fig. 13. Speedups on the aget example.

Figure 13 shows the speedup using the parallel inspect on aget. There are
data races in the original aget. We fixed those data races and did experiments on
the fixed version. We reduced the size of the data package, which aget gets from
the ftp server, to 512 bytes, to avoid the non-determinism introduced by the
network environment. The result again confirms that parallel inspect can give
out almost linear speedup, and our extension on the original DPOR is efficient.

16

5 Related Work

Parallel and distributed model checking has been a topic of growing interest,
with a special conference series (PDMC) devoted to this topic. An exhaustive
literature survey is beyond the scope of this paper. Quite a few distributed and
parallel model checkers based on message passing have been developed for Mur-
phi and SPIN [14,15,16,17,18]. Stern and Dill [14] developed a parallel Murphi
which distributes states to multiple nodes for further exploration according th the
state’s signature. They pointed out the idea of coalescing states into larger mes-
sages for better network utilization in the context of model checking. Eddy [15]
extends the work and studies the parallel and distributed model checking under
the multicore architecture. Kumar and Mercer [17] improve the load balancing
method in parallel Murphi. Recently Holzmann and Bosnacki [18] design a mul-
ticore model checking algorithm to improve SPIN to fully utilize the multicore
chips.

Brim et al. [19] propose a distrubuted partial order reduction algorithm for
generating a reduced state space. The algorithm exploits features of the partial
order reduction which makes the idea of distributed DFS-based algorithm fea-
sible. Palmer et al. [20,21] propose another distributed partial order reduction
algorithm based on the two-phase partial order reduction algorithm.

As far as the authors know, our work is the first effort on using parallelism
to speed up runtime model checking for multithreaded C/C++ programs.

6 Conclusion

Checking time has been the major bottleneck for runtime model checkers such
as inspect. We design a distributed dynamic partial order reduction algorithm,
and develop a parallel version of inspect, using parallelism to speed up model
checking. Our experiments confirm that parallel inspect is quite robust and
scales well on a wide variety of nodes. It can give out almost linear speedup
compared with the sequential inspect.

Acknowledgment

We gratefully acknowledge the computational support provided by the Scientific
Computing and Imaging Institute at the University of Utah, thank Eric Swenson
and other staff members helping us with the experiments, and thank Sarvani
Vakkalanka for reading the draft.

References

1. Yang, Y., Chen, X., Gopalakrishnan, G., Kirby, R.M.: UUCS-07-008:Runtime
Model Checking of Multithreaded C/C++ Programs. Technical report (2007)

2. Flanagan, C., Godefroid, P.: Dynamic Partial-order Reduction for Model Checking
Software. In Palsberg, J., Abadi, M., eds.: POPL, ACM (2005) 110–121

17

3. Godefroid, P.: Model Checking for Programming Languages using Verisoft. In:
POPL. (1997) 174–186

4. Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual .
Addison-Wesley (2004)

5. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software
model checking framework. In: ESEC / SIGSOFT FSE. (2003) 267–276

6. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, New York, NY, USA, ACM Press (2004)
1–13

7. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A Model Checker
for Concurrent Software. In: Computer Aided Verification, 16th International Con-
ference. Volume 3114 of Lecture Notes in Computer Science., Springer (2004) 484–
487

8. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems:
An Approach to the State-Explosion Problem. Springer-Verlag (1996)

9. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
10. Snir, M., Otto, S.: MPI-The Complete Reference: The MPI Core. MIT Press,

Cambridge, MA, USA (1998)
11. http://www.mpi forum.org/docs/docs.html
12. http://www.lam mpi.org/
13. http://www.enderunix.org/aget/
14. Stern, U., Dill, D.L.: Parallelizing the Murhi Verifier. In Grumberg, O., ed.:

Computer Aided Verification, 9th International Conference, CAV ’97, Haifa, Israel,
June 22-25, 1997, Proceedings. Volume 1254 of Lecture Notes in Computer Science.,
Springer (1997) 256–278

15. Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan, G.:
Parallel and Distributed Model Checking in Eddy. In: SPIN. (2006) 108–125

16. Sivaraj, H., Gopalakrishnan, G.: Random Walk Based Heuristic Algorithms for
Distributed Memory Model Checking. Electr. Notes Theor. Comput. Sci. 89(1)
(2003)

17. Kumar, R., Mercer, E.G.: Load Balancing Parallel Explicit State Model Checking.
Electr. Notes Theor. Comput. Sci. 128(3) (2005) 19–34

18. Holzmann, G., Bosnacki, D.: Multi-core model checking with Spin. (2007)
19. Brim, L., Cerna, I., Moravec, P., Simsa, J.: Distributed Partial Order Reduction

of State Spaces. PDMC (1) (2004)
20. Palmer, R., Gopalakrishnan, G.: Partial Order Reduction Assisted Parallel Model

Checking. PDMC (2002)
21. Palmer, R., Gopalakrishnan, G.: A distributed partial order reduction algorithm.

In: FORTE ’02: Proceedings of the 22nd IFIP WG 6.1 International Conference
Houston on Formal Techniques for Networked and Distributed Systems, London,
UK, Springer-Verlag (2002) 370

18

	Distributed Dynamic Partial Order Reduction Based Verification of Threaded Software

