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Abstract. SystemC has become a de-facto standard for the modeling of
systems-on-a-chip, at various levels of abstraction, including the so-called
transaction level (TL). Verifying properties of a TL model requires that
SystemC be translated into some formally defined language for which
there exist verification back-ends. Since SystemC has no formal seman-
tics, this includes a careful encoding of the SystemC scheduler, which
has both synchronous and asynchronous features, and a notion of time.
In a previous work, we described LusSy [14] a complete chain from Sys-
temC to a synchronous formalism and its associated verification tools.
In this paper, we describe the encoding of the SystemC scheduler into a
asynchronous formalism, namely Promela (the input language for Spin).
We comment on the possible uses of this new encoding, and compare it
with the synchronous encoding.

1 Introduction

SystemC [16] is a C++ library/language used for the description of Systems-on-
a-Chip (SoCs) at different levels of abstraction, from cycle-accurate to purely
functional models. It comes with a simulation environment, and is becoming a
de facto standard in the SoCs industry. SystemC is being increasingly used for
writing the Transaction Level Models (TLM) [5] that allow embedded software
development on a virtual prototype of the final chip.

A TL model written in SystemC is based on an architecture, i.e., a set of com-
ponents and connections between them. Components behave in parallel. Each
component has typed connection ports. Its behavior is given by a set of commu-
nicating processes programmed in full C++ and managed by a non-preemptive
scheduler. Synchronization mechanisms include events, which can be waited for
or notified. A process can yield back to the scheduler either by waiting for an
event or by waiting for a given period of time to elapse.

Communications between modules proceed by function calls traversing com-
ponents or communications channels (for instance bus models). At the transac-
tion level, such function calls are used to model two types of communication:
transactions (atomic exchange of data between modules) and interrupts.

Since the TL models become to be considered as reference models in the SoC
design flow, it is necessary to validate properties at this level of abstraction. This



is currently done by intensive testing, but formal verification is being investigated
for some years now, in both industry and academia. However, the definition of
SystemC, while being an IEEE norm, lacks formal semantics.

Some work on verifying properties of SoC assume that they are described
in some parallel formalism inspired by SystemC. Sometimes this formalism only
reflects the register-transfer-level (RTL) and cannot be used to express the speci-
ficities of a TL model. Formal verification for RTL designs has been studied a
lot, and providing such analysis for designs written in SystemC does not bring
new results. Moreover, even if the formalism reflects the transaction level of
abstraction, it is often quite far from real SystemC designs (see Section 5).

We are interested in verifying properties of real SystemC designs, at the trans-
action level. This requires that SystemC and TLM-specific features be translated
into some formally defined language for which there exists verification back-ends.
This includes a careful encoding of the SystemC scheduler, which has both syn-
chronous and asynchronous features, and a notion of time.

Choosing the formal language in which to translate SystemC is important
because it often restricts the set of verification back-ends that can be applied.
If we translate SystemC into a symbolic synchronous formalism, we have access
to tools like the Lustre [6], SMV [11] or Esterel [2] tool-chains; if we translate
it into an asynchronous formalism, we have access to Spin [8], IF [3], etc. Since
the semantics of SystemC processes is neither entirely synchronous, nor entirely
asynchronous, any choice implies some encoding. The encoding itself may be
responsible for a significant part of the model size.

Another important point is the way time is interpreted. Since SystemC con-
tains explicit constructs to wait for time, the translation into the input language
of a timed-model checker like IF [3] or UPPAAL [9] could seem to be an ap-
propriate choice. However, we do not need the full expressive power of timed
automata to encode SystemC, and using timed automata would imply to pay
the price of the symbolic analysis needed for clocks in the verification back-ends.
Consequently, we will choose a discrete interpretation of time in SystemC, and
encode timers into some ordinary variables.

In a previous work [14, 12], we described a complete chain from SystemC to
a synchronous formalism. It is based upon a systematic encoding of SystemC
processes into a flavor of synchronous automata. In such a case, SystemC pro-
cesses are encoded one by one into automata, communicating with an additional
automaton that encodes the scheduler specification. The automata correspond-
ing to the user processes are produced specifically to communicate with this
scheduler automaton, using additional synchronous signals and the instanta-
neous dialogue mechanism available in a pure synchronous semantics. The set of
automata can then be translated into several synchronous formalisms (SMV [11]
input, Lustre), without computing the intrinsic products between them, hence
delegating the potential state explosion to the verification back-ends that are
better equipped to tackle the problem. Another good property of the translation
into Lustre is that we get something executable. It means that we can, at least,



compare the Lustre encoding with the official SystemC semantics, on benchmark
programs.

However, the encoding into a synchronous formalism renders manual reading
difficult, and the amount of additional synchronizations needed to reflect the
semantics of SystemC can be put in question again.

Another approach would be to define a direct semantics by using an ad-
hoc product to represent the effect of the scheduler. While the latter approach
produces more readable results, the fact is that existing verification tools can
not deal directly with ad-hoc products, but usually with well-known formalisms.

In this paper, we explore the encoding of the SystemC scheduler into an
asynchronous formalism, namely Promela, the input language for the tool Spin.
The translation into Promela, which has a well defined semantics, is another way
to give a formal semantics to SystemC/TLM. Thanks to the simulator provided
with Spin, the semantics is also executable, and it will be possible to test the
faithfulness of the semantics w.r.t. the official scheduler.

So far, we experimented our translations for model-checking and intensive
testing of properties like deadlocks and assertions.

The alternative encoding of SystemC into an asynchronous formalism will
also allow the comparison of the two verification chains, with respect to the
size of the models, the power of the verification tools, etc. In other words, we
try to answer the following questions: for a given SystemC model, and a given
property of it, is it more efficient to use a synchronous verification chain, or an
asynchronous one? It may depend on the type of property.

The rest of the paper is structured as follows: Section 2 gives an short intro-
duction to TL modeling with SystemC. Section 3 describes the translation and
Section 4 how to use it for verification. We consider related work in Section 5
and conclude in Section 6.

2 Transaction Level Modeling with SystemC

2.1 Subset of SystemC

We briefly describe the main characteristics of SystemC, when used for transac-
tion level models.

Globally, a TLM component, or module, is an encapsulated piece of code
that contains active code (processes to be scheduled by the global scheduler)
and passive code (functions offered to the external world, that will be called
from a process of another component, by a control flow transfer). Inside such a
component, the processes and the functions may share variables and events in
order to synchronize with each other. Note that a function code and an active
process are conceptually in parallel, since the function will be called by another
flow of control.

In SystemC, the architecture of the platform is built by a piece of code (the
so-called elaboration phase that runs first), but this is conceptually equivalent
to a quite traditional architecture-description-language (ADL) that connects the
ports exposed by the components.



Communications between modules proceed by function calls traversing com-
ponents or communications channels (for instance bus models). SystemC pro-
vides built-in primitive communications channels such as sc_signal to model
hardware signals at the Register Transfer Level of abstraction. Synchronization
associated with the communications is performed by events and shared variables
inside modules and/or channels.

Since we are only interested in modeling at transaction level, we make some
strong assumptions on the SystemC code we analyze. We assume that we never
use a built-in primitive channel or the synchronous update mechanism, which
are used for RTL modeling. We consider two types of communications between
modules: transactions and interrupts. Both types use blocking function calls (i.e.,
the caller is blocked until the callee terminate its code) implemented using the
SystemC TLM Library [15]. Interrupts proceed directly to the target module
whereas transaction have to pass through a bus model that routes them to the
corresponding target module, depending on the transaction address.

2.2 A Simple Example

Consider the simple example in Figure 1, consisting of two modules. The first
module contains a process that waits for an event e1. After receiving the event,
it waits an additional 7ns, before performing some action α. Here α is the ab-
straction of some real, local computation, an alternative way to see this is: the
computation α takes 7ns. When α is finished, the first process will trigger an
interrupt in the second module, by calling the function g. The first module also
offers an interrupt port by the function f , which will notify the local event e1.
Similarly, the second module contains a process that waits 5ns before performing
β (or performs β, which takes 5ns). Thereafter it will trigger the interrupt in the
first module, and wait for the event e2, i.e., for an interrupt that triggers the
function g. The two processes will always be executed in lockstep.

Module 1

// Process 1

wh i l e ( t rue )
{

wait(e1);

wait(7, SC_NS);

cout << "alpha";

interrupt_out.g();

}

// Function f

vo id f()

{

e1.notify ();

}

Module 2

// Process 2

wh i l e ( t rue )
{

wait(5, SC_NS);

cout << "beta";

interrupt_out.f();

wait(e2);

}

// Function g

vo id g()

{

e2.notify ();

}

Fig. 1. A simple example of a TL model with two modules.



While this example is trivial, it contains the relevant parts of a TL model:
waiting for event notification, waiting for time and function calls to other mod-
ules, which are used to model transactions and interrupts.

There exist three difficulties when defining the semantics of SystemC:

1. The non-preemptive scheduler: we have to ensure that a running process
is not interrupted by any other process unless it explicitly relinquishes the
control back to the scheduler, by performing a wait either on time or on an
event.

2. The SystemC scheduler ensures that time can only elapse when no process
is eligible (while SystemC has no control on real time, the simulation time
is merely a counter that the scheduler can decide to increment or not).

3. Function call communications: they are used for both interrupts and transac-
tions. A process P performing a function call communication lets its control
flow go outside its component to finally reach the destination component
where a function is executed. The execution of P may continue only after
the function call is finished. This means that if the receiver’s function per-
forms a wait() statement, P will yield the control back to the scheduler,
and when elected again will resume its execution in the receiver’s function.

3 Expressing SystemC semantics in Promela

3.1 General Ideas

The Architecture First, we will abstract from the architecture description
part. In a real SystemC design, the function that is actually called when a
process P in a module M executes an instruction port.f() is determined by
the link between the port port of M and a port p’ on another module M ′

containing a function f ′ associated with p′.
In the rest of the paper, we will consider that the architecture is hard coded

in the function names. In other words, we will consider a process P calling a
function f , and another module containing f .

Pre-processing for Functions The modeling of a SystemC program into
Promela transforms each process and each function into a Promela process.
SystemC distinguishes several types of processes (SC_THREAD, SC_METHOD, etc.).
We consider here the use of SC_THREAD, which is the most general, since the
encoding will not benefit from the restrictions enforced on the other types of
processes.

We assume that we have performed a preprocessing on the SystemC pro-
gram ensuring the following property: Each function is called by at most one
process. The preprocessing consists in duplicating and renaming functions which
are called multiple times. We ignore recursive calls, which is sound for transac-
tion level models (communications functions are not used to compute values).
Function parameters and return values are not represented but can be taken into
account by using global variables for both.



To avoid such a pre-processing copy of the functions, we would need to use a
formalism in which a single object can model a process that is being executed in
several distinct instances at the same time. Petri nets would do the job, but the
verification tools that are able to deal with such models (symbolically, without
expanding the model) are usually more complex than Spin, and they are tailored
for the cases where the number of copies is not known statically. In our case,
since the number of copies of a function is indeed known statically, we do not
need the expressive power of Petri nets, and the expansion can be performed
before the verification tool is called.

We also assume that only one process waits for each event. Removing this
limitation is a matter of encoding. n processes waiting for an event e can be
transformed into n processes each waiting for its own event ei.

All time values appearing in the SystemC model must be integer multiples of
some basic time granularity. We also assume that all variables can be declared
globally, without any naming conflicts. All these restrictions can again be ensured
by simple preprocessing of the SystemC program.

3.2 Intuitive Idea: Representation with Automata

Our translation to Promela can also be seen as a translation into a set of au-
tomata. Each process and each function is translated into one automaton. Guards
and effects of transitions can either be the usual tests and assignments to Boolean
or integer variables, or they can consider clocks. Clocks can either be tested for
equality with a constant or a variable, or they can be set to 0.

The automata derived from Module 1 of the simple example can be found in
Figure 2. They simply reflect the control structure of the SystemC code.

1

2

/e1:=1

3

  {e1=0}

4

  X:=0

5

  [X=7]

6

  alpha

7

call(g)

  ret(g) 1

2

  begin(f)

3

/e1:=0 

  end(f)

Fig. 2. Automata for Module 1

The automata then have to be asynchronously interleaved, respecting the
non-preemptive specification of the scheduler. To obtain this, the automata have
two different kinds of states, which we represent as black and white states. Black



states represent local control flow: when an automaton is in a black state, it
may not be preempted by the scheduler. White states basically represent wait
statements: when an automaton is in a white state, it can be preempted, hence
interleaved with any other process. A special case is the one of function calls,
which directly transfer the control to the automaton that implements the func-
tion. This means we have to synchronize the transitions labeled by call (resp.
ret) with the corresponding transition labeled by begin (resp. end).

Since we are mainly interested in the synchronization between different mod-
ules, we will not describe all the possible data processing inside the modules. This
abstracted code could also be represented by encoding its control flow using only
black states. The key elements of SystemC are translated in the following way:

wait(e) 1

  /e:=1

  {e=0}
e.notify()   /e:=0

wait(k ns) 1

  X:=0

2

  [X=k]
wait(e, k ns)

1

  X:=0

2

  /e:=1

3

 [X=k]   {e=0}

f()

1

...

  begin(f)

2

  end(f)

port.f() 1

  call(f)

  ret(f)

3.3 Detailed Encoding

In the following we will show how our encoding in Promela deals with the three
problematic parts of SystemC: non-preemptive scheduling, time-elapse and func-
tion calls.

Non-preemptive scheduling We distinguish between control points where the
scheduler may transfer the control to another process (white states), and internal
control points (black states) of one process. The non-preemptive execution of
one automaton is realized with an additional shared variable M of type int. This
variable can take the value 0, to mean that any processes can perform a step,



or N , to mean that the process number N is the only one to be activated. A
graphical representation and the actual Spin encoding are shown in Figure 3.

1

2
  {x=0}
alpha

3

  {x!=0}
 beta

myturn && State ==1 && x==0

-> alpha; State =2; M= t h i s ;
myturn && State ==1 && x==1

-> beta; State =3; M=0;

Fig. 3. Representation of non-preemption in Promela. The next value of M depends on
the color of the next state.

This variable is set to 0 by each process that performs a wait. Otherwise,
a process sets M to its own identifier, to indicate that it will take an additional
step. For function calls, M is used to transfer the control to another process
explicitly without the possibility of any other interleaving. We also considered a
different encoding that only relied on atomic sections in Promela to model non
preemptivity. We sketch the problems with that approach in Section 3.5.

For simple examples, the use of an extra variable for ensuring atomicity is
surely not efficient. We could use the atomic statement in Promela to ensure
that no process can interleave a black state. In the trivial example in Figure 2,
where each black state has exactly one incoming and one outgoing transition, we
could also merge these and remove the black states all-together. But since the
atomic behavior represented by the black states may be any complex control-
flow, connected to white states by multiple in- and outgoing transitions, this
simplification is not possible in the general case.

2

  X:=0

  [X=10]

a c t i v e proctype update_clock (){

end:

do
:: atomic{timeout && M==0 && X_used

-> X=X+X_used ;}

od
}

. . .
a c t i v e proctype A(){

do
:: atomic{myturn && state ==1

-> X=0; X_used =1;M=0; state =2}

:: atomic{myturn && state ==2 && X=10

-> X=0; X_used =0;. . .}
. . .

Fig. 4. Representation of clocks, which are needed to wait for time, as an automa-
ton and in Promela. The process update_clock lets time elapse synchronously for all
processes.

Clocks For every process that waits for time, we declare a clock (see Figure 4).
Since time is considered discrete, every clock is represented by an integer. A



dedicated clock_update process increments the clocks synchronously as soon
as no other process can run, which is tested using Promela’s timeout statement.
Hence time will never elapse if there is a instantaneous loop, i.e., when there
exists a cycle in the automaton which never performs a wait. Before a wait
occurs, the process resets the corresponding clock to zero. We flag for each clock
X whether the corresponding process is currently waiting on it, with a Boolean
variable X_used. A clock is reset to zero when no process waits for it, and it is
never increased in this time (it is a dead variable). Hence, the values of the clock
are in the range between 0 and the value of the corresponding wait.

Function calls For each function f , a global Boolean variable F is introduced.
The effects of f are transformed into

– calling f : F := 1
– returning from the call: {F == 0}
– begin of the declaration of f : {F == 1}
– end of the declaration: F := 0

This is illustrated by Figure 5.

1

  call(f)

  ret(f)

:: myturn && State ==1

-> f=1; State =2; M=2

:: myturn && State=2 && f==0

-> State =1;M=this;

1

...

  begin(f)

2

  end(f)

:: myturn && State ==1 && f==1

-> State =2; M=this;

:: myturn && Stae ==2

-> alpha; State =3; M=this;

:: myturn && State=3

-> f=0; State =1; M=1;

Fig. 5. Representation of function calls in Promela. Assume that the caller has the
identifier 1 and the function has identifier 2.

Additionally, a call sets M to the id of the automaton that implements f .
Similarly, end sets M back to the value of the caller. Since each function is called
by at most one process, this value is unique. Simply setting M, without using F is
not sufficient, because we have to make sure that the caller is blocked until the
function is completed. Since the function might perform a wait, the scheduler
could otherwise decide to execute the caller again too early. Similarly, we have
to prevent the function from being executed without being called.

If no process call a function, we could simply remove the function. On the
other hand, it might be the case that our model is only partially defined, that



is: one or several modules of the system are not known, and considered as black-
boxes (possibly with Byzantine behavior). In this case, we can give an over
approximation of the possible behavior of unknown modules, by assuming that
a called function can take an arbitrary time, and that each process may call any
function at any time. This is reflected by the macro state between call and ret.

Functions are used both to model interrupts and transactions in TLM. The
call representing an interrupt is directly done to another module. On the other
hand, transactions are handled by a bus that performs a routing depending on
the transaction’s address. In the examples, we forget about the bus, and for each
transaction directly call the recipient component’s function. This simplification
assumes we have determined manually to which component each transaction is
addressed. In the general case, the code responsible for routing, as well as specific
bus behavior can be taken into account by modeling the functions and processes
inside the bus, as automata, like any other component. We would then need at
least an address parameter for each transaction function calls.

Simple Example The global definitions and the clock update for the example
can be found in Figure 6. First the scheduling variable is declared. The macro
myturn is an abbreviation to indicate that an automaton is enabled, i.e., it is
either itself in a black state, or all automata are in white states. Since we do
not have variables in the example, we only need to declare the variables for the
events. Additionally, we have an integer value and a Boolean flag for each clock,
indicating whether we are currently waiting for the clock. Time may elapse, i.e.,
the update_clock process is enabled, when no other process can perform a step,
all processes are in a white state and at least one process waits on time. Using
X=X+X_used to update time assures that time will only elapse for a clock that is
used.

i n t M=0;
#define myturn (M==0 || M==this)

// Variables
boo l e1=0;
boo l e2=0;

// Functions
boo l f=0;
boo l g=0;

// Clocks
#define time_enabled timeout && M==0 && (X_used || Y_used)

i n t X=0;
boo l X_used =0
i n t Y=0;
boo l Y_used =0

a c t i v e proctype update_clock (){
end:

do
:: atomic{time_enabled -> X=X+X_used; Y=Y+Y_used; }
od

}

Fig. 6. Global definitions and the process for synchronous time elapse.



The Promela code for Module 1 can be found in Figure 7. Each process has a
variable to store its active state and its id. We could also use the process id that is
automatically assigned by Spin, but using a new value makes it easier to compute
the id for function calls, without increasing the number of reachable states.
The translation of the automata is straightforward. Each transition becomes an
atomic action, that first tests whether the automata can run, i.e., it is in the
right state and the guard evaluates to true. Thereafter the effect of the transition
is performed and the new state is set. At last, the scheduling variable is set
according to whether the new state is black or white and whether a function call
or termination is performed. Since a clock is explicitly set to 0 before each wait,
and only at such a point, we also set the clock to “used” when leaving state
3. Similarly, when state 4 is left, we declare the clock as “not used anymore”.
Labels that abstract real, local computations like alpha are printed. The code
for Module 2 can be found in Figure 8.

a c t i v e proctype module1 (){
byte state =1;
byte this =1;

do
:: atomic{myturn && state ==1 -> e1=1; state =2;M=0}
:: atomic{myturn && state ==2 && e1==0 -> state =3;M=this}
:: atomic{myturn && state ==3 -> X=0; X_used =1; state =4;M=0}
:: atomic{myturn && state ==4 && X==7 -> X=0; X_used =0; state =5;M=0}
:: atomic{myturn && state ==5 -> printf ("MSC: alpha\n"); state =6;M=this}
:: atomic{myturn && state ==6 -> g=1; state =7;M=4}
:: atomic{myturn && state ==7 && g==0 -> state =1;M=this}
od

}

a c t i v e proctype fun_f (){
byte state =1;
byte this =2;

do
:: atomic{myturn && state ==1 && f==1 -> state =2;M=this}
:: atomic{myturn && state ==2 -> e1=0; state =3;M=this}
:: atomic{myturn && state ==3 -> f=0; state =1;M=3}
od

}

Fig. 7. Promela code for Module 1 with the function f

3.4 Validation of the Semantics

The main benefit of a semantics for SystemC in Promela is the possibility to for-
mally reason about properties of the model. But the simulation of the semantics
is also very important.

Since SystemC itself is executable, having an executable semantics does not
look like a big gain. But since we are performing some abstractions and trans-
formations on the model, the simple possibility to execute the semantics and
compare the resulting traces with the original SystemC model gives us confi-
dence in the validity of the approach. See appendix B of [12] for an example
on the problems that can occur when using a non-executable language to give
semantics to a model.



a c t i v e proctype module2 (){
byte state =1;
byte this =3;

do
:: atomic{myturn && state ==1 -> Y=0; Y_used =1; state =2;M=0}
:: atomic{myturn && state ==2 && Y==5 -> Y=0; Y_used =0; state =3;M=0}
:: atomic{myturn && state ==3 -> printf ("MSC: beta\n"); state =4;M=this}
:: atomic{myturn && state ==4 -> f=1; state =5;M=2}
:: atomic{myturn && state ==5 && f==0 -> state =6;M=this}
:: atomic{myturn && state ==6 -> e2=1; state =7;M=0}
:: atomic{myturn && state ==7 && e2==0 -> state =1;M=this}
od

}

a c t i v e proctype fun_g (){
byte state =1;
byte this =4;

do
:: atomic{myturn && state ==1 && g==1 -> state =2;M=this}
:: atomic{myturn && state ==2 -> e2=0; state =3;M=this}
:: atomic{myturn && state ==3 -> g=0; state =1;M=1}
od

}

Fig. 8. Promela code for Module 2 with the function g

This worked very well, for our first encoding, which did not use gotos. How-
ever, we tried another expression of the semantics using a combination of atom-
icity and jumps (see section 3.5), which lead to unexpected results.

The scheduling of the parallel processes in the model is non-deterministic
according to the SystemC specification. In practice, it depends on the imple-
mentation of the SystemC scheduler. An interactive simulation of the Promela
model makes these choices explicit, by prompting the user.

3.5 Alternative Encoding

We also considered another encoding, which completely relied on Promela’s
atomic sections to model non-preemption. Each state was transformed into a
goto label, followed by an atomic section that contained all outgoing transitions.
Additionally, all black states where combined in one atomic section, including
the labels. The semantics of Promela ensures that a jump from inside an atomic
section to a label which is also contained in an atomic section preserves atomic-
ity. The first problem with this encoding is, that we have to inline all functions,
in order to tell to which point the function returns. But we have the benefit that
we do not need the variable M for the scheduling, or the variables to hold the
current state of each process. Furthermore, the implementation with gotos is
much more efficient than using a loop with a non-deterministic choice.

But the main problem with this encoding is that the simulator of Spin in-
terleaves jumps from atomic section to another atomic section (although the
documentation and the prover do the opposite). While Spin proves properties
that rely on the fact that such jumps are atomic, it also generates traces that
violate the property.

The combination of gotos and atomic sections also make it impossible to use
partial order reduction. Intuitively, goto m1 and atomic{goto m1} are equiva-
lent when m1 is inside an atomic section, because a single statement is always



atomic and every possible interleaving that could occur after the goto could as
well occur before it. However, for the explicit atomic, Spin will not allow any
interleaving neither after nor before the goto, when partial order reduction is
enabled.

bool X=0;

active proctype A(){

assert(X==0);

}

active proctype B(){

X=1;

atomic{goto m0};

atomic{skip;

m0: X=0

}

}

Fig. 9. A program, which verification depends on whether partial order reduction is
enabled.

Consider for example the program in Figure 9. The assertion is violated, when
B just executes X=1 before A is executed. Spin finds this error, when the program
is verified without partial order reduction, while it proves that all assertions hold
when partial order reduction is enabled.

Because of these problems, this encoding does not have the benefits of an
executable semantics. That the output of a verification depends on verification
parameters which should not affect them, makes it hard to understand, why a
specific behavior is possible or not. Therefore, we choose the not so efficient, but
more robust encoding as the default.

4 Verification

4.1 Generic Properties

There are a number of properties that should hold for every TL model. First,
it should never deadlock. A deadlock might, for example, occur when a process
is waiting for an event that is never notified. A deadlock in the SystemC model
corresponds directly to the fact that all Promela processes are blocked. With
Spin, this can be checked by verifying that no “invalid end states” exist, which
is built in the prover. Since we only increase time when at least one process
performs a wait on time, it can never be the case that the clock_update process
runs forever, which would make it impossible for Spin to detect a deadlock. On
the other hand, when all processes terminate, the update_clock process will be
blocked. Therefore, we explicitly declare this states as a valid end state.

A deadlock might occur in the simple example in Figure 1, if we remove
the wait(5, SC_NS) from the second process. Then the scheduler can choose to
execute the second process first, and let it notify the event without a process
waiting for it (this is indeed a common error for SystemC programmers). In the
following, both processes wait for events, but none is ever notified.

Another property we want to assure, is that no process runs forever with-
out yielding. This can be expressed by the formula �♦M = 0. For models



with clocks, we can also check that time will always elapse, using the formula
�♦enabled(update clock).

Of course, these last two properties are liveness formula and can only be
checked if all abstractions preserve them (over-approximations of the behaviors
preserve safety properties, but do not preserve liveness properties, in general).
For the simple example, we do not need to perform any abstractions at all. If,
however, the model becomes too large, the first abstraction that comes to mind
is to remove all clocks, and to change every clock-guard to true. This implies
that a process might halt in an arbitrary number of steps before a guard. But
the property that a thread is monopolizing the behavior, is independent of the
clocks, so the property can still be verified.

These tests work very well on the small example both with the possible
deadlock and without. The proof is almost instantaneous, and the number of
states remains small. We also checked these properties for the sub-set of a real-
world mpeg decoding platform, which modeled the synchronization between the
different components, with good results:

without bug with bug mpeg
[s] states [s] states [s] states

deadlock < 0.1 35 < 0.1 9 < 0.1 126
no yielding < 0.1 49 < 0.1 55 < 0.1 209
time elapse < 0.1 57 < 0.1 9 < 0.1 226

All tests were performed on a Intel Celeron with 2.80GHz and 1GB RAM.

4.2 Checking Assertions

Checking assertions in the TL model is straightforward. Assertions are simply
inserted at the corresponding transition, and directly written into the Spin code.
So far, we are mainly using assertions to check that some part of the model is
never executed. This could also be modeled using specific error states. Since
assertions are always safety properties, they are not effected by possible abstrac-
tions.

4.3 Benchmarks

Our test model consists of a chain of modules. The first module triggers an
interrupt in the next one. This interrupt notifies an event, allowing the module
to trigger an interrupt in the next module, and so on. The last module contains
an assertion, which is either always false (bug) or always true (no-bug). The
latter forces Spin to compute the whole state space when checking for invalid
assertions. The normal encoding uses the global variable M, to assure atomicity,
while the goto version is our alternative encoding. In order to allow all intended
behavior, we disabled partial oder reduction when checking the encoding with
goto.



# modules 3 5 7 9
[s] states [s] states [s] states [s] states

normal: bug < 0.1 32 < 0.1 48 < 0.1 64 < 0.1 80
normal: no-bug < 0.1 3919 0.5 64831 11.8 104576 NT NT
goto: bug < 0.1 10 < 0.1 14 < 0.1 18 < 0.1 22
goto: no-bug < 0.1 287 < 0.1 1535 < 0.1 7679 0.2 36863
# modules 11 13 15 17

[s] states [s] states [s] states [s] states
normal bug: < 0.1 104 < 0.1 120 < 0.1 136 < 0.1 152
normal no-bug : NT NT NT NT NT NT NT NT
goto bug: < 0.1 34 < 0.1 38 < 0.1 42 < 0.1 46
goto no-bug: 1.1 172031 7 786431 47 353894 NT NT

The entry NT, for not tested, indicates that we had abort the checking for
lack of memory. Both encodings find the bug very fast.

When computing the whole state space, we see that the encoding using go-
tos is more efficient, but the number of states increases exponentially for both
encodings. This is due to the increase of white states. We can solve the bug
by waiting before the notification, in order to make sure that no event is lost.
While this makes the model completely deterministic, the number of states is
still growing exponentially. Adding deterministic, local computations, increases
the number of reachable states linear for the normal encoding, and not at all for
the encoding with gotos.

4.4 Comments on Performance

There are two possible sources for state explosion, making the model too large
for automatic verification: the clocks and the interleaving between the processes.
Modeling time by integers is usually not a good idea. However, our clocks are
always bounded by the time of the corresponding wait, which is usually a rather
small value, and since the clocks are updated synchronously, the actual increase
of the state space is moderate. The size of the state space depends on the maxi-
mum time a process waits for, and the number of unrelated wait statements in
parallel processes.

One way to cope with the state explosion is to use Spin not for formal ver-
ification, but for intensive testing. This is encouraged by the fact, that in the
benchmark the existing bugs were found very fast. This also allows to use more
efficient algorithms in Spin, like hash-compact search, which only give approxi-
mate results.

On the other hand, our benchmark shows that introducing white states lead
to state-explosion, while introducing black states has only a minor impact. Typ-
ical case-studies contain mostly control-flow, and only a few waits; therefore
we are confident that we can model check programs of interesting size with our
approach.



5 Related Work

The problem of SystemC having no official formal semantics is not new. Most
of the research work studying SystemC in a formal context starts giving it a
semantics in another well-defined formalism.

A number of other approaches have been proposed for the description of het-
erogeneous hardware/software systems with an emphasis on formal analysis. See,
for instance, Metropolis. In this type of approach, the (formal) definition of the
description language is part of the game. Other works like SystemCFL [10] define
a new language from scratch, but claim its similarity with SystemC. As opposed
to SystemC, SystemCFL doesn’t have a non-preemptive scheduler, doesn’t seem
to manage a notion of “event” (which is the basic synchronization primitive on
top of which everything else is built in SystemC),. . . Our approach is different.
We want to deal with actual SystemC code, and the actual SystemC semantics.

An early work on SystemC semantics is [7], where the semantics is expressed
in terms of Abstract State Machines. It only models SystemC 1.0 which was
the only available at that time, and has an inaccurate model of the scheduler: in
their model, the processes are executed in parallel whereas the language reference
manual explicitly says the opposite.

[17] does the same with another formalism (denotational semantics). It mod-
els only a very strict subset of SystemC, with explicit limitation both on the
kind of processes and on the content of processes (only wait statements and
assignments are modeled, without a notion of control-flow).

While those approaches are theoretically interesting, the fact that the target
formalism is abstract limits the possible applications: one can reason “on paper”
about denotational semantics and abstract state machines, but until these for-
malism get a concrete syntax and an associated toolkit, these reasonings will not
be automatizable or verifiable automatically. Furthermore, the question of the
faithfulness of the semantics is not solved: starting from a language without a
formally-defined semantics, one can not do anything better than examining the
proposed semantics and just “claim” its faithfulness.

The approach followed by CheckSyC [4] goes one step further, providing
a complete chain from the SystemC source code to a proof engine. They get
relatively good experimental results. However, this work do not target the same
SystemC subset as we do: we are not interested in RTL synthesizable programs,
but target the transaction level model.

We already experimented with the connection of SystemC to a proof engine.
The first output of this work was the tool-chain LusSy [12]. Starting from a Sys-
temC program, we use a SystemC front-end to parse it, generate an intermediate
representation called HPIOM made of communicating, synchronous automata.
We can then generate Lustre or SMV code to connect to a variety of proof
engines. The connection to Lustre provides both provability and executability.
The work presented here differs on several points: the first one is that LusSy
uses a SystemC-independent intermediate formalism, and models the details of
the scheduler using an explicit automaton. As opposed to this, we are using
here a representation with automata in which the notion of non-preemption is



built-in. The details of the scheduler do not need to appear in a separate au-
tomaton, but are defined by the product. The second difference is that LusSy
uses a synchronous formalism, while we are experimenting here with Spin, which
is asynchronous.

[18] describes a general approach to extract a behavioral type from a sys-
tem using the polychronous model of computation (using Signal [1] as a support
language). This applies to languages and execution models such as Java, Sys-
temC and SpecC. Their starting point is the GNU SSA (static single assignment)
form, which is the intermediate representation in GCC, since version 4.0. The
SSA form has the interesting property that each basic block in the abstract syn-
tax tree can be executed in a single clock tick in Signal, leading to an elegant
encoding of the SystemC code.

6 Further Work and Conclusion

We have presented a way of translating TL models written in SystemC into
Promela. This is one way of giving a formal semantics to SystemC. We use this
encoding to perform verification of TL models, like checking for deadlocks and
assertions.

The asynchronous encoding seems to be worth further investigation, com-
pared to a synchronous one. When translating SystemC to a synchronous frame-
work, the atomicity between two white states is obtained by a quite complex
synchronisation between the automata for the processes, and the automata that
represents the scheduler. Conversely, when translating SystemC to Promela, the
atomicity is built-in. Therefore, if the number of white states is small compared
to the number of black states, the formal verification should be easier for the
asynchronous encoding

On the other hand, translating SystemC into Lustre or SMV has the advan-
tage of producing a symbolic description of the system that can be exploited by
symbolic model-checkers and abstract-interpretation tools.

The use of Spin is probably better for bug tracking, while the use of a symbolic
tool is probably better for performing aggressive abstractions and approximate
property verification.

Right now, the transformation from SystemC to Promela is manual. While
interesting as a first approach to the problem, it would be necessary to implement
the principles presented here in a complete tool-chain to apply the approach
on a larger case study and compare it with the synchronous encoding. This
would mean to reuse a front-end like Pinapa [13], that we developed for LusSy,
a transformation into a structure representing the particular form of automata
used here, and a Spin code generator. We already have a prototype for the
data structure and the code generator, but the biggest part of the work is the
transformation from the actual SystemC code.
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