
Cartesian Partial-Order Reduction

Guy Gueta1, Cormac Flanagan2, Eran Yahav3, and Mooly Sagiv1

1 Tel Aviv University, {guygueta,msagiv}@post.tau.ac.il
2 University of California at Santa Cruz, cormac@soe.ucsc.edu

3 IBM T.J. Watson Research Center, eyahav@us.ibm.com

Abstract. Verifying concurrent programs is challenging since the number of
thread interleavings that need to be explored can be huge even for moderate
programs. We present a cartesian semantics that reduces the amount of non-
determinism in concurrent programs by delaying unnecessary context switches.
Using this semantics, we construct a novel dynamic partial-order reduction algo-
rithm. The cartesian semantics can be used to create other partial-order reduction
algorithms and can also be used as a basis for abstract interpretation. We have
implemented our algorithm and evaluate it on a small set of benchmarks. Our
preliminary experimental results show a significant potential saving in the num-
ber of explored states and transitions.

1 Introduction

This paper addresses the problem of proving the correctness of a concurrent program,
i.e., of showing that all possible program traces satisfy certain correctness properties.
We define a cartesian partial order reduction technique that allows to safely consider
only a subset of these program traces. Our technique can be combined with existing fi-
nite state model checkers to yield new algorithms for finite state systems. It can also be
combined with abstract interpretation [4] to yield new conservative algorithms for infi-
nite systems. In both cases we expect to obtain significant speedups without sacrificing
soundness or completeness. We have implemented a model checker based on cartesian
partial order reduction, and provide preliminary experimental results that show a signif-
icant reduction in the number of states and transitions explored. Our experiments also
compare the performance of our algorithm to the partial order reduction techniques of
SPIN [13], and the recent technique of [6]. Compared to these techniques, cartesian par-
tial order reduction saves more states and transitions on most of our example programs.

1.1 Partial Order Reduction

Partial order reduction techniques [8, 15, 18] combat state explosion by only exploring a
representative subset of all possible program traces. In general, however, verifying that a
subset of all traces is representative may be as hard as solving the underlying verification
problem. Therefore, existing partial order reduction techniques mostly focus on two
special cases: “sleep sets” [8, pp. 75] and “persistent sets” [8, pp. 41]. In particular,
a transition is established as persistent by checking for its potential collisions with an
infinite future of another thread. Such collisions are traditionally detected via static

analysis (e.g., [5]), which may yield coarse results for complicated or pointer-rich code.
Alternatively, dynamic partial order reduction [6] infers persistent sets dynamically as
part of a stateless search, but is applicable only to cycle-free systems. The algorithm of
[5] also infers persistent sets dynamically, but only for thread-local and lock-protected
data.

1.2 Main Results

In this paper, we present a new approach for partial order reduction. This approach
identifies and exploits a different kind of redundancy than either sleep sets or persistent
sets. The strength of our approach stems from the fact that, unlike in persistent sets,
where a transition must be checked for conflicts with an infinite future of another thread,
we only inspect a finite future for collisions, and guarantee safety by exploring both
possible extensions at any collision point. In Sec. 4.1, we show that this approach yields
significant improvements even over optimal persistent sets. This result is also supported
by our preliminary empirical study in Sec. 7.

N=12;
boolean A[N,N];
Robot(int x,int y)
int dirX = 1, dirY = 1;
while(true)
A[x,y]=false;
x += dirX; y += dirY;
if(x=N-1 or x=0) dirX*=(-1);
if(y=N-1 or y=0) dirY*=(-1);
assert(A[x,y]⇒(x=9 or x=2));
A[x,y]=true;

Main()
newthread Robot(0,0);
newthread Robot(4,0);

Fig. 1. Two threads implementing robots.

Our technique is presented as new
operational (or execution) semantics that
can be applied to both finite and infinite
systems. In particular, it can be combined
with abstract interpretation in order to
conservatively handle infinite traces and
infinite state systems.

A motivating example The concurrent
program of Fig. 1 simulates an arena with
two robots which move in different paths.
Each robot is represented by a thread that
calculates and updates its position in an
infinite loop. The program verifies that
the robots can meet only at specific loca-
tions. Although this program is quite sim-
ple, its statespace is relatively large. An
attempt to reduce the statespace by exist-
ing partial order reduction methods is problematic because:

1. Most partial order reduction methods (e.g., persistent sets) are based on a static
dependence analysis. Such analyses will fail to establish the independence of the
transitions in this program, and therefore yield a poor reduction of the statespace.

2. Dynamic partial order reduction [6] requires a stateless search, and so cannot han-
dle examples such as this one, where there are cycles in the state space.

3. The approach of [5] provides limited benefit on this benchmark because it does not
contain much thread-local or lock-protected data.

In Sec. 7, we show that our approach saves close to 73% of the transitions that need to
be explored for this program.

We present cartesian partial order reduction as an operational (or execution) se-
mantics, which we believe makes it simpler to understand and to establish correctness
(see [10]). For example, in contrast to the dynamic analysis of [6], it does not rely on
happens-before relations [14]. Also, since it saves intermediate states, it supports cycles
and behaves well in transition systems with multiple paths into a single state. Finally, it
can be combined with (counter-example driven) abstract interpretation to handle con-
current programs with infinite statespaces (e.g., [20]).

The contributions of this paper can be summarized as follows:

– We present a novel cartesian semantics that reduces the nondeterminism in concur-
rent programs.

– Based on this semantics, we derive a corresponding cartesian partial order reduc-
tion algorithm that can be used to improve both finite-state model checkers and
infinite-state abstract interpreters. Our algorithm identifies dependencies dynami-
cally, avoiding the inherent imprecision of static dependence analyses. It also over-
comes the cycle-free restriction of [6], and so is applicable to more programs.

– We present preliminary experimental results showing that our approach can lead to
significant savings in the number of explored states and transitions. We also show
that our approach is beneficial in cases where traditional partial order reduction
methods are unable to reduce the space.

The rest of this paper is organized as follows. Sec. 2 provides an informal overview
of our method. Sec. 3 includes basic definitions and notations. Sec. 4 defines our carte-
sian partial order reduction algorithm and shows that it is observationally equivalent to
the standard semantics. Sec. 5 and Sec. 6 realize this algorithm as a model checking al-
gorithm. Sec. 7 reports initial empirical results on the behavior of this model checking
algorithm. Sec. 8 describes related work and Sec. 9 concludes. Proofs and additional
material appear in [10].

2 Overview

Thread 1:
0: z := 8
1: x := 1
2: z := 42
3: y := 7
4: w := z

Thread 2:
0: q := 8
1: priv := y
2: q := 42
3: priv := x
4: nop

Fig. 2. Two threads using shared
variables x and y.

This section provides an overview of our approach for
the simple concurrent program shown in Fig. 2. The
two threads in this program share two variables, x and
y, and all variables are initially zero.

Whereas traditional model checking would ex-
plore all possible interleavings of these two threads,
our approach explores only a representative subset of
these interleavings, based on the notion of dependent
transitions. For this program, there are two pairs of
dependent transitions: the statement x := 1 (of thread 1) is dependent with priv := x
(of thread 2); similarly, y := 7 is dependent with priv := y. (In this simple example,
a static notion of dependence is sufficient. Our approach detects dependencies dynami-
cally, however, thus overcoming the inherent imprecision of statically identified depen-
dencies.)

The key idea of our approach is to find, for each explored state, a sequence of
transitions for each thread such that only the last transitions in these two sequences are
allowed to be dependent (i.e., every pair of transitions other than the last two transitions
must be independent). We refer to the two sequences of transitions found for a state as
a cartesian vector for that state.

For the program’s initial state, a suitable cartesian vector is:

T1 : z:=8; x:=1 T2 : q:=8; priv:=y; q:=42; priv:=x

since z:=8 is independent of all transitions in T2’s sequence, and x:=1 is indepen-
dent of all transitions in T2’s sequence except the last. The last transitions x:=1 and
priv:=x may be (and indeed are) dependent.

After finding the two sequences, we nondeterministically pick one of them, exe-
cute that sequence in its entirety (without a context switch), and then continue explo-
ration from that resulting state. For example, suppose we first execute the sequence T1 :
z:=8; x:=1. At the resultant state, a suitable cartesian vector is:

T1 : z:=42; y:=7 T2 : q:=8; priv:=y

since only the last pair of transitions are dependent. Again, we nondeterministically
pick one of these sequences and execute it entirely, without context switches.

By proceeding in this manner, we eventually explore all possible orderings of the
dependent transitions in this program. Fig. 3 shows how our approach explores a repre-
sentative subset of all possible traces of this program.

ε

z:=8, x:=1

q:=8, priv:=y, q:=42, priv:=x

z:=42, y:=7

q:=8, priv:=y

w:=z, q:=8, priv:=y, q:=42, priv:=x, nop

q:=8, priv:=y, q:=42, priv:=x, nop, w:=z

nop

z:=8, x:=1,z:=42,y:=7,w:=z

q:=42, priv:=x, nop, z:=42, y:=7, w:=z

z:=42, y:=7, w:=z, q:=42, priv:=x, nop

nop

z:=8, x:=1,z:=42,y:=7,w:=z

Fig. 3. Exploration of representative traces of the example program of Fig. 2.

As an aside, it is worth noting that the statement z:=8 in T1 is a persistent tran-
sition, as it has no future collisions with T2. In principle, this could have allowed ex-
ploring only representative traces that begin with z:=8 as their first step. Establishing
that z:=8 is indeed a persistent transition, however, requires inspection of the future
execution of T2 (which in general, may be infinite). In some cases, the persistence of
a transition can be established by a preceding static dependence analysis phase. Like
methods based on persistent sets, our approach can also benefit from such static depen-
dence information when it exists. Unlike z:=8, the statement x:=1 is not persistent,
as it has a future collision with priv:=x in T2 (as long as priv:=x is not executed).

3 Basic definitions

We consider a concurrent system composed of a finite set Threads of threads. The
threads communicate by performing atomic operations on communication objects (e.g.
shared variables). A state of the concurrent system consists of the LocalState of each
thread (the values for all the thread’s private variables), and of the SharedState (values
for all the communication objects). That is, State = SharedState × LocalStates where
LocalStates = Threads → LocalState. For ls ∈ LocalStates, we write ls[T 7→ l] to
denote the map that is identical to ls except that it maps T to the local state l.

A transition moves the system from one state to a subsequent state, by performing
an atomic operation of a chosen thread. The transition tT,l of thread T for local state l is
defined via a total function: tT,l : SharedState → LocalState×SharedState. A transition
tT,l ∈ τ is enabled in a state s = 〈g, ls〉 (where g ∈ SharedState and ls ∈ LocalStates)
if l = ls(T). If t = tT,l is enabled in s = 〈g, ls〉 and t(g) = 〈g′, l′〉, then we say the
execution of t from s produces a unique successor state s′ = 〈g′, ls[T 7→ l′]〉, written
exec(s, t) = s′ or s ⇒ s′. We say that q is reachable from s in the standard semantics
if s

∗⇒ q.
Notice that in a given state every thread has exactly one enabled transition, therefore

no thread can be blocked. This is not restrictive, as blocking or termination of a thread
can be modeled by a self loop. Let τ denote the set of all transitions of the system
τ = {tT,l|T ∈ Threads, l ∈ LocalState}.

A trace is an infinite sequence σ = s1, t1, s2, t2, . . . such that for every i ∈ N+,
exec(si, ti) = si+1. A trace prefix is a nonempty (possibly infinite) prefix of a trace, that
does not end with a transition. We denote the set of all trace prefixes (of the considered
concurrent system) by Prefix. A legal prefix of thread T is a trace prefix that has at least
one transition and all its transitions are executed by thread T.

For A ∈ Prefix, we say that t ∈ A if t is a transition in A. We denote the last
transition of A by last tran(A). If there is no transition in A or A is infinite then
last tran(A)=⊥. We denote the first and last states of A by first(A) and last(A) respec-
tively. If A is infinite then last(A)=⊥. We denote the set of states in A by states(A).

Our cartesian partial order reduction technique is based on the notion of transitions
being independent, which essentially means that the order in which these transitions are
executed does not matter.

Definition 1 (Independence). We say that transitions t and t′ of different threads are
independent if for every s ∈ State : t, t′ ∈ enabled(s) =⇒ exec(exec(s, t), t′) =
exec(exec(s, t′), t). If two transitions of different threads t and t′ are independent, then
we write t ‖ t′, otherwise we write t 6‖ t′.

4 Cartesian Partial Order Reduction

The standard semantics of multithreaded programs nondeterministically chooses a thread
for scheduling right after every transition, but this degree of nondeterminism results in
state space explosion. In this section, we present a non-standard cartesian semantics
that avoids many context switches, while preserving both soundness and completeness.

That is, the cartesian semantics is observationally equivalent to the standard semantics,
and so can form the basis for both finite-state model checking and infinite-state abstract
interpretation.

As outlined in Section 2, our cartesian semantics is defined in terms of cartesian
vectors. Essentially, a cartesian vector (CV) for a state describes a sequence of transi-
tions that each thread can perform without context switches from that state.

Definition 2 (Cartesian Vector). In a concurrent system with n threads of control, a
vector (p1, . . . , pn) ∈ Prefixn is a cartesian vector from a state s if for every Ti, Tj ∈
Threads the following holds:

1. first(pi) = s;
2. pi is a legal prefix of thread Ti;
3. ∀t ∈ pi, t

′ ∈ pj : t 6‖ t′ =⇒ t = last tran(pi) ∧ t′ = last tran(pj).

Intuitively, this definition implies that if two prefixes are in the same cartesian vec-
tor, then only their last transitions may depend on each other. Note that each state may
have multiple CVs. In particular, every state has at least the minimal CV, which contains
exactly one transition for each thread, but many states will also admit larger CVs.

Example 1. For the program of Fig. 2, consider the two trace prefixes from the initial
state: p1 is the sequence z:=8; x:=1; z:=42 (of thread 1) and p2 is the sequence
q:=8; priv:=y (of thread 2). Each prefix accesses different variables, therefore the
vector (p1, p2) is a cartesian vector for the initial state.

Now consider the longer prefix p′1: z:=8; x:=1; z:=42; y:=7. In this case
(p′1, p2) is still a cartesian vector because only the last transitions are dependent.

To generate a cartesian vector for any explored state, we assume the existence of
an cartesian function φ : State → Prefixn such that, for every s ∈ State, φ(s) is a
cartesian vector from s. Every state space has at least the minimal cartesian function,
which simply returns the minimal CV for each state. Section 5 describes an algorithm
for computing better CVs.

Given a cartesian function φ, we can build a a cartesian semantics that uses φ as
a guide for execution. The intuition behind the cartesian semantics is as follows: when
the cartesian semantics starts the execution from a state s it selects a prefix σ from the
vector φ(s) and executes the transitions of σ. When the semantics reaches last(σ) (the
last state of σ) it starts the procedure again from last(σ). If σ is infinite it continues to
go over the states of σ forever.

The cartesian semantics generated by φ is formalized as two binary relations −→φ

and =⇒φ on states, where −→φ relates states at the end of prefixes, and is transitively
closed, and =⇒φ extends −→φ to also include intermediate states.

Definition 3. We define the binary relations −→φ and =⇒φ on State with respect to a
cartesian function φ inductively in Fig. 4. Here −→φ is the relation on final states in
which scheduling occurs and =⇒φ is the relation on both final and intermediate states.

An important property of cartesian semantics is described by the following theorem,
which states that the set of local states is identical for the standard semantics and the

s −→φ s reflexivity
s −→φ s′ ∃π ∈ φ(s) : s′ = last(π) basis
s −→φ s′ s′ −→φ s′′

s −→φ s′′
transitivity

s =⇒φ s reflexivity
s =⇒φ s′ ∃π ∈ φ(s) : s′ ∈ states(π) basis
s −→φ s′ s′ =⇒φ s′′

s =⇒φ s′′
pseudo-transitivity

Fig. 4. Inference rules for a cartesian semantics.

cartesian semantics. Consequently, if a thread sees a violation of a local safety prop-
erty (e.g., by using assert), then the same thread will see the same violation under the
cartesian semantics.

Theorem 1. For every cartesian function φ, if s
∗⇒ 〈g, ls[T 7→ l]〉 then there exist

g′ ∈ SharedState and ls′ ∈ LocalStates such that s =⇒φ 〈g′, ls′[T 7→ l]〉
The situation with global properties is somewhat more complex. To illustrate this

situation, consider again the program of Fig. 2, for which we can build a cartesian se-
mantics with the following cartesian vector from the initial state: T1 : z:=8; x:=1;
z:=42, T2 : q:=8; priv:=y; q:=42. This cartesian semantics will never reach
a state with z = 8 and q = 8. Therefore, the global property “there is a state in which
z=8 and q=8” cannot be directly proven by using the cartesian semantics. Instead, we
can convert this global property into a local property by introducing a dummy thread
that merely observes the variables involved in the property (i.e., a thread that reads z
and q in an infinite loop), and then use the cartesian semantics to verify this localized
version of the original global property.

4.1 Cartesian semantics versus an Optimal Persistent Sets algorithm

To illustrate the relation between the cartesian semantics and persistent sets, consider
the example program shown in Fig. 5 (a). For this example, the program counters of the
two threads uniquely define the current value of x and y, and so we can represent each
state simply as a pair of program counters (pc1, pc2).

For this program, an optimal persistent sets algorithm will save only one transition,
that from the state (3,3), because in any other state, in which the two threads have not
terminated, there is a collision between the next step of T1 and a future step of T2 (and,
symmetrically, a collision between the next step of T2 and a future step of T1).

In contrast, a suitable cartesian vector for this program’s initial state is: T1:
x++;x++;x++; T2: y++;y++;y++. Hence, the cartesian semantics saves 12 tran-
sitions and entirely avoids the states (1, 2), (1, 1), (2, 1), (2, 2), as illustrated in Fig. 5 (b).
The algorithm we propose in Sec. 6 utilizes this fact and does not explore these states
and transitions.

Note that a combination of persistent sets and sleep sets will not reduce these states
because sleep sets is not able to reduce states.

Thread 1:
0: x++
1: x++
2: x++
3: assert(y≤c)
4:end

Thread 2:
0: y++
1: y++
2: y++
3: assert(x≤c)
4:end

(0,0) (1,0)(0,1) (2,0) (3,0) (4,0)(0,4) (0,3) (0,2)

(1,1) (2,1)(1,2) (3,1) (4,1)(1,4) (1,3)

(2,2) (3,2)(2,3) (4,2)(2,4)

(3,3) (4,3)(3,4)

(4,4)

saved by a cartesian semanticssaved by a cartesian semantics

(a) (b)
Fig. 5. (a) A simple concurrent program, and (b) reduced statespace with a cartesian semantics.

5 Computing Cartesian Vectors

In order to build an algorithm based on the cartesian semantics, we need the ability
to calculate a cartesian vector for every observed state of the concurrent system. The
algorithm CalcCV in Fig. 6 computes such CVs.

The algorithm starts with a minimal CV, where each prefix contains a single tran-
sition. Such a vector necessarily satisfies Def. 2. However, for such minimal CVs, the
cartesian semantics provides no benefits since it coincides with the standard semantics.

To yield longer prefixes that reduce the explored state space, the algorithm then
repeatedly extends this CV with additional transitions, while still satisfying Def. 2. The
array extendable identifies threads whose prefix can still be extended. Initially, all
threads are extendable, and threads are removed from this set as conflicts are detected.

Each iteration of the while loop picks some extendable prefix, and tries to extend
it with the next transition of that thread. Two complications arise here. First, if the added
transition conflicts with the last transition of a different prefix, then such conflicts are
allowed by Def. 2, but the algorithm records that neither prefix can be further extended.

Second, if a thread is in an infinite loop whose transitions do not conflict with con-
current threads, then that thread has an infinite prefix. To avoid diverging in such situa-
tions, the CalcCV algorithm avoids extending a prefix once a cycle has been detected.
Instead, it marks such prefixes as being infinite; these marks are used by the model
checking algorithm of the following section.

This cycle check guarantees that, on any finite state system, the CalcCV algo-
rithm will eventually terminate, once all threads are exhausted. Indeed, this procedure
actually returns a maximal cycle-free CV. That is, adding additional transitions to the
result of CalcCV(s) yields an CV that is either invalid or contains cycles that re-visit
previously-explored states.

Note that the order in which our algorithm tries to extend prefixes is arbitrary, and
different exploration orders can lead to different resulting CVs. Our implementation of
the algorithm uses a round-robin exploration.

The correctness of the algorithm is established in the following lemma, which holds
for any finite state system:

Lemma 1. For every state s, CalcCV(s) terminates and returns a valid CV.

CalcCV(s) {
for each i ∈ 1..n do {

CV[i] = s.NextTrans(s,Ti).nextState(s,Ti);
}
extendable = { 1..n }
for each i,j ∈ 1..n such that i 6=j and

last tran(CV[i]) is dependent with last tran(CV[j]) {
extendable = extendable - {i,j}

}
while (extendable 6= ∅) { // repeatedly extend CV

pick any i ∈ extendable
s = last(CV[i]);
if(∃j 6= i. NextTrans(s,Ti) is dependent

with some transition in CV[j] (other than the last)) {
extendable = extendable - {i}

} else {
for each j 6=i such that NextTrans(s,Ti)

is dependent with last tran(CV[j]) {
extendable = extendable - {i,j}

}
if(NextState(s,Ti) in CV[i] and i ∈ extendable) {
mark CV[i] as infinite
extendable = extendable - {i}

}
// add this transition to CV
add NextTrans(s,Ti) and NextState(s,Ti) to CV[i]

}
}
return CV

}
Helper functions:
NextTrans(s, T): return tT,l for s = 〈g, ls[T 7→ l]〉
NextState(s, T): return exec(s,NextTrans(s,T))

Fig. 6. Algorithm for calculating cartesian vectors.

Example 2. The following steps describe an execution of CalcCV from the initial state
of the program shown in Fig. 2.

1. At the beginning, both threads are extendable, and each prefix contains only the
program’s initial state, where both threads are about to execute line 0.

2. T1 executes z:=8, T2 executes q:=8, and no conflicts are detected.
3. T1 executes x:=1, T2 executes priv:=y, and no conflicts are detected.
4. T1 executes z:=42, T2 executes q:=42, and still no conflicts are detected.

5a. The next transition of T1 is y:=7, which conflicts with the previously-executed
transition priv:=y of T2, so this thread is no longer extendable.

5b. The next transition of T2 is priv:=x, which conflicts with the previously-executed
transition x:=1 of T1, so this thread is also no longer extendable.

At this point, the extendable set is empty, so CalcCV returns the cartesian vector: T1 :
z:=8; x:=1; z:=42; T2 : q:=8; priv:=y; q:=42;.

Since CalcCV is called for each visited state, a key concern is the running time of
this procedure. For our intended application of software model checking, we assume
that each transition accesses at most one memory location, and two transitions of dif-
ferent threads are dependent only if they access the same memory location and that at
least one of these accesses is a write. Under these assumptions, it is fairly straightfor-
ward to implement CalcCV such that its running time is proportional to the size of the
resulting CV (that is, to the sum of the lengths of the prefixes in this CV). In particular,
each step of the implementation either extends CV or reduces the extendable set.

6 Model Checking Algorithm

Fig. 7 presents a state exploration or model checking algorithm that explores all reach-
able states of the cartesian semantics, using the subroutine CalcCV to compute cartesian
vectors for each reached state.

modelCheck(s0) {
WorkSet = {s0}
CoveredSet = ∅
while WorkSet is not empty {

select and remove s from WorkSet
if not member(s,CoveredSet) {

CoveredSet = CoveredSet ∪ { s }
CV = CalcCV(s);
for each prefix ∈ CV {
verify local properties in states(prefix)
if prefix is not marked as infinite

WorkSet = WorkSet ∪ { last(prefix) }
}}}}

Fig. 7. A cartesian model checking algorithm based on CalcCV.

Notice that CalcCV stops only before or after transitions that participate in a mem-
ory contention (only such transitions can be detected as dependent), therefore the re-
duced state space does not contain a state in which two threads (or more) are at the
middle of sections without memory contentions. Therefore we can simply identify a
class of states that are not present in the reduced state space. It is worth mentioning that
in many large programs most of the code does not involve memory contention, therefore
many states are saved by our method.

A simple variant of this algorithm executes a few instances of CalcCV in parallel
(on different processors). This variant utilizes the fact that CalcCV runs independently
on one processor without being affected by what happening on the other processors.
Such variant can efficiently utilize a few processors and reduces the running time of the
model checking, especially when the calculated CVs are long.

7 Experimental Evaluation

In this section, we describe preliminary experimental results comparing the cartesian al-
gorithm to other exploration algorithms. We compared the number of states, transitions,
and CPU time measured by a standard model checking algorithm and by the cartesian
algorithm of Fig. 7. The comparison was done for a few benchmark programs, and the
results are reported in Table 1. The number of states mentioned in the results is the num-
ber of states that the algorithm stores during its execution (i.e. the size of CoveredSet
when the algorithm terminates). An empty cell in the table indicates that the algorithm
ran out of memory. Additional results and details about the benchmarks can be found
in the appendix.

In order to check dependency between transitions, the implementation of the carte-
sian algorithm conservatively assumes that two transitions are dependent if they have
conflicting memory accesses (i.e., one writes and the other reads or writes from the
same location). During the execution of CalcCV, the algorithm remembers the mem-
ory locations accessed by each thread (in the current CalcCV execution) and uses this
information for determining dependency between transitions.

The benchmarks were also tested on SPIN [12], but its partial order reduction algo-
rithm was unable to reduce the state space of any of the benchmarks (i.e. SPIN’s partial
order reduction did not affect the numbers of states and transitions).

Some of the acyclic benchmarks were tested on the dynamic partial order reduc-
tion algorithm from [6] (hereafter, referred to as FG). Because FG is stateless we only
compared the number of transitions. For some acyclic benchmarks, the cartesian al-
gorithm executed much fewer transitions than FG, even when FG was combined with
sleep sets [8] (e.g. for the SharedArray benchmark, the cartesian algorithm executed
only 1648 transitions whereas FG executed more than 107 transitions). For some other
acyclic benchmarks such as FileSystem, FG executed less transitions than the cartesian
algorithm, but in these cases the differences were less significant.

We also implemented the concurrent variant of the cartesian algorithm mentioned in
Sec. 6 and run the benchmarks on it using a machine with 4 processors. In some cases
(Indexer, FileSystem, CMIS) it saved around 60% of the running time (comparing to
the sequential variant).

8 Related Work

A key limitation in model checking concurrent software systems [2] is the notorious
state explosion problem. One approach to this problem is to reduce the size of the state
space via abstraction [4] and abstraction refinement [1, 11, 3] techniques. A comple-
mentary approach is to only explore a (sufficiently large) fraction of the system’s state
space, via partial order reduction techniques.

One standard partial order reduction technique is based on persistent (or stubborn)
sets [19, 8]. This technique computes a subset of the enabled transitions in each visited
state, and only explores those transitions. This computed subset is called a persistent set,
and contains sufficiently many transitions to guarantee certain completeness properties.
Our approach can yield improvements even over the most precise persistent sets.

A traditional limitation of persistent sets is that they are typically obtained from a
static analysis of the code, via algorithms such as described in [8]. Hence, the approx-
imations inherent in any static analysis can result in coarse persistent sets, particularly
for pointer-rich code. Our algorithm overcomes this limitation by detecting conflicts
between transitions dynamically, instead of statically.

The approach of dynamic partial order reduction [6] computes persistent sets on-
the-fly by detecting conflicts dynamically, but only performs a stateless search, and
extending it to a stateful search has proven quite difficult. In contrast, the algorithm of
this paper performs a stateful search, which provides two key improvements over [6]:
(1) it can handle systems with cycles; and (2) even on cycle-free systems, storing states
avoids repeated explorations of the same parts of the state space.

A number of recent techniques have considered various kinds of exclusive access
predicates for shared variables that specify synchronization disciplines such as “this
variable is only accessed when holding its protecting lock” or “this variable is local
to this thread” [16, 17, 5, 7]. These exclusive access predicates can be leveraged to
dynamically infer persistent transitions, and so reduce the search space. At the same
time, exclusive access predicates can be verified or inferred during reduced state-space
exploration. These techniques of [5, 17] in particular have demonstrated significant
performance improvements for the common cases of thread-local and lock-protected
data. However, these techniques are less effective when the synchronization discipline
changes during program execution, such as when an object is protected by different
variables at different stages during the program’s execution.

Grumberg et al. [9] present a technique for SAT-based model checking of concur-
rent systems via underapproximation-widening. A correctness proof is generated for an
underapproximation of the system with constrained interleaving. Increasingly-precise
underapproximations are considered, until the generated correctness proof is also ap-
plicable to the original model.

9 Conclusions

We have presented a new approach cartesian approach to partial order reduction that
can be used by model checkers and abstract interpreters. We are encouraged by the
empirical results that show improvement over prior approaches for some benchmarks.

References

1. T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of CAV’2001 (13th Conference
on Computer Aided Verification), volume 2102 of LNCS, pages 260–264, Paris, July 2001.

2. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
3. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng.

Bandera: Extracting Finite-State Models from Java Source Code. In Proceedings of the 22nd
International Conference on Software Engineering, 2000.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. Symp.
on Principles of Prog. Languages, pages 269–282, New York, NY, 1979. ACM Press.

5. M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby. Exploiting Object Escape and Locking
Information in Partial Order Reduction for Concurrent Object-Oriented Programs. Formal
Methods in System Design, 25, 2004.

6. C. Flanagan and P. Godefroid. Dynamic Partial-Order Reduction for Model Checking Soft-
ware. In Proceedings of POPL’2005 (32nd ACM Symposium on Principles of Programming
Languages), Long beach, January 2005.

7. C. Flanagan and S. Qadeer. Transactions for Software Model Checking. In Proceedings of
the Workshop on Software Model Checking, pages 338–349, June 2003.

8. P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems – An Ap-
proach to the State-Explosion Problem, volume 1032 of LNCS. Springer, January 1996.

9. O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided underapproximation-
widening for multi-process systems. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 122–131, 2005.

10. G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv. Cartesian partial-order reduction. Technical
Report TA-CS-2007-052, School of Computer Science, Tel Aviv University, 2007. Avialable
at ”http://www.cs.tau.ac.il/∼guygueta/skipping.ps”.

11. T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In Proc. of the 29th
ACM Symposium on Principles of Programming Languages, pages 58–70, Portland, 2002.

12. G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–294, 1997.

13. G. J. Holzmann and D. Peled. An improvement in formal verification. In Proceedings of
the 7th IFIP WG6.1 International Conference on Formal Description Techniques VII, pages
197–211, London, UK, UK, 1995. Chapman & Hall, Ltd.

14. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

15. D. Peled. All from one, one for all: on model checking using representatives. In 5th Confer-
ence on Computer Aided Verification, pages 409–423, 1993.

16. S. D. Stoller. Model-Checking Multi-Threaded Distributed Java Programs. International
Journal on Software Tools for Technology Transfer, 4(1):71–91, Oct. 2002.

17. S. D. Stoller and E. Cohen. Optimistic Synchronization-Based State-Space Reduction. In
Proc. of the 9th Intl. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 2619 of LNCS, pages 489–504. Springer, Apr. 2003.

18. A. Valmari. Stubborn sets for reduced state space generation. In 10th Conference on Appli-
cations and Theory of Petri Nets, pages 491–515, 1991.

19. A. Valmari. Stubborn sets for reduced state space generation. In Advances in Petri Nets
1990, volume 483 of LNCS, pages 491–515. Springer, 1991.

20. E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic. In
Proc. Symp. on Principles of Prog. Languages, pages 27–40. ACM Press, Jan. 2001.

A Benchmarks Description

In this appendix we describe the benchmarks.

A.1 Robots

The Robots example shown in Fig. 1. This program simulates an arena with a number of
robots that move in different paths, where each robot is represented by a separate thread.
Approaches based on static dependence will not be able to determine when a collision is
possible, and would yield a poor reduction of the statespace. The dynamic partial order
reduction of [6] is not applicable for this benchmark, as its statespace contains cycles.

For this benchmark, we consider two configurations: one that uses 2 robots, as
shown in Fig. 1, and one with 3 robots in which a new robot is added and set to start
from position (7, 0).

Table 1 shows that for both configurations (2 robots, and 3 robots), the cartesian
algorithm provides a significant improvement over the standard semantics.

A.2 CMIS

CMIS is a concurrent sorting algorithm which is composed from Merge-Sort and Insert-
Sort, its pseudo code appears in Fig. 8. In Table 1, C indicates the constant from the
pseudo code and N indicates the length of the array. In all the cases the input was an
array sorted in a descending order (CMIS sorted the array in an ascending order).

A.3 SharedArray

The code of the SharedArray benchmark is shown in Fig. 9. In this program, there are
two threads writing to a shared array in a loop. Each of the threads accesses different
portions of the array. In every iteration of the loop each thread reads the value of a
shared variable counter and updates the array using its value. After finishing the loop
each thread updates the value of the shared variable counter. The instructions within
the atomic blocks (marked by the keyword atomic) are executed together atomically.

Partial order reduction algorithms based on persistent sets will not be able to reduce
the state space of this program. This is due to the fact that in every state in which the
two threads are still running, every persistent set contains all enabled transitions.

A.4 SharedPtr

The code for the SharedPtr benchmark is shown in Fig. 10. In this benchmark, two
threads are performing updates to memory locations identified using a shared pointer p.

The behavior of this example is similar to that of the SharedArray example, in the
sense that the threads sometimes access disjoint parts of memory, but in a way that a
static partial order reduction approach will not be able to detect.

A.5 Indexer

This example is taken from [6]. This example has no cycles and can behave well with a
persistent sets algorithm. In this benchmark, there are no collisions between the threads
when the number of threads is less than 12. As a result, the cartesian algorithm is able to
considerably reduce the number of transitions when using up to 11 threads. In contrast,
the standard exploration suffers from exponential increase in the number of transitions.
Notice that in some cases the number of stored states is 1, this is reasonable because in
these cases the threads have no conflicts between them.

A.6 File System

This example is also taken from [6].

ConcurrentMergeInsertSort(A, p, r) {
if(r-p+1 ≤ C)

InsertSort(A, p, r);
else {

q = b p+r
2
c ;

run ConcurrentMergeInsertSort(A, p, q) on a child thread ;
ConcurrentMergeInsertSort(A, q+1, r);
wait for child thread termination ;
Merge(A, p, q, r);

}
Assert(A is sorted) ;

}

InsertSort(A, p, r) {
for j = p+1 to r {

key = A[j];
i = j - 1 ;
while ((i > p-1) and (A[i] > key)) {
A[i+1] = A[i];
i--;

}
A[i+1] = key ;

}
}

Merge(A, p, q, r) {
for i = p to r

draft[i] = A[i] ;
i = p; j = q+1; k = p;
while ((i ≤ q) and (j ≤ r)) {

if(draft[i] ≤ draft[j])
A[k++] = draft[i++];

else
A[k++] = draft[j++];

}
while (i ≤ q)

A[k++] = draft[i++];
}

Fig. 8. The CMIS (Concurrent-Merge-Insert-Sort) benchmark.

A.7 Dining Philosophers

This example is the classical dining philosophers program.

N = 64;
int A[N];
int idx0 = 0, idx1 = 1,counter = 1;
Thread i (i = 0, 1)

While(idxi < N) atomic {
A[idxi]=counter + idxi;
idxi += 2 ;

}
atomic {
counter = counter + 1 + idx1−i ;
assert(counter ≤ 2*N + 4) ;

}

Fig. 9. SharedArray Example.

N = 100;
int x=3, y=4, c1=0, c2=0
int* p
Thread 1

p = &y;
for(int i=0; i < N; i++) c1 += x;

*p += 3;
assert(3 ≤ x, y ≤ 9);

Thread 2
p = &x;
for(int i=0; i < N; i++) c2 += y;

*p += 2;
assert(3 ≤ x, y ≤ 9);

Fig. 10. SharedPtr Example.

Standard algorithm Cartesian algorithm Percentage of Saving
Benchmark States Transitions Time (ms) States Transitions Time (ms) Conc Time (ms) States Transitions Time Conc Time
SharedPtr 32131 64262 266 418 12785 47 32 98.7 80.1 82.3 31.9
SharedArray 2276 4552 16 132 1648 0 0 94.2 63.8 99 0
2 Robots 4877 9754 109 56 2635 15 15 98.9 73 86.2 0
3 Robots 326759 980277 1206422 56 6387 62 31 100 99.3 99 50
File System (1 Threads) 9 8 0 N/A N/A N/A N/A N/A N/A N/A 0
File System (2 Threads) 81 144 0 1 16 0 0 98.8 88.9 0
File System (3 Threads) 729 1944 16 1 24 0 0 99.9 98.8 99 0
File System (4 Threads) 6561 23328 437 1 32 0 0 100 99.9 99 0
File System (5 Threads) 59049 262440 24047 1 40 0 0 100 100 99 0
File System (6 Threads) 531441 2834352 2567703 1 48 0 0 100 100 99 0
File System (7 Threads) 1 56 0 0 0
File System (8 Threads) 1 64 0 0 0
File System (9 Threads) 1 72 0 0 0
File System (10 Threads) 1 80 0 0 0
File System (11 Threads) 1 88 0 0 0
File System (12 Threads) 1 96 0 0 0
File System (13 Threads) 1 104 0 0 0
File System (14 Threads) 10 1026 62 32 48.4
File System (15 Threads) 100 10120 563 203 63.9
File System (16 Threads) 1000 99800 5968 2078 65.2
File System (17 Threads) 10000 984000 64204 23000 64.2
Indexer (1 Threads) 5 4 0 N/A N/A N/A N/A N/A N/A N/A N/A
Indexer (2 Threads) 25 40 0 1 8 0 0 96 80 0
Indexer (3 Threads) 125 300 0 1 12 0 0 99.2 96 0
Indexer (4 Threads) 625 2000 0 1 16 0 0 99.8 99.2 0
Indexer (5 Threads) 3125 12500 47 1 20 0 0 100 99.8 99 0
Indexer (6 Threads) 15625 75000 641 1 24 0 0 100 100 99 0
Indexer (7 Threads) 78125 437500 15297 1 28 0 0 100 100 99 0
Indexer (8 Threads) 390625 2500000 494687 1 32 0 0 100 100 99 0
Indexer (9 Threads) 1 36 0 0 0
Indexer (10 Threads) 1 40 0 0 0
Indexer (11 Threads) 1 44 0 0 0
Indexer (12 Threads) 9 394 16 16 0
Indexer (13 Threads) 81 3528 187 79 57.8
Indexer (14 Threads) 729 31590 1813 625 65.5
Indexer (15 Threads) 6561 282852 17172 6250 63.6
Indexer (16 Threads) 59049 2532546 191421 82859 56.7
2 Philosophers 11 22 0 9 28 0 0 18.2 -27.3 0
3 Philosophers 36 108 0 27 174 0 0 25 -61.1 0
4 Philosophers 119 476 0 94 750 0 0 21 -57.6 0
5 Philosophers 393 1965 16 295 2984 31 31 24.9 -51.9 -93.8 0
6 Philosophers 1298 7788 172 942 11233 187 156 27.4 -44.2 -8.7 16.6
7 Philosophers 4287 30009 1766 2955 41091 1187 969 31.1 -36.9 32.8 18.4
8 Philosophers 14159 113272 29594 9212 145717 11609 11141 34.9 -28.6 60.8 4
9 Philosophers 46764 420876 383219 28675 509218 132078 138703 38.7 -21 65.5 -5
CMIS C=2 N=8 16430 115010 813 51 1627 32 15 99.7 98.6 96.1 53.1
CMIS C=4 N=16 1014131 7098917 10294344 51 3091 47 31 100 100 99 34
CMIS C=8 N=32 51 8035 156 62 60.3
CMIS C=16 N=64 51 25987 735 281 61.8
CMIS C=32 N=128 51 94147 4875 1719 64.7
CMIS C=64 N=256 51 359491 36531 17672 51.6
CMIS C=128 N=256 6 100336 12141 12250 -0.9
CMIS C=127 N=255 11 221954 27860 27328 1.9
Table 1. Number of stored states, transitions, and simulation time (milliseconds.) of the cartesian and standard exploration
algorithms for our benchmarks.

const int size = 128;
const int max = 4;
int[size] table;
int m = 0, w, h;
Thread tid

while (true) {
w := getmsg();
h := hash(w);
while (cas(table[h],0,w) == false) {
h := (h+1) % size;

}
}
int getmsg() {

if (m < max) {
return (++m) * 11 + tid;

} else {
exit(); // terminate

}
}
int hash(int w) {

return (w * 7) % size;
}

Fig. 11. Indexer Example (from [6]).

