
An Embeddable Virtual Machine

for State Space Generation

Michael Weber⋆

SEN2, CWI, Amsterdam, The Netherlands
Michael.Weber@cwi.nl

Abstract. The semantics of modelling languages are not always spec-
ified in a precise and formal way, and their rather complex underlying
models make it a non-trivial exercise to reuse them in newly developed
tools. We report on experiments with a virtual machine-based approach
for state space generation. The virtual machine’s (VM) byte-code lan-
guage is straightforwardly implementable, facilitates reuse and makes it
an adequate target for translation of higher-level languages like the SPIN
model checker’s Promela, or even C. As added value, it provides effi-
ciently executable operational semantics for modelling languages. Several
tools have been built on top of the VM implementation we developed,
to evaluate the benefits of the proposed approach.

1 Introduction

Common approaches in state-based model checking employ modeling languages
like CSP [11], LOTOS [4], Murφ [7], DVE [1], or Promela[13] to describe actual
state spaces. These languages are usually non-trivial: in addition to concepts
found in programming languages (scopes, variables, expressions) they provide
features like process abstraction, non-determinism, guarded commands, synchro-
nisation and communication primitives, timers, etc. Implementing an operational
model of high-level languages for use in verification tools is consequently not
straightforward.

That being said, when developing new verification algorithms and tools it is
highly desirable to reuse an already existing modeling language like Promela,
which has been used in a sizeable number of real-world case studies. In our expe-
rience, we identified four main benefits. First, we can reuse existing case studies
to test new tools and compare to already published results, instead of having
to resort to artificial examples. Secondly, tool developers can concentrate on the
implementation of algorithms if the part of how model data enters the devel-
oped tool is either reuseable or easily reimplemented, and can be incorporated
in whatever infrastructure is dictated by the requirements of a new algorithm.
From a user perspective, switching to a model checking tool with compatible
input language is made easier, as it avoids the penalty of having to reimplement

⋆ This research has been partially funded by the Netherlands Organization for Scien-
tific Research (NWO) under FOCUS/BRICKS grant number 642.000.05N09

the model in another formalism, and showing that the semantics have been pre-
served in the translation. In addition, existing models can be used to benchmark
new tools on realistic data sets. Lastly, by taking the virtual machine as an
intermediate layer, we can implement (and reuse!) common analyses like dead
variable reduction and statement merging independent of the high-level input
language.

Contributions In order to remedy the perceived shortcomings we propose a vir-
tual machine (VM) based approach to state space generation, in which high-level
modeling languages are translated to byte-code instructions. Subsequent execu-
tion of such byte-code programs with a VM yields state spaces for further use in
model checkers, simulators and testing tools. A key point is that the VM is easily
embeddable into a host application (for example, a model checker). As such, it
should have a formal specification and a straightforwardly implementable exe-
cution model, which imposes as little constraints as possible on the tool it is
embedded into. In the rest of the paper we present how this can be carried out.
We validated the approach with a number of applications.

Organisation In section 2 we describe the virtual machine model and its byte-
code semantics. Section 3 summarizes how the virtual machine is used for state
space generation in a number of applications: a target for Promela compila-
tion, which has been embedded into external-memory and distributed-memory
model checkers. As further benefit for tools developers, these tools can be used
unchanged to interface with other front-ends, for example, to check C code for
embedded systems. We conclude with a summary of related and future work in
sections 4 and 5. Appendix A presents benchmark results for our VM implemen-
tation to show practical usefulness of our approach.

2 Virtual Machine Specification

The virtual machine (VM) we are using as running example here contains a
couple of features not all of which are commonly found at byte-code level in
conventional VM architectures like the Java Virtual Machine (JVM) [15]. They
are a superset of the features we observed as common in modeling languages. In
particular, we have:

Non-determinism If non-deterministic choice is encountered during execut-
ing, the machine offers all possible continuations to the scheduler who then
decides which path to take.

Concurrency Processes can be created, not only statically but also during
execution of the model.

Communication Both, rendezvous and asynchronous channel objects are pro-
vided for inter-process communication.

First-class channels Like in Promela and π-calculus [14], channels can be
sent over channels, thus allowing for a dynamic communication structure.

2

Priority scheme Our byte-code allows to specify which actions have to be
given preference. Together with explicit control over externally visible ac-
tions, this allows to encode high-level constructs like Promela’s atomic

and d_step.

Speculative execution Code sequences like guards are executed speculatively,
and changes to the global state are rolled back if the sequence does not run
to completion (see Section 2.4).

External Scheduling Scheduling decisions are delegated to host applications.
This allows for implementation of different scheduling policies which is needed
to cater for simulation (interactive scheduling) vs. state space exploration
with some search strategy (breadth-first, depth-first, random, or combina-
tions thereof).

The design of our VM was mainly driven by pragmatic decisions: it was our
intention to create a model that is simple, efficient and embeddable as compo-
nent into host applications, with implementation effort split between the VM
and compilers targeting it. For example, many instructions make use of the
VM’s stack because it is trivial for compilers to generate stack-based code for
expression evaluation. On the other hand, a stack-based architecture alone is
inconvenient for translation of counting loops, thus registers were added. The
RISC-like instruction set is motivated by the need for fast decoding inside the
instruction dispatcher, the VM’s most often executed routine.

Although our machine is a mixture of register-based and stack-based archi-
tecture, we are nevertheless dealing with finite state models in this paper by
putting bounds on all resources. Concurrency is modeled by interleaving seman-
tics.

A complete specification of a virtual machine suitable as target for Promela
is available [20]. Our starting point was a simple VM model, which we then
extended with features needed to cater for Promela’s semantics. However, in
the interest of reusability we tried to keep these additions as generic as possible
(see Section 3.4).

In the following, we will present a formalisation of the VM which is suitable
for implementation. We found this an invaluable help in allowing different groups
working independently on compilers, byte-code optimizers and the VM itself. It
also serves as a reference in case the VM needs to be reimplemented, or for
answering questions regarding the semantics of compiled languages.

We start by specifying global and local state, and invariants which trans-
lations must preserve. Afterwards we present the byte-code semantics and how
scheduling between alternatives is done.

2.1 Machine State

The machine’s global state as depicted in Figure 1 consists of a few global objects
and the local state of its processes.

3

State

Process 1

…

Process n

Global variables

Channel 1

…

Channel m

Channel

Process

Local variables

Stack

Register 1

…

Register 8

Message type

Message 1

…

Message k

Fig. 1. Overview over the state of the virtual machine. Dotted borders around
registers and stack indicate that they are only temporarily part of the machine
state, but are not preserved.

Definition 1 (Global State). The global state Γ = 〈Π, e, G, Φ〉 of our virtual
machine is a tuple

Γ ∈ Processes × Pid⊥ × Mem × Channels

with Π denoting a finite set of processes, e the process identifier of a process
with exclusive execution privileges (⊥ if none), G the global variable store, and
Φ the—again finite—set of existing channels (channels are global objects).

We will refer to the set of all global states as Γ as well, if the context makes
clear what is meant.

Definition 2 (Process). A process π = 〈p, M, Λ′〉 is a tuple

π ∈ Processes = (Pid × ExecMode × ProcessState ′) ∪ {stop}

with p denoting a globally unique identifier, M ∈ {N, A, I, T} its execution mode
(normal, atomic, invisible, terminated), and Λ′ the local state of a process (Def-
inition 3).

Furthermore, we allow the special symbol stop to denote a deadlocked process
which cannot make any further step.

A process can be either inactive or active.

While a single process can be deadlocked, there might be others which can
still continue, so that there is no global deadlock yet.

Often, we do not want a global state Γ = 〈Π, e, G, Φ〉 to contain the dead-
locked process stop. To simplify notation, we write Γ 6= stop iff no process in Π
is deadlocked: ∀π ∈ Π : π 6= stop.

Definition 3 (Local Process State). A local process state Λ′ = 〈L, m〉 is a
pair

Λ′ ∈ ProcessState ′ = Mem × IN

4

and denotes the process-local variable store L and its program counter m.
When a process becomes active, its state Λ′ is augmented with registers R0

and a stack Dǫ = ǫ to its active local state Λ = 〈L, m, R0, Dǫ〉:

Λ ∈ ProcessState = Mem × IN × Registers × Stack

When it becomes inactive again, its last two components are projected away. As
a result, they are to be used for storing temporary values only.

Definition 4 (Store). We identify three stores in our virtual machine model:
for global (G) and local variables (L), and for registers (R). As usual, we model
stores as mappings σ ∈ IN → Value, that is for a store σ, σ[i] denotes the store’s
value at position i. Replacing a value v at position i in the store is written as
σ[i/v].

Initial stores are denoted as σ0 (∀i : σ0[i] := 0). For convenience, we write
ri to reference the ith register R[i].

We added registers to our virtual machine for situations when byte-code
effects on the machine’s state are not fitting well to a stack model, for instance
if values are operated on more than once.

Definition 5 (Data Stack). Expression evaluation takes place on the data
stack component D ∈ Stack = Value∗ of a process state. A stack is represented
as finite (possibly empty) word D = vn : · · · : v1, vi ∈ Value, n ∈ IN.

We denote the empty stack as Dǫ = ǫ.

Communication Processes can use several ways to communicate values among
each other. First, they can use the global store G which can be modified by any
process at any time. A more structured way of communication is provided by
means of channels. They also offer a model for message-passing synchroniza-
tion. In our machine, communication channels are typed and bounded, and we
distinguish between rendezvous channels and asynchronous channels.

Definition 6. A channel φ = 〈c, l, t, C〉 is a tuple

φ ∈ Channels = ChanId × IN × IN × Message∗

with c denoting a globally unique channel identifier, l the channel capacity, and
C = c0 : · · · : cl its current contents (cl being the last message in the channel).
Each message ci ∈ Message = Value∗ consists of a sequence of values of length t.

Rendezvous channels have zero capacity. A message can temporarily be stored
in a channel during rendezvous communication, hence exceeding the capacity of
the channel. Such states are internal to the virtual machine and unobservable to
its outside. Similarly, asynchronous channels which exceed their capacity auto-
matically fall back to the same behavior as rendezvous channels: send operations
on those block until they are within their allowed capacity again.

5

Definition 7 (Rendezvous Communication). We define a predicate sync(Γ)
on a global state Γ = 〈Π, e, G, Φ〉 to determine whether rendezvous communica-
tion is taking place: at least one channel φ = 〈c, l, t, C〉 contains more messages
than its capacity l allows.

sync(Γ) :=

{

true if ∃φ = 〈c, l, t, C〉 ∈ Φ : |C| > l

false otherwise

2.2 Invariants

Translation to our byte-code language must guarantee the following invariants:
as already pointed out in Definition 3, a process becoming active again always
resumes execution with register set R0 and the empty stack Dǫ. Conversely, at
those points in the program when a process may become inactive, the contents of
registers and stack are discarded and need not matter for the rest of its execution.

Because the number of local variables is fixed, a local state Λ′ occupies con-
stant space only.

2.3 Byte-code Semantics

Having defined the state of our virtual machine, we now proceed by defining the
semantics of operations on it. These operations are carried out at process level,
with only a single process being active at once.

In the spirit of earlier displays of Promela semantics by Holzmann and
Natarajan [13], we compose our semantics from several smaller parts by defin-
ing four relations to model process activation, internal, intermediate and finally
scheduler transitions.

A transition from state Γ1 to Γ2 is a relation →T∈ Γ ×ΣT ×Γ , with a finite
set of labels ΣT and set of states Γ . If not important, we will elide labels from
our presentation. For brevity, we write Λ1, G1, Φ1 → Λ2, G2, Φ2 instead of

〈{〈p, M, Λ1〉, π1, . . . , πn}, e, G1, Φ1〉

−→ 〈{〈p, M, Λ2〉, π1, . . . , πn}, e, G2, Φ2〉

πi = 〈pi, Mi, 〈Li, mi〉〉 for all 1 ≤ i ≤ n

State components remaining unchanged in a transition are left out.

As mentioned before, only one process can be active at any point in time.
Thus we define process activation as transition

〈{〈p, M, 〈L, m〉〉, π1, . . . , πn}, e, G, Φ〉
p
−→act 〈{〈p, M, 〈L, m, R0, Dǫ〉〉, π1, . . . , πn}, e, G, Φ〉

∀i ∈ {1, . . . , n} : πi = 〈pi, Mi, 〈Li, mi〉〉

and e ∈ {p,⊥}, M 6= T

6

LDC c load constant c onto top of data stack
〈L, m, R, D〉 →int 〈L, m + 1, R,D : c〉

LDV g load variable onto top of data stack
〈L, m, R, D : a〉 →int 〈L, m + 1, R, D : L[a]〉 if g = L
〈L, m, R, D : a〉, G →int 〈L, m + 1, R, D : G[a]〉, G if g = G

STV g store stack top in variable
〈L, m, R, D : v : a〉 →int 〈L[a/v], m + 1, R, D〉 if g = L
〈L, m, R, D : v : a〉, G →int 〈L, m + 1, R, D〉, G[a/v] if g = G

POP ri pop top-most value from stack into register
〈L, m, R, D : v〉 →int 〈L, m + 1, R[i/v], D〉

PUSH ri push value from register onto stack
〈L, m, R, D〉 →int 〈L, m + 1, R,D : ri〉

Table 1. Load and Store byte-codes

A process needing exclusive execution privileges must be activated, otherwise
any process can be activated (e = ⊥). Processes already run to completion
(M = T) are not activated again.

Next, we define those transitions an active process can possibly take: the
internal-step relation →int ∈ Γ × Γ is the least relation satisfying the rules
given below. For reasons of presentation, we divided internal steps into several
parts. Note that the byte-code operation to be executed next is determined
by indexing program counter m of the currently active process into a global
instruction list Instr.

Load and Store Our machine supports usual operations to load constants
(LDC), and manipulate values of local and global variables (LDV, STV), as defined
in Table 1. The differentiation of local and global store access simplifies byte-code
analysis for, e.g., statement merging.

To avoid stack juggling operations like DUP, SWAP, etc., values can be stored
into and retrieved from registers with PUSH and POP.

Arithmetic and Boolean Operations Expression byte-codes like ADD, LT,
AND, NEG, etc., operate on one or more of the stack’s top-most entries. Their
semantics are obvious and thus only defined exemplarily:

OP⊗ : 〈L, m, R, D : u : v〉 →int 〈L, m + 1, R, D : u ⊗ v〉

Control-flow Operations For control flow changes, we define conditional and
unconditional jumps in Table 2. In order to allow explicit modeling of non-
determinism, we define NDET a as having two possible successor states: one con-
tinuing with the next instruction and the other continuing at instruction a. In
some situations, it is helpful to allow conditional non-determinism, where the
existence of one alternative is dependent on the presence or absence of another.

7

JMPNZ a jump if non-zero
〈L, m,R, D : 0〉 →int 〈L, m + 1, R,D〉
〈L, m,R, D : v〉 →int 〈L, a, R, D〉, if v 6= 0

NDET a non-deterministic jump
〈L, m,R, D〉 →int 〈L, m + 1, R, D〉
〈L, m,R, D〉 →int 〈L, a, R, D〉

ELSE a else jump
〈L, m,R, D〉 →int 〈L, m + 1, R, D〉
〈L, m,R, D〉 →int 〈L, a, R, D〉 if 〈L, m + 1, R, D〉 →∗

int Λ′ −→end stop

UNLESS a unless jump
〈L, m,R, D〉 →int 〈L, a, R, D〉
〈L, m,R, D〉 →int 〈L, m + 1, R, D〉 if 〈L, a, R, D〉 →∗

int Λ′ −→end stop

CALL a call subroutine
〈L, m,R, D〉 →int 〈L, a, R, D : m + 1〉

RET return from subroutine
〈L, m,R, D : a〉 →int 〈L, a, R,D〉

Table 2. Control-flow byte-codes

For this, we add byte-codes ELSE a and its dual UNLESS a. They are used in the
translation of Promela, for example.

CALL a and RET can be used to translate procedure calls. By default the
return address is left on the stack, thus does not survive if a process becomes
inactive. It is in the responsibility of the compiler to store it inside the state
vector. This allows for some flexibility when dealing with recursive functions. In
general, their treatment requires some cooperation between the compiler and an
analysis tool working with the generated state space.

As Promela itself does not allow function calls, these byte-codes are not
used in its translation. However, they have been used to compile method calls
of an object-oriented language [21].

Operations on Channels For inter-process communication, our virtual ma-
chine model contains several operations on channels. These include operations
to dynamically create channels, query their properties, and manipulate their
contents. Both, synchronous and asynchronous channels are supported.

Because of space constraints, we elide their treatment here and refer to the
full specification [20]. However, we will return to the topic of synchronous com-
munication in Section 2.4, when discussing process scheduling.

Spawning New Processes To start a new process, its current parameters are
placed onto the data stack. Specifying the size of these parameters and the start
address of its code, a new process is instantiated:

8

STEP M ′ step complete with mode M ′

〈{〈p,M, 〈L, m, R,D〉〉} ∪ Π, e,G, Φ〉
M

′

−−→end 〈{〈p, M ′, 〈L, m + 1〉〉} ∪ Π, e′, G, Φ〉

e′ :=

8

<

:

p if M ′ ∈ {A, I}

⊥ otherwise

and ∀πi ∈ Π : πi = 〈pi, Mi, 〈Li, mi〉〉

NEX step not executable

〈L, m, R,D〉 −→end stop

Table 3. Operations for Process Deactivation

RUN k, a run a new process starting at address a
〈{π, π1, . . . , πn}, e, G, Φ〉 →int 〈{π

′, π1, . . . , πn, π′′}, e, G, Φ〉
with π = 〈p, M, 〈L, m, R, D : v0 : · · · : vk−1〉〉
and π′ = 〈p, M, 〈L, m + 1, R, D : p′′〉〉
and π′′ = 〈p′′, N, 〈L0[0/v0, . . . , k − 1/vk−1], a〉〉
and p′′ ∈ Pid a unique process identifier

Deactivation of Processes Following a cooperative multitasking approach,
eventually a process allows resumption of other processes by deactivating itself
with one of the operations in Table 3.

We introduce STEP M as flexible means to control which states become visible
to an external scheduler. If further execution of a process is not anticipated
(e.g. because of unsatisfied guard conditions or reception attempts on empty
channels), process execution may be aborted explicitly by NEX. This byte-code
instruction can be used to translate guards—boolean conditions which can enable
or disable a transition. By attaching an action label to a STEP, we can cater for
action-based setups as well.

2.4 Scheduling

With all the machinery in place, we now proceed with the relation of scheduler
transitions , −→sched . We define it in terms of intermediate transitions −→step ,
which is the least relation satisfying

Γ
p,M
−−−→step Γ ′ if Γ

p
−→actΓ0 →∗

int Γ1
M
−→end Γ ′

This means, that in a machine state Γ some process identified as p is activated,
then a number of internal transitions happen, until at some point the process
deactivates itself in state Γ ′, giving the whole sequence mode M .

In case the machine gets “stuck” without successor states because some pro-
cess with exclusive execution privileges becomes deadlocked, this process loses

9

them, thus enabling execution possibilities for other processes:

〈Π, e, G, Φ〉
p,M
−−−→step Γ ′ if 〈Π, e, G, Φ〉

e,
−→step stop

and 〈Π,⊥, G, Φ〉
p,M
−−−→step Γ ′

We can then define the transitions visible to an external scheduler. The ap-
proach we took is due to our decision to model rendezvous communication within
the interleaving model and thus using an intermediate state which is not revealed
to the scheduler. We can distinguish three cases: a process ends a sequence of
invisible steps with either a visible transition or a transition leading to deadlock,
and no interim rendezvous communication can take place, or, rendezvous com-
munication can take place, with the restriction that the sending and receiving
halves of the communication must be consecutive.

Definition 8 (Scheduler Transition). We define the scheduler transition re-

lation
p
−→sched as least relation satisfying the following rules.

– A scheduler transition consists of a (possibly empty) sequence of invisible
steps, followed by a visible step, that is, a step with mode N (normal), A
(atomic) or T (terminated). None of the steps is a rendezvous communica-
tion.

Γ
p
−→sched Γ ′ if Γ = Γ1

p,I
−−→step · · ·

p,I
−−→step Γn−1

p,M
−−−→step Γn = Γ ′

and ∀i : ¬sync(Γi) and M 6= I and Γ ′ 6= stop

– Alternatively, if a sequence of invisible steps leads to a deadlocked process,
the last step right before the deadlock becomes visible irrespectively of its
mode I.

Γ
p
−→sched Γ ′ if Γ = Γ1

p,I
−−→step · · ·

p,I
−−→step Γn−1

p,
−−→step stop

and ∀i : ¬sync(Γi) and Γ ′ = Γn−1

– Lastly, we allow a rendezvous channel to actually contain one message more
than its capacity allows, if the immediately following transition resolves this
again by having a rendezvous partner receiving this message, so that said
rendezvous channel is within its limits again and the resulting state becomes
visible to the scheduler again. In this case the sender loses its execution
privilege. It can then be picked up by the receiver. Note that we do not allow
a process to have rendezvous communication with itself (p 6= p′).

10

With this mechanism, rendezvous communication can be used to pass around
execution privileges between processes like in Promela.

Γ
p
−→sched Γ ′′ if Γ

p,M
−−−→step Γ ′ = 〈Π ′, e′, G′, Φ′〉

and 〈Π ′,⊥, G′, Φ′〉
p′,M ′

−−−→step Γ ′′

and sync(Γ ′) and ¬sync(Γ ′′)

and p 6= p′ and Γ ′′ 6= stop and M 6= T

In all cases, we do not allow a scheduler transition to lead to a global state
containing a deadlock process stop.

Our handling of deadlock processes allows us to define a global deadlock state
Γ where no process can complete a scheduler transition naturally: there is no Γ ′

such that Γ
p
−→sched Γ ′.

Definition 9 (Initial State). The scheduler starts program execution with the
initial state of our machine: Γinit = 〈{〈1, N, 〈L0, init〉〉},⊥, G0, ∅〉

The actual interface to run state space generation is not described here,
as it is largely based on the same principles as Open/CÆSAR [8]. In fact, a
preliminary test has shown that we can connect our implementation to CADP
with little effort, thus leveraging their large toolset.

3 Applications

The described virtual machine has been utilized successfully in a number of
projects1, which we briefly detail below. On the same time, these projects served
as testbed to check whether the virtual machine based approach we advocate
is generic enough to accomodate different modelling languages and verification
frameworks.

3.1 Promela

We validated our virtual machine-based approach to state space generation by
defining a translation from Promela to byte-code. As positive side-effect, we
obtain an operational semantics for Promela which in particular is suitable
for classical compiler-based analyses and also for reimplementation. A complete
translation procedure is described by Schürmans [20]. Separate from the compiler
and thus Promela, we developed several common optimizations for static state
space reduction on the byte-code level, for example, dead variable reduction and
a variant of statement merging.

1 http://www.cwi.nl/∼weber/nips/

11

http://www.cwi.nl/~weber/nips/

Although other modeling languages could have been used just as well, Promela
was chosen because it is a truly non-trivial example and it has wide acceptance
inside and outside academia.

Benchmarks of our virtual machine show that it performs well enough to
be of practical use (Section A) on its own. In combination with the projects
described in the following, we could even obtain results which so far have been
out of reach.

3.2 An External-Memory Model Checker

The virtual machine is used as state-space generation component in an adaptive
external-memory model checking tool [10].

As main memory is still the most restricting factor in state space generation
and model checking of industrial-scale models, we developed an algorithm which
gradually moves parts of the state space to hard disk when memory fills up.
Thus, as long as enough memory is available, it behaves mostly like a regular,
memory-bound algorithm.

In unmodified state-space exploration algorithms, checking whether a state
has already been visited requires random access to the closed set due to com-
monly used hashtable schemes. In a disk-based setting, such access patterns
are prohibitively expensive because they incur large latency when reading from
hard disk, in comparison to memory accesses. We get around these limitations
by reordering queries such that disk access is avoided if at all possible (through
caching strategies) and, failing that, queries are carried out at least in large
groups rather than one by one. Besides compression, this allows us also to access
the state space stored on disk in a linear fashion, which is orders of magnitude
faster than random access.

The amount of main memory available still influences the time needed for full
state space generation, however it does not impose a hard limit anymore. With
this out of the way, we were able to benchmark our algorithm: the unmodified
virtual machine, together with the Promela compiler mentioned in Section 3.1
allowed us to use models of real case studies as benchmark material, instead of
being constrained to artificial models. In addition, we were able to compare our
results with prior experiments.

An short summary is given in Section A. Some of the large models, for ex-
ample Lunar scenario 4(d) [23], have previously been reported as exceeding the
capabilities of SPIN with 4 GB RAM, with both partial order reduction and
COLLAPSE enabled. In contrast, we performed state space generation of the men-
tioned Lunarscenario with a memory limit of 2.5 GB RAM and without partial
order reduction (Appendix A).

3.3 NIPS and DiVinE

An alternative to the external-memory model checker described in Section 3.2, is
the use of distributed algorithms in verification to get around memory limitations

12

of a single computer. Much research has been devoted to this theme in recent
years, for a motivation and recent overview we refer to [5].

The DiVinE library [2] has been conceived as a toolkit and testbed for dis-
tributed model checking algorithms, with among other things, an emphasis on
LTL model checking. While DiVinE features its own modelling language, DVE,
we can apply their algorithms unmodified on Promela models, through the use
of our virtual machine. In effect, the combination of the two libraries yields a dis-
tributed model checker for Promela, with, at the time of writing, five different
LTL model checking algorithms to choose from.

Moving from a sequential to a distributed setting requires some considera-
tion. In particular, the design of data structures must support relocation to other
computers. For our virtual machine, this means that snapshots of its run-time
state can be captured and send to another computer. This is particularly easy in
our case, as a snapshot is represented opaquely in an architecture-independent,
continuous array of binary data which can be written directly to a network con-
nection, without a potentially costly serialization step. Heterogenous distributed
environments are supported as well.

In addition, we can redecide on analysis tools without having to modify or
rewrite our models, solely depending on the availability of computing resources
and harddisk. For example, using DiVinEs distributed algorithms gives much
faster results usually, however, if the used computing cluster is busy, a job may
spend days in the batch queue before being processed, thus making our external-
memory algorithm a viable alternative.

3.4 Model Checking Embedded Systems Software

In the previous sections, we have mainly highlighted the use of our virtual ma-
chine as target for Promela. Despite it being the initial inspiration, we aimed
at designing a generic framework which can cope with different modelling for-
malisms. As our litmus test we have based the mcess (short for Model Checking
Embedded Systems Software) project on our virtual machine. We proceed with
a short summary, a more detailed description is given elsewhere [19, Sect. 5.2ff].

Embedded systems based on microcontrollers are often used in safety-critical
environments. In mcess, we address the problem of checking correctness of code
written for particular microcontrollers. Regrettably, and despite the sensitivity
of the application area, often no formal specifications exist on such projects, so
we either have to extract a specification (semi-)manually, or base our analysis
directly on the implemention under scrutiny. Matters are complicated further
by the fact that systems are implemented in a mixture of assembly language
and C, most often utilizing specific hardware idiosyncrasies of these severely
resource-constrained devices. Previous case studies have shown that existing
C model checkers are not directly applicable to such implementations due to the
hardware-specific nature [18].

Instead of trying to parse and analyze source code, we chose to compile it
with an off-the-shelf C compiler (which is often supplied by the microcontroller
vendor), and take the generated binary executable as starting point. We rely on

13

the generated debugging information to present results back to the user. The ap-
proach allows us to process assembly and C code in one go. Also, we successfully
sidestepped dealing with the complex syntax and even more daunting semantics
of C.

Conceptually, assembly language is much easier to formalize, and its seman-
tics are usually precisely described by the vendor. To take a concrete example,
we chose the widely used ATMEL ATmega family of microcontrollers, and im-
plemented a translator from ATmeta16 assembly (or rather disassembly, to be
precise) to our virtual machine instruction set. For many of the instructions,
the translator itself has been generated semi-automatically from the semantics
given in the ATMEL specification. The critical parts are the hardware depen-
dencies like interrupts (modeled as processes), I/O ports, timers (replaced by
non-determinism and abstractions by the compiler), etc. These require (one-
time) manual effort, for example, to obtain a closed system.

A number of factors contribute to the viability of this approach: the type
of microcontrollers we are dealing with very space-constrained, typically they
have memory in the order of 1024 Bytes. Unsurprisingly, memory allocation
is mostly done completely static (no calls to malloc()). A limited hardware
stack precludes recursive function calls. All these factors make a straight-forward
translation much more amenable to yield good results. Deeper analyses can then
be layered on top of that.

For state space generation and model checking of such microcontroller pro-
grams, we can again utilize the tools described in the previous sections without
extra effort. They are well suited to deal with the potentially large state spaces.

4 Related Work

4.1 Promela Semantics

Several formal semantics for Promela have been proposed in the past, but it
turns out that none of them covers all aspects of the language. The original
publication [13] is incomplete in this sense and now partly outdated, as SPIN
evolved. It was improved on by a more modular and less implementation-specific
approach by Weise [22], but there the handling of nested do loops in combination
with goto statements is unsound. Another incomplete attempt is from Bevier [3].
The specification is a Lisp program and as such peppered with implementation
artefacts.

In contrast, we developed a compiler for Promela targeting the virtual in-
struction set defined in Section 2.3. Our translation aims at being faithful to
SPIN’s Promela semantics. It mainly deviates in allowing nested scopes, in or-
der to straighten out the rather confusing static semantics of declarations (vari-
ables can be used before being declared). However, we concede that regrettably
there are no good means to assure this except continual testing with publicly
available models against SPIN as reference implementation.

14

4.2 Virtual Machines

Virtual machines have been used extensively in Computer Science. A well-known
example is the work of Wirth on the Pascal programming language [24].

Independent to our work, two (unpublished, to the best of our knowledge)
attempts of virtual machine models for restricted Promela-like languages have
been brought to our attention [9,17]. Geldenhuys [9] describes a virtual machine
as part of the general design of a model checker, while our work is focused on
providing a reusable component for state space generation.

ESML [6], the high-level language translated into byte-code is restricted in
several ways when compared to Promela, and its underlying virtual machine
inherits some of these restrictions. For example, it lacks support for asynchronous
channels, shared variables and dynamic process creation.

Rosien [17, Section 8] describes some shortcomings of his attempt, for exam-
ple the lack of arrays, no support for data types beyond integers, unclear seman-
tics for do loops or handshake communication inside atomic blocks (“[. . .] causes
undesired results, unexpected atomic deadlocks or otherwise erratic behavior.”).
Besides that, Rosien’s design did not take into account, e.g., distributed settings
where successive states may be generated on different computers.

Both papers do not provide a formal model of their VM or of the translation
into their byte-code language, making it non-trivial to derive implementations
from their work. Neither are implementations readily available.

Bogor From existing model checking frameworks, we found the Bogor frame-
work [16] closest to the work presented here. It is an extensible framework for
software model checking, in particular object-oriented software. Its intermedi-
ate representation (BIR) is a high-level guarded command language, not unlike
Promela. While it can be translated further down to a certain extent, con-
structs like arrays, locks, exceptions, and high-level control constructs remain,
complicating an implementation of its operational semantics.

The Bogor framework consists of a large Java code base, which ruled it out
when we were looking into possibilities to interface with other languages. In
contrast, our VM implementation itself comprises less than 5000 lines2 of C and
has been interfaced efficiently with C, C++ and Java, and connected to model
checking frameworks aimed at high performance like DiVinE.

While Bogor and the work presented here share some common goals, our
focus is on embedding into other applications, and thus we aim to show the
feasability to provide a reusable library, rather than a framework (which might
hamper its integration with a host application with incompatible structure.)

From the tool point of view, our aim is not to beat the Bogor framework in
terms of features, but rather to provide a small but versatile component which
can easily be reused, or written from scratch based on a formal specification.

2 according to SLOCCount, http://www.dwheeler.com/sloccount/

15

http://www.dwheeler.com/sloccount/

5 Conclusions

We presented a virtual machine-based approach to state-space generation, in
which the virtual machine’s instruction set doubles as intermediate language.
Assigning operational semantics in such a way makes them straightforwardly
implementable, thus encouraging reuse. Among the byte-code instructions are
all operations commonly needed for the specification of concurrent systems: non-
determinism, process creation, communication primitives, and a way to express
scheduler constraints (atomic regions). State-space generators derived in such a
way can be small and portable, while benchmarks with a concrete implementa-
tion showed that we can obtain practically usable results.

However, some critical thoughts are in order. For example, it is possible to
relate analysis results like error traces from the VM back to the original input
(Promela or C), but there is no stable interface yet available.

Also, a command line simulator is available, yet while working towards in-
tegration of our VM implementation in IBM’s Eclipse IDE, we found the need
for deeper introspection of the VM state. Providing a suitable interface without
slowing down state space generation requires some more research. This is worth-
while because we are using the same code for simulation and model checker,
thereby foregoing deviations in results. For example, to the best of our know-
ledge SPIN has been plagued from time to time with the interactive simulation
and a model checking run yielding different outcomes.

Nevertheless, with our applications we have shown benefits to be expected
through synergy effects of developing an embeddable component for use in third-
party tools.

Acknowledgement We thank Michael Rohrbach and Stefan Schürmans for their
implementation efforts and valuable discussions. Theo Ruys brought Rosien’s
work to our attention. Part of this research has been carried out at RWTH Aachen.

References

1. J. Barnat, L. Brim, I. Černá, and P. Šimeček. DiVinE – Distributed Verification
Environment. Submitted to PDMC’05’s short presentations., 2005.

2. J. Barnat, L. Brim, I. Černá, and P. Šimeček. DiVinE the distributed verification
environment. In M. Leucker and J. van de Pol, editors, 4th International Workshop
on Parallel and Distributed Methods in verifiCation (PDMC’05), Lisbon, Portuga,
July 2005.

3. W. Bevier. Towards an operational semantics of PROMELA in ACL2. In Proceed-
ings of the 3rd International SPIN Workshop, April 1997.

4. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. In P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors, The Formal
Description Technique LOTOS, pages 23–73. Elsevier Science Publishers North-
Holland, 1989.

5. L. Brim. Distributed verification: Exploring the power of raw computing power.
In L. Brim, B. Haverkort, M. Leucker, and J. van de Pol, editors, Formal Methods:
Applications and Technology, volume 4346 of Lecture Notes in Computer Science,
pages 23–34. Springer, August 2006.

16

6. P. de Villiers and W. Visser. ESML—a validation language for concurrent systems.
In J. Bishop, editor, 7-th Southern African Computer Symposium, pages 59–64,
July 1992.

7. D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware
design aid. In ICCD ’92: Proceedings of the 1991 IEEE International Conference on
Computer Design on VLSI in Computer & Processors, pages 522–525, Washington,
DC, USA, 1992. IEEE Computer Society.

8. H. Garavel. OPEN/CAESAR: An open software architecture for verification, sim-
ulation, and testing. Lecture Notes in Computer Science, 1384:68–??, 1998.

9. J. Geldenhuys. Efficiency issues in the design of a model checker. Msc. thesis,
University of Stellenbosch, South Africa, November 1999.

10. M. Hammer and M. Weber. ”To Store or Not To Store” reloaded: Reclaiming
memory on demand. In L. Brim, B. Haverkort, M. Leucker, and J. van de Pol,
editors, Formal Methods: Applications and Technology, volume 4346 of Lecture
Notes in Computer Science, pages 51–66. Springer, August 2006.

11. C. A. R. Hoare. Communcating Sequential Processes. Prentice Hall, 1985.

12. G. J. Holzmann. The engineering of a model checker: the gnu i-protocol case study
revisited. In Proc. of the 6th Spin Workshop, volume 1680 of LNCS, Toulouse,
France, 1999. Springer Verlag.

13. G. J. Holzmann and V. Natarajan. Outline for an operational-semantics definition
of PROMELA. Technical report, Bell Laboratories, July 1996.

14. R. Milner. The polyadic π-calculus: a tutorial. Technical Report ECS–LFCS–91–
180, Laboratory for Foundations of Computer Science, Department of Computer
Science, University of Edinburgh, UK, Oct. 1993. Logic and Algebra of Specifica-
tion, ed. F. L. Bauer, W. Brauer, and H. Schwichtenberg, Springer, 1993.

15. Z. Qian. A formal specification of java virtual machine instructions for objects,
methods and subrountines. In Formal Syntax and Semantics of Java, pages 271–
312, 1999.

16. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible and highly-modular
software model checking framework. SIGSOFT Softw. Eng. Notes, 28(5):267–276,
2003.

17. M. Rosien. Design and implementation of a systematic state explorer. Msc. thesis,
University of Twente, The Netherlands, March 2001.

18. B. Schlich and S. Kowalewski. Model checking c source code for embedded systems.
In Proceedings of the IEEE/NASA Workshop on Leveraging Applications of Formal
Methods, Verification, and Validation (ISoLA 2005), September 2005.

19. B. Schlich, M. Rohrbach, M. Weber, and S. Kowalewski. Model checking software
for microcontrollers. Technical Report AIB-2006-11, RWTH Aachen, August 2006.

20. S. Schürmans. Ein Compiler und eine Virtuelle Maschine zur Zustandsraumgener-
ierung. Diplomarbeit, RWTH Aachen University, Oktober 2005.

21. R. Veldema. Personal communication on the Tapir programming language.
http://www2.informatik.uni-erlangen.de/Forschung/Projekte/Tapir/, 2006.

22. C. Weise. An incremental formal semantics for PROMELA. In Proceedings of the
3rd International SPIN Workshop, April 1997.

23. O. Wibling, J. Parrow, and A. Pears. Automatized verification of ad hoc routing
protocols. In FORTE, volume 3235 of Lecture Notes in Computer Science, pages
343–358. Springer, 2004.

24. N. Wirth. Pascal-s: A subset and its implementation. In D. W. Barron, editor,
Pascal - The Language and its Implementation, pages 199–259. John Wiley, 1981.

17

http://www2.informatik.uni-erlangen.de/Forschung/Projekte/Tapir/

A Benchmarks

Our test setup consists of an AMD Athlon 64 3500+ running Linux. We used
SPIN 4.2.5 for comparison. SPIN translates Promela models into C source code
which subsequently is compiled, and then run for the analysis.

By default, SPIN uses data-flow optimizations and statement merging [12]
to reduce size of the explored state space, thus requiring less time and mem-
ory for the task. The optimizations can be disabled optionally (spin -o1 -o3).
We benchmarked SPIN without said optimizations against our implementation
(columns “Unoptimized” in Table 5), and another time with both optimizations
enabled, against our unmodified VM, but with path compression (a variant of
statement merging) enabled in our Promela compiler.

We compiled the pan.c files generated by SPIN from the Promela models,
and used gcc (version 3.3.5) with option -O2 (C optimisations), -DNOREDUCE
(disabling partial-order reduction) and -DBFS (enabling breadth-first search).
The resulting executable was used for benchmarking.

In our tests, we used models that come with the SPIN distribution. Our
experiments show that NIPS (version 1.2.2) is close enough to SPIN both in state
vector size (rightmost columns of Table 5) and state space generation speed for
our purposes. The actual state count of models is not directly comparable, due to
different ways of counting (for example, SPIN counts both halves of a rendezvous
communication separately), and due to differing base levels and optimizations.
However, crucial behaviour is not optimized away of course.

The size of state vectors, which contain all information needed to restart the
virtual machine from (global and local variables, channels, processes), is typically
within a few bytes of what is reported by SPIN.

Table 4 shows the results for some large Promela models. The experiments
were carried out on a 64-bit AMD OpteronTM 248 Dual Processor machine (only
one processor used) with 16 GB RAM and a single 200 GB Serial-ATA hard disk,
running Linux 2.6.4. For the first two models an arbitrary limit of 2.5 GB RAM
was set, whereas the other models were given 16 GB RAM. A full account of the
experiments is given in [10].

States Time Uncompressed
Model

visited stored
Edges

[h] storage [GB]

GIOP1 192.9M 162.5M 664.6M 13:34:21 79.2
Lunar 4(d) 1.3G 248.3M 1.9G 35:37:29 153.0

Hugo: Hot fail 555.6M 205.3M 864.9M 15:18:16 166.9
Lunar 4(f) 1.6G 334.6M 2.6G 38:36:02 230.0

Table 4. Runs for large Promela models. States visited are all states, including
single-successor states, whereas column States stored shows only states with more
than one successor. M and G denote factors 106 resp. 109, GB means Gigabyte.

18

N
IP

S
V

ir
tu

a
l
M

a
ch

in
e

S
P

IN
N

IP
S

S
P

IN
U

n
o
p
ti

m
iz

e
d

w
it

h
P
a
th

C
o
m

p
re

ss
io

n
U

n
o
p
ti

m
iz

e
d

D
a
ta

-F
lo

w
O

p
t.

&
S
tm

t.
M

e
rg

in
g

S
ta

te
si

z
e

P
a
ra

m
e
te

r
S
ta

te
s

T
im

e
S
ta

te
s/

se
c
.

S
ta

te
s

T
im

e
S
ta

te
s/

se
c
.

S
ta

te
s

T
im

e
S
ta

te
s/

se
c
.

S
ta

te
s

T
im

e
S
ta

te
s/

se
c
.

in
b
y
te

s

M
A
X

e
r
a
t
o
s
t
h
e
n
e
s

6
1
7
0

0
.0

0
2

7
6
8
5
3
.5

3
3
4

0
.0

0
1

5
1
5
9
3
.3

2
1
9
5

0
.0

1
6

1
2
1
8
7
.5

0
1
2
8

0
.0

1
6

8
0
0
0
.0

0
1
3
0

1
2
4

1
0

7
6
4

0
.0

2
0

3
8
0
5
5
.3

9
7
4

0
.0

0
3

2
6
0
4
7
.1

7
1
0
0
6

0
.0

1
8

5
5
8
8
8
.8

9
5
4
8

0
.0

1
8

3
0
4
4
4
.4

4
1
6
3

1
5
6

1
4

2
7
4
4

0
.0

5
1

5
3
3
3
9
.5

5
1
9
0

0
.0

0
6

3
3
0
0
9
.0

3
3
8
6
4

0
.0

2
6

1
4
8
6
1
5
.3

8
2
2
6
3

0
.0

2
6

8
7
0
3
8
.4

6
2
2
9

2
2
0

1
8

7
7
6
6

0
.1

6
6

4
6
8
9
3
.0

2
3
4
2

0
.0

1
2

2
8
0
2
3
.6

0
1
2
0
3
5

0
.0

5
8

2
0
7
5
0
0
.0

0
6
4
7
7

0
.0

5
8

1
1
1
6
7
2
.4

1
2
6
2

2
5
2

2
2

2
4
0
9
2

0
.5

6
9

4
2
3
6
4
.4

8
6
2
6

0
.0

2
5

2
4
5
8
4
.6

9
4
1
6
1
0

0
.3

4
4

1
2
0
9
5
9
.3

0
2
1
5
3
9

0
.3

4
4

6
2
6
1
3
.3

7
2
9
5

2
8
4

2
6

6
9
9
2
0

1
.7

1
7

4
0
7
3
0
.7

8
1
1
6
2

0
.0

5
4

2
1
3
6
1
.0

8
1
2
9
8
2
3

2
.4

3
0

5
3
4
2
5
.1

0
6
9
6
1
8

0
.4

3
0

1
6
1
9
0
2
.3

3
3
2
8

3
1
6

3
0

1
4
6
2
2
2

3
.8

2
4

3
8
2
3
7
.9

5
1
7
1
0

0
.0

8
8

1
9
5
1
4
.0

9
2
8
2
9
1
4

1
1
.8

5
5

2
3
8
6
4
.5

3
1
3
0
0
6
2

3
.8

5
5

3
3
7
3
8
.5

2
3
6
1

3
4
8

3
4

3
4
7
0
1
2

1
0
.4

1
8

3
3
3
0
7
.7

8
2
9
1
4

0
.1

7
7

1
6
4
5
1
.7

5
7
1
3
8
1
7

1
7
1
.4

4
1

4
1
6
3
.6

3
3
4
2
0
2
8

2
6
.4

4
1

1
2
9
3
5
.5

2
3
9
4

3
8
0

N
L

le
a
d
e
r

3
6

7
5
4

0
.0

0
9

7
9
4
1
0
.2

2
1
0
5

0
.0

0
2

5
9
9
6
5
.7

3
7
4
3

0
.0

1
8

4
1
2
7
7
.7

8
4
0
7

0
.0

1
8

2
2
6
1
1
.1

1
1
3
1

1
1
6

4
8

5
6
7
8

0
.0

8
2

6
9
2
1
6
.8

9
3
7
9

0
.0

0
8

4
7
8
8
9
.8

2
5
6
2
6

0
.0

3
7

1
5
2
0
5
4
.0

5
2
4
1
0

0
.0

3
7

6
5
1
3
5
.1

4
1
8
6

1
8
0

5
1
0

4
6
0
9
1

0
.6

4
9

7
0
9
8
6
.5

5
1
5
0
9

0
.0

3
5

4
3
5
0
4
.5

8
4
5
9
3
7

0
.2

6
8

1
7
1
4
0
6
.7

2
1
5
7
9
1

0
.2

6
8

5
8
9
2
1
.6

4
2
4
9

2
2
0

6
1
2

3
8
2
4
6
5

6
.1

8
0

6
1
8
9
1
.2

2
6
2
4
1

0
.1

7
6

3
5
5
3
3
.7

2
3
8
2
1
5
1

3
.1

2
0

1
2
2
4
8
4
.2

9
1
0
6
4
4
9

0
.1

2
0

8
8
7
0
7
5
.0

0
3
2
0

3
0
8

N
L

le
a
d
e
r
2

3
6

4
5
7
1

0
.0

5
4

8
5
2
6
8
.7

1
6
6
7

0
.0

1
0

6
3
9
0
7
.2

5
4
4
7
6

0
.0

2
7

1
6
5
7
7
7
.7

8
2
4
3
0

0
.0

2
7

9
0
0
0
0
.0

0
1
3
8

1
2
4

4
8

1
4
3
3
7
3

1
.3

2
1

1
0
8
5
0
7
.8

1
1
0
0
1
2

0
.1

6
1

6
2
1
0
2
.2

5
1
4
2
2
6
0

0
.6

5
0

2
1
8
8
6
1
.5

4
6
0
0
5
2

0
.6

5
0

9
2
3
8
7
.6

9
1
9
3

1
8
8

N
p
e
t
e
r
s
o
n

N

2
3
2
7

0
.0

0
3

1
0
9
8
7
9
.0

3
3
0

0
.0

0
0

7
2
2
8
9
.1

6
3
0
3

0
.0

1
7

1
7
8
2
3
.5

3
1
8
5

0
.0

1
7

1
0
8
8
2
.3

5
3
8

4
0

3
5
1
1
1
8

0
.2

6
8

1
9
0
8
7
9
.1

2
8
5
3

0
.0

1
2

7
1
1
1
2
.9

6
4
5
9
2
7

0
.0

8
5

5
4
0
3
1
7
.6

5
2
5
3
7
1

0
.0

8
5

2
9
8
4
8
2
.3

5
5
0

4
8

p
ft

p

1
3
7
8
1
8
4

1
0
.0

3
3

1
3
7
3
6
8
.7

1
3
0
1
6
0
3

4
.9

9
6

6
0
3
7
2
.4

0
1
2
7
5
1
8
0

3
.7

7
0

3
3
8
2
4
4
.0

3
2
1
9
1
6
7

0
.7

7
0

2
8
4
6
3
2
.4

7
1
8
9

1
5
2

s
n
o
o
p
y

1
2
4
4
3
4

2
.3

8
5

5
2
1
8
0
.8

7
6
8
6
5
8

1
.4

4
2

4
7
6
0
3
.2

0
9
1
9
2
5

0
.4

3
6

2
1
0
8
3
7
.1

6
6
1
6
2
4

0
.4

3
6

1
4
1
3
3
9
.4

5
2
0
5

1
8
8

N
s
o
r
t

5
2
1
2
4
5

0
.2

7
6

7
6
9
3
0
.8

8
5
7
2

0
.0

1
0

5
4
5
3
3
.3

2
1
4
3
4
9

0
.0

7
7

1
8
6
3
5
0
.6

5
4
6
5
2

0
.0

7
7

6
0
4
1
5
.5

8
1
8
1

1
8
4

6
1
5
2
6
2
8

1
.7

8
9

8
5
3
3
1
.9

2
2
0
1
9

0
.0

4
0

4
9
9
6
7
.8

3
9
5
6
7
7

0
.5

7
6

1
6
6
1
0
5
.9

0
2
2
3
5
0

0
.5

7
6

3
8
8
0
2
.0

8
2
1
5

2
1
6

T
a
b
le

5
.
S
ta

te
S
p
a
ce

G
en

er
a
ti
o
n
:
A

co
m

p
a
ri

so
n

b
et

w
ee

n
N

IP
S

a
n
d

S
P

IN
.
P
r
o
m
e
l
a

m
o
d
el

s
a
re

ta
k
en

fr
o
m

th
e

S
P

IN
d
is

tr
i-

b
u
ti
o
n
.
T

im
es

a
re

m
ea

su
re

d
a
s

w
a
ll
-c

lo
ck

ti
m

e
in

se
co

n
d
s

o
n

a
n

A
M

D
A

th
lo

n
6
4

3
5
0
0
+

ru
n
n
in

g
L
in

u
x
.

19

	An Embeddable Virtual Machine for State Space Generation

