Local abstraction-refinement for the mu-calculug

Harald Fechérand Sharon Shoha&m

L Christian-Albrechts-University Kiel, Germany
hf@informatik.uni-kiel.de
2 The Technion, Haifa, Israel
sharonsh@cs.technion.ac.il

Abstract. Counterexample-guided abstraction refinement (CEGAR) is a key tech-
nique for the verification of computer programs. Grumberg et al. developed a
CEGAR-based algorithm for the modalcalculus. There, every abstract state is
splitin a refinement step. In this paper, the work of Grumberg et al. is generalized
by presenting a new CEGAR-based algorithm for thealculus. It is based on

a more expressive abstract model and applies refinement only locally (at a single
abstract state), i.e., thazy abstractiortechnique for safety properties is adapted

to the p-calculus. Furthermore, it separates refinement determination from the
(3-valued based) model checking. Three different heuristics for refinement deter-
mination are presented and illustrated.

1 Introduction

One of the most successful techniques to checking correctness of large or even infinite
programs is predicate abstraction [8] witbunterexample-guided abstraction refine-
ment(CEGAR) [3]. This approach consists of three phases: abstraction, model check-
ing, and refinement. A typical tool based on that technique is SLAM [2], where an effi-
cient approximation of the post-transitions of a concrete system is calculated by using
cartesian approximation, and where a spurious counterexample found during the model
checking phase is used for determining the refinement. Another prominent tool based
on CEGAR is BLAST [14], where, contrary to SLAM, refinement is applied locally
(calledlazy abstractiol, i.e., only the relevant abstract states of a trace being a spu-
rious counterexample are refined. Both tools mentioned are only capable of verifying
safety properties.

Grumberg et al. [9,10] present CEGAR-based algorithms for the verification of
the pu-calculus [19], which is a powerful formalism for expressing branchingtiamel
reachability properties by using fixpoint constructions. These approaches have as un-
derlying abstract modelkripke modal transition systenj&5], which have may and
must transitions (over, resp., under approximation of the concrete transitions), as in
modal transition systenj0]. Two transition relations are essential in order to preserve
branching time properties. They also allow to preserve katidity andinvalidity from
the abstract model to the concrete model, at the cost of introducing a third truth value

* This work is in part financially supported by the DFG projBetfism(FE 942/1-1)
8 Branching time is relevant whenever nondeterminism occurs from external factors (e.g., user
input), from random behavior, or from the modeling of faulty systems or channels.

unknownwhich means that the truth value in the concrete model is unknown. This leads
to a3-valued semanticén this setting, refinement is no longer needed when the result
isinvalid, as in traditional CEGAR approaches. Instead, refinement is needed when the
result isunknown As such, the role of a counterexample as guiding the refinement is
taken by some cause of the indefinite result.

In [9], a 3-valued satisfaction game is defined, where the Verifier tries to obtain
validity, and the Falsifier tries to obtain invalidity. In order to win, a player must not
use may transitions. The third truth value is captured by the possibility that none of the
players wins. Furthermore, their model checking algorithm, which is a generalization
of the parity game algorithm of Zielonka [27], determines an abstractstatd a pred-
icatep such that the splitting of with respect t@ leads to less spurious behavior. This
approach is generalized in [10] by making the approach independent from the Zielonka
algorithm, i.e., allowing more efficient algorithms [18]. There, the model checking is
performed via a reduction of the 3-valued satisfaction game into two games: one for
validity and one for invalidity. The predicate determining the splitting is derived from
the trace obtained after playing then-losingstrategies of the players in these games
against each other. In both approaches, every configuration (abstract states combined
with subproperties) where the (in)validity is not yet shown is split, i.e., only a weak
form of lazy abstractioris made.

Contribution. A new CEGAR-based model checking algorithm for fhxealculus is

presented. This algorithm improves the approaches of [9, 10] in the following way:

— A more expressive underlying abstract model is used, nageheralized Kripke
modal transition systeni25], where must hypertransitions, asdisjunctive modal
transition systemp1], are used, i.e., a must transition points to a set of states rather
than to a singleton. Consequently, a smoother refinement determination can be ob-
tained [25] and more properties can in principle be shown [6].

— A stronger notion ofazy abstractionis used: only a single abstract state is split.
Even better, some but not all configurations having the same underlying abstract
state are split. Thus the state space remains smaller and verification is sped up.

— The algorithm provides a separation of the refinement determination from the model
checking. This is done by providing a structure that encodes all possible causes for
the indefinite result. On this structure, heuristics for determining the local refine-
ment step can be defined. In particular, three different heuristics are presented and
illustrated. The most promising one can only be defined in a local refinement setting.

Further related work. A CEGAR-approach to branching time properties is given in
[23], where, contrary to our approach, only the transition relation is under, resp., over
approximated (the state space remains equal). In [12], the techniques used in SLAM are
generalized to branching time properties, where the underlying abstract model is equiv-
alent to Kripke modal transition systems. A CEGAR-approach for the more general
alternatingu-calculus is given in [1], which is a generalization of [5]. In [1] the un-
derlying abstract model has must as well as may hypertransitions. Refinement is made
globally (not locally) and the refinement determination depends on the model checking
algorithm, i.e., no separation is used. Must and may hypertransitions are also used in
[7], where finite-state abstractions can be computed (forzanglculus formula) by a

7 x:=x+1 T>1 r:=x—1
~), =
a) H l .) z:=z+1
o S : >i >
‘7 qs Vi‘ q4 [z=1] z:=z—1

Fig. 1. A p-calculus formula(a) in terms of automata (see Section 3.3), and a syiéjm
«): The property at the initial statg, holds if (i) there is a transition such that= 1 holds
on every possible path or (ii) there is a transition such ¢hdtolds again (consequently, if there
is an infinite path thepo holds). 3): The range of is {0, 1} and ofz is IN, both initialized with

0. The actions of the transitions can be executed, including the modificatiGnadfenever the
guard, depicted in rectangular brackets, is valid. When the guardés it is simply omitted.

generalization of predicate abstraction. No CEGAR-based algorithm is presented there.
In [24] a different kind of may hypertransitions is used in order to improve precision
for non-partitioning abstraction functions. Our approach does not need these may hyper-
transitions for precision, since our abstraction function locally corresponds to partitions.
In [11] the techniques of testing and verification interact with each other, improving the
refinement heuristic. Similar improvements can be obtained by using 3-valued abstract
models, which we do.

Outline. The new CEGAR-based algorithm is illustrated by an example in Section

2, made precise in Section 4, and is improved in Section 6. Section 3 presents the
underlying concrete/abstract models, game structures, ang-thaéulus in terms of
alternating tree automata. The heuristics for refinement determination are developed in
Section 5 and Section 7 concludes the paper. An appendix contains pseudo codes of
less important procedures as well as proof sketches, both at the discretion of referees.

2 Example

Our model checking algorithm is illustrated by checking thealculus formula, pre-
sented via an automaton description in Figui@, at the system depicted in Figure 1

(8). Note that both the formula and the system are used for illustration purposes and do
not claim practical relevance.

The model checking is based on a configuration structure, where each configuration
consists of a subproperty and a (possibly abstract) state of the system. The outgoing
transitions of a configuration define ‘subgoals’ for determining the value (valid, invalid
or unknown) of the subproperty in the (abstract) state of the system. Subproperties are
given by the automaton states. The first configuration structure is obtained by com-
bining all subproperties (automaton states) with the single abstracttstatewhich
abstracts any concrete system-state. In addition, the transition relation of the system is
overapproximated by a may transition framue to itself. No must transition (under-
approximation) is used in the initial abstraction. The obtained configuration structure
is presented in Figure 2 (a). May and must transitions leaver O-configurations
and the other transitions, which imitate the automaton transitions, are gatletibn
transitions

true

=

2, bt e
t'r<7>J,e

T — A ff
A Y |

‘z:mmﬂ'(—jz:mmﬂ‘ true z:1/\z¢1’(—je:1m¢1‘
A a <& A [m]

true ’l:l/\z:l% {l:l/\z>1‘
V (o3 A ﬂ‘ o
- _ |
e Z:l/\:r,:()‘ €:1/\m>1‘
% A tt A
‘[:0\/
\

vinHZ:O\éa:#O‘ ‘Z:l//\\w:lﬁf {Z:léw>l‘
il o ~-_

z:mI:o‘ ‘Z:O\/z;«éo‘ ‘Z:l/\z:O‘ e:1m>1‘
o 5 N A

C) t’r'uthrue %é:l/\z:l =1 Az=1 L#£1 ‘ f) t'r'uthrue ‘Z:l/\w:l ‘
V < AN < o JAN ﬁ, V < AN
~N ~

true

Fig. 2. Example of a property check via local refinement. May transitions are depicted as dashed
arrows and must, as well as junction, transitions as solid arrows

In general, the algorithm iterates four phases: (in)validity determination, simplifi-
cation of the configuration structure, refinement determination by some heuristic, and
local refinement. The validity of the configurations is determined via a parity game
algorithm, where the Verifier can only use must and junction transitions, whereas the
Falsifier can additionally use may transitions. The valid configurations become labeled
with tt. Thereafter, the same is done via an invalidity check where the Falsifier can only
use must and junction transitions, whereas the Verifier can additionally use may tran-
sitions. The invalid configurations become labeled itiNo validity or invalidity can
be determined in (a). As a result no simplification is possible in this case. The unknown
values in (a) result from four possible causes. One is the configur@tian, ¢ = 1),
where the validity of the predicate = 1 in the statetrue is unknown, thus neither
the Verifier nor the Falsifier can win. The others are the three may transitions in the
configuration structure, which result from the may transition fromtthe: state to it-
self. For example, the fact that the may transition frgmue, <) to (true, V) is not a
must transition prevents the Verifier from winning the validity game, and on the other
hand, its existence interferes with the winning of the Falsifier in the invalidity game.
These causes represent all the possible causes for an indefinite result. Consequently, in
order to refine the system, a heuristic determines either (i) a configuration where the

property is a predicate and the validity is unknown or (ii) a may transition for which no
corresponding must transition exists.

Assuming the heuristic yields the configuratiohmue, ¢ = 1), whose validity is
unknown, then all configurations forwardly/backwardly reachable ftome, ¢ = 1)
via junction transitions are split by the predicdte= 1 during the local refinement
phase. The may and must (hyper)transitions incoming and leaving the new configura-
tions are recalculated via suitable satisfiability checks solved by a theorem prover. As
in [25], a may transition from an abstract stateto anotherz, exists iff there is a
transition from a concrete state abstracted:byo a concrete state abstracted 4y
A must (hypen)transition from; to a set of abstract statésexists iff every concrete
state abstracted by has a transition with a target that is abstracted by an element from
Z. Thereby, (b) is obtained. Note that we do not split the state in all the config-
urations. Instead, it is split only in the configurations forwardly/backwardly reachable
from (true, ¢ = 1) via junction transitions. This makes our abstractemy.

The next iteration starts from (b). After making the (in)validity-determinations as
described before, we obtain (c). Unlike the initial configuration structure, in this case,
some of the configurations are determined as (in)valid. Thereafter, configurations and
transitions having no further influence on the (in)validity-determinations, are removed
in the simplification phase, yielding (d). For example, the junction transition {om
1,A) to (¢ = 1,¢£ = 1) along with the target configuration, which is labeled are
removed, since knowing that one conjunct has vatyenakes the value of depend
on the value of the other conjunct. The algorithm continues with the simplified structure.
Assuming the heuristic determines the may transition pointing tg¢ 1, A), then the
source (and all configurations connected to it via junction transitions) are split by the
weakest precondition to rea¢h# 1 in the concrete system, whichds= 0V z = 1.

Thus we obtain (e). Proceeding with (in)validity-determinations and simplifications, we
obtain (f). Assuming the heuristic yields the may transition {ffte- 1Az # 1, A), then

the source (and all configurations connected to it via junction transitions) are split by
the weakest precondition to reatk= 1 A x # 1 in the concrete system, which (g =

0Nz #0)V (¢ =1Az > 1). Thus we obtain (g), where a must hypertransition arises.
Proceeding with (in)validity-determinations and simplifications, we obtain (h), where
the hypertransition becomes a singleton-targeted one. Assuming the heuristic yields the
may transition into(¢rue, V), then the source (and all configurations connected to it
via junction transitions) are split by the weakest precondition to réach which is

£ =0V x # 0. Thus we obtain (i), where the initial configuration is also recalculated.
Now the initial configuration becomes valid and thus the property is verified.

3 Preliminaries

ThroughoutP(B) denotes the power set of a g8t Functional composition is denoted
by o. Given a relatiorp C B x D with subsetsX C B andY C D we write X.p
for{d €e D | 3 € X: (bd) € p}andp.Y for {b € B | 3d € Y: (b,d) € p}.
The projection to thé-th coordinate is denoted by. Let map(f, @) be the sequence
obtained from the sequendeby applying functionf to all elements of pointwise.

3.1 System

Without loss of generality, we will not consider action labels on models in this paper.
A rooted transition systerii’ = (.S, s!, —, £) consists of a (possibly infinite) set

of states, an initial state’ € S, a transition relation—C S x S, and apredicate
languageL, which is a set of predicates that are interpreted over the statggiia.,

each predicate € L denotes a sdp] C S of states), such that the following three
conditions are satisfied. (i) There exigts € £ with [p'] = {s'}. (ii) The boolean
closure of£, denoted byZ, is a decidable theory (i.e., satisfiability is decidable). (iii)

L is effectively closed under exact predecessor operations; that is, for every formula
1 in £ we can compute the boolean combinatiar (1)) of predicates fromZ such

that [pre(v))] =— .[¢]. In the following we assume a fixed rooted transition system

T=(5s,—,L).

3.2 Strong-weak-parity-game

Here, three valued parity games having under/over approximated transitions are pre-
sented. These games will be used to encode the satisfaction of a property in a system.
They are a generalization of the three-valued parity games of [10].

Definition 1. A strong-weak-parity-gamé = (C, Cy,Cy, ¢!, R—, R, 0, w) has

— a set of game states divided (not necessarily completely) by two playe&rs;C C
for Player 1 andCs> C C'\ C; for Player 2,

— an initial game state' € C,

— aset of strong and a set of weak game transiti@ns R+ C C x C,

— a parity functiond : C' — IN with finite image, and

— avalidity functionw : C' — {tt, ff, L}, into the values true, false, and unknown.

The source (target) of a transitioin G is denoted byor(t), resp.tar(¢).

Definition 2. — Finite validity plays for strong-weak-parity-gani@ have the rules
and winning conditions as stated in Table 1. An infinite pleig a win for Player
1iff sup(map(@, 9)) is even; otherwise it is won by Player 2.

— Finite invalidity plays forG have the rules and winning conditions as stated in Ta-
ble 2. An infinite playp is awin for Player 2 iffsup(map(¢, ®)) is odd; otherwise
it is won by Player 1.

— G is valid (is invalid) in ¢ € C iff Player 1 (resp. Player 2) has a strategy for the
corresponding validity (resp. invalidity) game such that Player 1 (resp. Player 2)
wins all validity (resp. invalidity) plays started atwith her strategyG is valid (is
invalid) iff G is valid (resp. is invalid) inc'.

Remark 1.The validity, as well as the invalidity, game obviously corresponds to a parity
game. Therefore, decidability of validity, resp. invalidity, is in DRoUP [17].

Proposition 1. Validation over strong-weak-parity-game is 3-valued (not 4-valued),
i.e., a strong-weak-parity-game is either valid, invalid, or neither of them.

w(c) # L Ved CrUCy: Player 1 wins iffw(c) = tt

c € C1 Aw(c) = L: Player 1 picks as next configuratiehe {c}.R™;

c € Oz Aw(e) = L: Player 2 picks as next configuratiehc {c}.(R~ U R");

Table 1. Moves of validity game at game statespecified through a case analysis. If a Player

is unable to move at his turn, the other Player wins. Validity plays are sequences of game-states
generated thus

w(c) # L Vedg CyUCs: Player 2 wins iffw(c) = ff

c € Cy Aw(c) = L: Player 1 picks as next configuratiohe {c}.(R~ U R™);

c € Cy ANw(c) = L: Player 2 picks as next configuratiehe {c}.R™;

Table 2. Moves of invalidity game at game statespecified through a case analysis. If a Player

is unable to move at his turn, the other Player wins. Invalidity plays are sequences of game-states
generated thus

Definition 3. A strong-weak-parity-gamé' is simplifiedif (i) it is valid or invalid in

c € Ciff w(c) # L and (ii) there are no transitions (a) leaving (in)valid game-states,
(b) leaving game-states froftl; and point to invalid ones, or (c) leaving game-states
from C5 and point to valid ones, i.evt € RTUR™ : w(sor(t)) = LA (sor(t) € Cy =
w(tar(t)) # ff) A (sor(t) € Cy = w(tar(t)) # tt).

Intuitively, G is simplified if the validity function encodes correctly all the (in)valid
game-states, and in addition, only transitions that “explain” an unknown value exist.

Theorem 1. For any strong-weak-parity-gam@ there is an equivalent simplified one
G’ in the sense that’ = C’ and for all¢c € C we have:G is valid (is invalid) inc

iff G’ is valid (resp. is invalid) inc. Moreover, the algorithm from Table 3 calculates a
corresponding>’.

3.3 Property language
We will present the modal-calculus [19] in its equivalent form of automata [26].

Definition 4 (Tree automata).Analternating tree automatoh = (Q, ¢', §, ©) has

— afinite, nonempty set of stat@s<)Q with the initial element' € Q

— a transition relationd mapping automaton states to one of the following forms,
whereq, q1, g2 are automaton states ande £: p | q | 1Aq | 1Vq2 | Oq | Og

— an acceptance conditio®: Q — IN with finite image.

An alternating tree automaton is depicted in Figuréy, where all automaton-
states have acceptance valueln the following, we assume a fixed alternating tree
automatond = (Q, ¢}, 4, 0). SetQua consists of those automaton-states of the form
Sorg, ie,Qua = {¢g € Q| 3¢ : §(9) € {¢¢,0q¢'}}. The successor state of
g € Qqua Is denoted byucc(q), i.e.,succ(q) = ¢’ if §(q) € {<¢/,O¢'}. Furthermore,
Q1 =1{q € Q| a) € Uy, peolti,a1Vae, ©q1}} denotes the automaton-states
under control of Player 1 an@; = {qg € Q | (¢) € U,, g,eof{®1/Ag2, Oq1}} those

Algorithm Simplify (G : a strong-weak-parity-game

1: Use a parity-game algorithm to determine the valid game-states anduadapordingly.

2: Use a parity-game algorithm to determine the invalid game-states anduadapordingly.

3: Remove inG all weak/strong transitions that (i) leave (in)valid game-state, (ii) leave elements

from C7 and point to invalid game states, or (iii) leave elements f@dmand point to valid
game states.

Table 3. Algorithm for the determination of equivalent, simplified strong-weak-parity-games,
whereG = (C,Cy,Ca, ¢, R™, R",0,w)

under control of Player 2. Satisfaction of a rooted transition system with respect to
an alternating tree automata is obtained via transformation into a strong-weak-parity-
game:

Definition 5. Theproperty-gaméor 7" and A, denotedPr 4, is the strong-weak-parity-
game(S x @, S x Q1,5 x Qa, (s',¢'), R=,{},0 o ma,w), where

R™ ={((s,9),(s,4") 1 3¢" : 6(q) € {d',d' A", ¢"Ad, ¢'Vq",¢"Vq'} } U
{((5,9),(s",4")) | 6(q) € {©d', O} A (s,8") €=}
tt if 6(q) € LA s € [6(q)]

w(s,q) =< ff ifo(q) € LAs ¢ [6(q)]
L otherwise

Furthermore, we writd” |= ¢, whenevelPr 4 is valid, and otherwise, we writ€ (- ¢
(which is equivalent tdr_4 is invalid).

All the transitions inPr 4 are strong. The transitions that leave game-states whose
automaton componeqtis in Qqu. correspond to the transitions in the underlying sys-
tem. In all other cases, the transitions reflect the automaton transitions, and the system
component remains unchanged. The parity conditions also reflect the acceptance condi-
tions of the automaton evaluates game-states whose automaton compgrigstich
thatd(q) € L. In this case, the evaluation is determined by the value of the predicate
d(gq) in s. The (in)validity of such game-states provides the basis of the (in)validity
evaluation of the game. Note that our definitionfof= ¢ coincides with the standard
definition of satisfaction, an@' [~ ¢ coincides with the satisfaction of the dual formula,

i.e., corresponds to negation.

Next, special strong-weak-parity-games derived for alternating tree automata satis-
faction on abstracted systems, in terms of generalized Kripke modal transition systems
[25], are introduced. These are callgostract property-games&nlike previous works,
we do not define the abstract system separately. Instead, its description is intertwined
with the property in the game structure. This is most convenient to endbley ab-
stractionwhere the same part of the system can be abstracted differently in different
contexts. The abstract property-games are obtained by combining the abstract-states
z € Z with the property-states and encoding hypertransitions via additional game-
states (hyper-points) where subsets of abstract-states P(Z) are combined with

Qqua- The hyper-points are used to model hypertransitions. The classification of game-
states to players is based on the property-states as before, except that in hyper-points the
responsibility of the players switches. Furthermore, an abstractstee a formula
describing the concrete states that are abstracted lmyparticular, the same concrete

state can be abstracted by multiple abstract states. However, it will only be abstracted
by a single abstract state in each context (property-state). Formally:

Definition 6. An abstract property-gam® is a tuple(Z, o, G), whereZ is a set of

abstract statesp : Z — L is an abstraction function, an@ is a strong-weak-parity-

game such that

- CC(ZxQ)U(P(Z) x Qqua)

- Ci=C0N((Zx Qi) U(P(Z) X (Qqua \ @1))) fori € {1,2},

— an element(Z,q) € P(Z) x Qqua €ncodes arhyper-pointconnecting(z, q) €
Z X Qqua 10 (a subset of) the elementsotombined with the next automaton state,
suce(q), i..,Y(Z,q) € CN(P(Z) X Qqua) : R {(Z,9)} € {(2,9) | z € Z} and
{(Z,9)}.R~ C {(+',succ(q)) | 2’ € Z}.

P is simplifiedif G is.

To simplify the presentation of the paper, we refrain from formalizing the additional
constraints of an abstract property-game. Instead, we describe them informally. Simi-
larly to the property-game, the abstract property-game maintains the structure of the
property automaton. In particular, whenever the automaton component is @gtn
the outgoing game transitions are strong-transitions that reflect the automaton transi-
tions, thus the system component does not change. When the automaton component is
in Qqua, the outgoing transitions reflect the transitions of the underlying system, except
that they can now either overapproximate the system transitions, via weak-transitions,
or underapproximate the system transitions, via strong-transitions that point to hyper-
points. In analogy to generalized Kripke modal transition system, the weak transitions
of an abstract property-game are also cattea transitionssince they are used to rep-
resent may transitions of the underlying abstract model. The strong transitions of an
abstract property-game that point to hyper-points are catiest transitiongthey rep-
resent must hypertransitions of the underlying model) and the other strong transitions
are calledunction transitions

Recall that the may and must transitions leave game-states whose automaton state
q is in Qqua- In principle,if someconcrete state abstracted byhas a transition to
someconcrete state abstracted by i.e. o(z) A pre(o(z’)) is satisfiable, then there
exists a may transition frorz, ¢) to (z/,succ(q)). This is called themay condition
A must transition from(z, ¢) to the hyper-poin(Zq) existsonly if the must condi-
tion holds, namelyeveryconcrete state abstracted byhas a transition whose target
state is abstracted bngestate inZ, i.e. the implicationo(z) = pre(V ;.3 0()))
holds. The hyper-pointZ, q) is connected via junction transitions to the game-states
in {(z,succ(q)) | z € Z}. However, simplification can damage these rules. Including
additional may transitions that do not fulfill the may condition, or not including some
of the must transitions although they do fulfill the must condition, is sound. However,
a smaller set of may transitions, resp. a bigger set of must transitions makes the over,

resp. under, approximation tighter and hence more precise. Similarly, the smaller the
setZ in a hyper-point is, the more precise the must transition is.
The validity functionw is used as in the concrete property-game, except that now
the evaluation of the predicate= (¢) € £ in an abstract statedepends on the value
of the predicate irall the concrete states abstractedzbNamely,w(z, q) = tt , resp.
ff, if o(z) = p, resp.o(z) = —p, holds. Otherwisey(z,q) = L. The parity function
is defined as in the concrete property-game (since it only depends on the automaton).
The initial abstraction fof”, which contains only a single abstract stasbstracting
everything (i.e.p(z) = true), corresponds to the following abstract property-game:

Definition 7. The initial abstract property-game;. , for T andAis ({z}, {(z, true)},
({2} x Q, {2} x Q1,{2} x Qa2,(2,¢"), R~,RT,0 o my,w)), wherez is an arbitrary
element and

R™ ={((2,9),(2,¢)) | 3¢" : 6(q) € {d, A", d"Ad,¢'Vq" , q"Vq'}}
RY ={((2,9), (2,4") | 6(¢) € {O¢',Oq¢}}
w(z,q)=1 forqe@.

Note that the initial abstract property-game does not deperid diis reflects the
fact that we start with a fully abstracted system. In particular, no must transitions exist,
and the may transitions correspond to a may transition feam z in the underlying
abstract system. The validity function interprets all the predicatdsias:.

4 CEGAR locally applied on configurations

In the verification algorithm, a simplified abstract property-game is calculated, starting
from the initial abstract property-game.réfinement heuristi€leuristic, which is de-
fined to be a function mapping an abstract property-game to a game-stéte iy
combined with an element from, is applied on the simplified abstract property-game,
yielding, say,(c, p). Thenc as well as the game stateésforwardly/backwardly reach-
able frome via junction transitions are split by in the abstract property-game. The
transitions incoming/leaving such a new game-stateplit from ¢ are calculated by
taking the transitions incoming/leaviggnto account. This procedure of simplification
and local refinement is repeated until the property for the initial game-state is verified
or falsified. The verification algorith®ropertyCheck is presented in Table 4 and its
usedRefine-procedure, which calculates the local refinement, is presented in Table 5.
Note that the initial abstraction iRropertyCheck can be imprecise (if every concrete
state has an outgoing transition or if none of them has one), but this imprecision will be
eliminated after refinement steps.

In the following, theRefine-procedure is described in more detail. The pseudo
codes of its used procedures are given in Appendix A and are informally described be-
low. Let (¢, p), wherec = (z, q), be the game-state and predicate returnedéyristic.

In Line 1, the new abstract-statesandz; are determined, as the result of splitting
based orp. Here the abstract states andare encoded as in cartesian predicate ab-
straction, i.e., an abstract-state is a function from a set of predicates into a three valued

10

Algorithm PropertyCheck (A : pointed automata 7' : rooted transition system

Local variables P : an abstract property-game, initialized wmiA

1: Simplify (G)

2: while (w(d)=1) do

3: Redirect every transition pointing to a hyper-pointZ, q) € P(Z) X Qqua such that
it points to (w1 ({(Z, q)}.R™), q), where this hyper point (together with their maximal
allowed outgoing transitions) is addeddb(for example by using procedufald).
% This step update® in case that some of the outgoing junction transitions of the hyper-point were removed during
simplification. Note that the newly added game-states cannot be (in)valid.

4: Remove fromG every game-state € C' that is unreachable (from the initial game-state
), unlessc = (z,q) € Z x Q and there exists some reachable game-state (2', ¢’)
such thatw(¢’) = L and in addition, eithef(q’) = <q A w(c) = tt, ord(¢’) =
Og A w(c) = ff. % Game-states that have no influence on (in)validity are removed. States fullfilling the last
constraint are not removed, since they are needed for the computation of precise must hypertrangitins.in

5: Refine (P, Heuristic (P)) % Heuristic(P) yields a game-state combined with an element fim

6: Simplify (G)

7: return w(c)

Table 4. A model checking algorithm fosi-calculus properties, where refinement is made locally
on configurations, i.e., on abstract-states combined with properties. Here, the comporents of
andG are denoted as in Definition 6, resp. 1. Procedsireplify is given in Table 3Refine in
Table 5,Add is explained in Section 4, artdeuristic is discussed in Section 5

domain, indicating whether the corresponding predicate is used, its negation is used, or
is not considered. Consequently, if suitable refinement heuristics (e.g., those presented
in Section 5) are used, the resulting substatesndz, can effectively be calculated.

()’ is used to collect the states that have to be split, i.e., are connected via junction
transitions toc. It is sufficient to collect inQQ’ only automaton-states, since it is an
invariant that the first component of game-states connectedlitojunction transitions
is alwaysz. Set@’ is initialized togq, representing. Every statej in @', representing
the game-staté = (z, §), is split by splittingz to z; andz». The resulting game-states
are added to the abstract property-game, ugidd (Line 4). If necessary, the initial
game-state is recalculated via a satisfiability check that checks which of the substates
of z abstracts', characterized by' (Line 5).

After the substates df are added as game-states, the transitions incoming/leaving
¢ are recalculated, as ingoing/outgoing transitions of the new game states. Consider
first the outgoing transitions (Lines 6-12). In case wije@ (QQqua, the junction tran-
sitions leaving the game-statdeing split are removed and correspondingly added to
the two new game-state®’ is extended with the target states (Line 9). In case when
d € Qqua the may as well as the must transitions leaving the new states are calculated by
OutgoingMayCalculation andOutgoingMustCalculation resp. In this case the target
game-states are not split (i.e., they are not addél YoT his captures the laziness of the
abstraction. In general, this step removes may-transitions that become redundant after
refinement, as they do not represent any concrete transition. It also adds must transitions
that did not exist before. It therefore makes the over and under approximations tighter.

11

Algorithm Refine (P: an abstract property-game((z,q),p): (Z x Q) x L)
Local variables Q': P(Q) initialized with {q}

1: Determinezi, 22 € Z (and possibly add those elementstand adapp) such thafo(z1)] =
[o(2) A p] and[o(22)] = [o(z) A —p]

2. while Q' #{} do

3: remove an elemeng from Q’

4: Add (P, (z1,q)) ; Add (P,(z2,G)) % Adding of the game-states obtained from splitting.

5: if ¢ = (z¢q) then (f Satisfiable (p' A g[z1]) then ¢ := (z1,q) else

¢ :=(22,4)) % Relocation of the initial game-state.

6 if §¢ Qqua then

7 while {(z,4)}.R™ # {} do % Calculation of the outgoing junction transitions

8: remove an elemergt’, ¢') from {(z,G)}.R~ % By an invariant’ = =

9 Q =Q U{dI\{a} : R =R U{((21,9),(21,7)), ((22,9), (22, 7))}

10: else %q < Qqua

11: OutgoingMayCalculation (P, z, z1, 22, q)

12: OutgoingMustCalculation (P, z, z1, 22, q)

13: while (R™{(2,9)}) N (Z x Q) # {} do % Calculation of the incoming junction transitions
14: remove an elemerit’, §') from (R~ .{(2,§)}) N (Z x Q) % By an invariant’ = =

15: Q =Q U{dI\{d} : R =R U{((21,9), (21,9)), ((22,7), (22, @)}
16: IncomingMayCalculation (P, z, z1, 22, q)

17: IncomingMustCalculation (P, z, z1, 22, q)

18: C:=C\{(z,9} ; Ci:=Ci\{(z,9} ; Co:=0C2\{(23}

Table 5. An algorithm for local refinement calculation, where the componenf8 afe denoted
as in Definition 6, resp. 1. The occurring procedures are explained in Section 4.

More specifically,OutgoingMayCalculation checks if the may transition leaving
¢ = (z,q)intod = (2/,succ(q)) also exists for the new statés;,). This is done by
using a theorem prover to checkzifandz’ fulfill the may condition.

In OutgoingMustCalculation, hypertransitions leaving, ¢) are taken for the new
states without calculation. This is because when the must condition holdséaod
someZ, it is guaranteed to also hold for any substate: pfepresenting a subset of
concrete states. In addition, a must transition from the new gamefstaf¢ into the
hyper point(Z, §) is ‘added’ if z; andi/(§) U Z fulfill the must condition, where
Ua () denotes the game-states that (depending on the ty@)eaoé valid, resp. invalid,
at the succeeding state @f(i.e., atsucc(q)). The consideration df((), although it
is not part of the hyper-point, is sound and is made for maintaining precision. It can
be viewed as a shortcut for first includitdy; (¢) in the hyper-point, and then removing
it during simplification. Checking the must condition involves checking implication.
Implicationa = b is checked by checking unsatisfiability @\ —b. In order to reduce
the number of theorem prover calls, only thdsare considered that are subsets of the
targets of the may transitions leaving the corresponding new game-state. Furthermore,
Z is automatically not considered if a superset is already determined to not fulfill the

12

must condition. Similarly, once is determined to be a hypertransition, none of its
supersets is checked. This is justified by the fact that including mintymal setsZ as
hyper-points does not damage precision [25].

Consider now the incoming transitions (Lines 13-17). The incoming junction tran-
sitions of¢ originating in game-states that are not hyper-points are calculated similarly
to the outgoing junction transitions, where algbis extended (Line 15). The incom-
ing may transitions are calculated, analogously to the outgoing may transitidns, in
comingMayCalculation, where may transitions can possibly be removed, making the
overapproximation tighter.

The calculation of the incoming must transitions is madmeomingMustCalcu-
lation. Here a difference arises compared to the outgoing must transitions. Since must
transitions always lead to hyper-points, no must transition points directly to the split
game-staté = (z, ¢), but a must transition can indirectly point &via a hyper-point
(Z’, ¢'). We consider such must transitions as incoming must transitions. The hyper-
point Z' that contains the abstract-statébeing split is possibly refined (and made
tighter) by keeping only one of the substatgsor 25 in it. The existence of such a
tighter hypertransition is checked (and resp. added) by checking if the must condition is
fulfilled when replacing: by z; or z;. In case that none of these two refined hypertran-
sitions exists, the one wheteis replaced by both new statesifi is added without a
necessary calculation. Note that if a refined hypertransition is discovered, then the latter
hypertransition is redundant (as it is less precise), and is hence not included. Compared
to the calculation of the outgoing must transitions, where transitions could possibly be
added, in this case we simply make the existing ingoing must transitions more precise.

Note that after the calculation of the outgoing may and must transitions, the game-
statec¢ being split (which will be removed in the end) is still allowed as target, i.e.,
it is possible that a new game-state can poinE.tBut after the recalculation of in-
coming may and must transitions, these cases, whisr¢ghe target are handled. Thus,
whenRefine terminates it is ensured that no transition incoming/leaingn exist. In
particular, self-loops are adequately refined by our approach.

New game-states are added with thed-procedure, which is also responsible for
updating the validity function. Procedubeld (G, (n, ¢)) adds the game-stafe, ¢) €
(ZxQ)U(P(Z) x Qqua), if itis not already present, t6' such that it yields an abstract
property-game. In particular, ifn,§) € P(Z) x Qqua, then all possible transitions
leaving the new hyper-point tf(z, succ(§)) | z € n} are also added. Furthermore, if
the automaton componedibf an added game-state,) € Z x Q is such that(q) is
a predicate irC, then the functiow is determined at it by calculating in) = §(g) or
o(n) = —4d(q) holds. Again, implication is checked via the equivalent unsatisfiability
check.

So far some limitations exist in our model checking algorithm, restricting the prac-
tical relevance of the algorithm in its current version. Those points, as well as corre-
sponding optimizations of the algorithm, are discussed in Section 6.

Theorem 2 (Soundness) Suppose satisfiability checks are sound and complete and
Heuristic is a refinement heuristic. RropertyCheck(A, T') returnstt (ff) thenT |= ¢
(resp.T' |~ q) holds.

13

Theorem 3 (Relative completeness)Suppose satisfiability checks are sound and com-
plete andL can describe every subset®flf the acceptance function df always maps

to zero (i.e.,A corresponds to a least fixpoint freecalculus formula) and” |= g, then
there exists a (not necessarily computable) refinement heuHisiaistic such that
PropertyCheck(A, T') returnstt.

Note that the usage of hypertransitions is necessary for Theorem 3, since allowing
only singleton targets yields a model that is not complete for safety-properties with re-
spect to predicate abstractions, see, e.g., [6]. Theorem 3 does not hold if we restrict
to computable refinement heuristics, since otherwise the halting problem would be de-
cidable. Furthermore, Theorem 3 does not hold for automata with arbitrary acceptance
function, since the underlying class of abstract models is not expressive enough. Fair-
ness constraints, as in [4, 7], are needed.

5 Heuiristics

First, we define the special class of pre-based heuristics and thereafter present and dis-
cuss suitable ones.

Definition 8. SupposeP is an abstract property-game. Then a stéteq) € C'is
predicate-unknowif §(q) € £ andw(z,q) = L. Areal may transitioris at € R*
that has no corresponding must transition, more precisely, every must transition
R~ that leaves the same source(t) = sor(¢')) has a targettar(¢') whose first
componemZ is different from the singleton set consisting of the first componerit
the target oft (i.e., m (tar(t’)) # {m (tar(t))}).

A refinement heuristitleuristic is pre-basedf the return value is derived from a
predicate-unknown state or from a real may transition, whenever one of them exists.
More precisely, ifHeuristic(P) = (c,p) then (i)c = (z,q) is a predicate-unknown
state inC andp = §&(q) or (i) ¢ = sor(t) for some real may transition € R
andp = pre(o(m (tar(¢)))) or (iii) neither a predicate-unknown state nor a real may
transition exists.

Proposition 2. A simplified abstract property-game, where the initial game-state is nei-
ther valid nor invalid, i.ew(c') = L, has a predicate-unknown state or a real may
transition.

Pre-based refinement heuristics are sufficient for finite state systems:

Theorem 4 (Termination). Supposé” has a finite bisimulation quotient (with respect
to the elements of that occur inA), satisfiability checks are sound and complete, and
Heuristic is a pre-based refinement heuristic. THemopertyCheck(A, T) terminates,
i.e., returnstt or ff.

5.1 Bottom up strategy

Determine (i) a predicate-unknown stdte ¢) or (ii) a real may transition that points
to an (in)valid game-state, i.ey(tar(t)) # L. Return((z,q),d(q)), resp.(sor(t),

14

pre(o(m (tar(t))))). Note that such states, resp. real may transitions, do not always ex-
ist in simplified abstract property-games. In such a case an arbitrary real may transition
tis chosen. An advantage of the bottom up strategy is that (if case (i) or (ii) are applica-
ble) at least one of the new game-states is (in)valid after the refinement. A disadvantage
of the bottom up strategy is that it can become an unnecessary source of nontermination:

Example 1.Consider the example from Section 2. Then the bottom up strategy will
‘run to’ Figure 2 (f) and then determine the may transition pointing to the invalid state.
Sincepre(p({ = 1Az =1) =l =1ANz=2)V({ =0Az = 0), the result

of refinement will be splitting the source stafte= 1 Az # 1tol = 1Az = 2 and
{=1ANx # 1A x # 2. After simplification, an abstract property-game equivalent
to (f), which is already equivalent to (d), will be generated (with the abstract&tate
1Az #1replacedby =1 Ax # 1 Ax # 2, and the abstract stafe= 1 Az =1
replaced by = 1 A x = 2). This will continue forever, replacing= 1 Az # 1 by
{=1ANz#1IN...NxF£iq,andl=1ANz=1byl=1Azx=1.

5.2 Breadth first strategy

Determine a statéz, ¢) that (i) is a predicate-unknown state or a source of a real may
transitiont and (ii) has a minimal distance to the initial game-state. Returry), 6(q)),
resp.(sor(¢), pre(o(m (tar(t))))). Note that it is possible that after the refinement step,
the distance of the next witness stéteq) will decrease, since a must transition ‘point-
ing’to {(%', ¢’)} can become a hypertransition, pointingte;, ¢'), (25, ¢')}, resulting

in a real may transition pointing, e.g., e}, ¢’), whereas the original may transition
pointing to(z’, ¢') was not a real one.

Example 2.Consider the example from Section 2. Then the breadth first strategy will
split one of the(true, ©) states in Figure 2 (a) along the weakest precondition@f,

as itis made in (h). Thus the property will be shown after a single refinement step.

The success of the breadth first strategy in this example is due to the shallow depth of
the loopgy — g5 — qo, which ensures that this strategy manages to recognize the
infinite must path and thus it finds the property to be valid. But if, e.g., the property of
Figure 1 is transformed into the (equivalent) property where the dgop> ¢5 — qo

is replaced by a ‘deeper’ loa@ — ¢5s — ¢ — ... — g — qo iNWhichgs, ..., g

are also¢-states, then the depth of the loop makes the breadth first strategy run into
the same live-lock described in Example 1 after the first few refinement steps, before it
finds the infinite must path. Thus, it fails to terminate.

5.3 Youngest first strategy

Determine a statéz, ¢) that (i) is a predicate-unknown state or a target of real may tran-
sition¢ and (ii) is minimal with respect to the number of splits used to obtaReturn
((z,q),0(q)), resp.(sor(t), pre(o(m (tar(t))))). Point (i) can easily be determined if

the abstract states are encoded via the afore mentioned cartesian predicate approach,
since only the positions where the cartesian function does not map to ‘unused’ have to
be counted. Note that this kind of heuristics cannot be defined, if a global refinement
approach is used, where every state is split by the new predicate.

15

Example 3.In Figure 2 (a) the youngest first strategy will split either the source state of
one of the three real may transitions along the weakest precondition©br the state
(true, ¢ = 1). If the split state in the first refinement step is one of the twae,)

states, then in particular the initial state is split and the property will be shown. If one
of the other two states is split, then both of them are split, and so is the target of the
real may transition leaving the upp@rue, <) state (as these states are connected via
junction transitions). This ensures that the loWemne, ©) state, whose outgoing real

may transition leads to a yet unsplit state, will be split along the weakest precondition
of true in the second refinement step. Thus, at latest in the second refinement step the
initial state will be split along the weakest preconditiontofe, and the property will

be shown. The youngest first strategy also succeeds for the modified property described
in Example 2.

In order to maintain the advantage of the bottom up strategy, real may transitions to
(in)valid states can be restrictively favored by, e.g., doubling the ‘age’ of the states that
are unknown. Sometimes pre-based refinement heuristics are not sufficient:

Example 4.Consider the propert% checked on syste =9 D, [2=0] ,
[>1] z:=2—1

wherexz € IN. Then any pre-based refinement heuristics will produce aftefine-
ments the (simplified) abstract property—gam@@ , i.e., the property cannot

be verified. On the other hand if first the initial state is separated,%@D @D

is obtained. Thus the property can be shown.

6 Optimizations of the algorithm

For the sake of completeness, we present some optimization possibilities of the algo-
rithm.

Too many Simplify calls. TheSimplify procedure is called after every local refinement.
Thus an expensive algorithm is calculated, while expecting only small improvements,
since only a local refinement was made. To remedy this, more refinement iterations
can be made befor8implify is called again. Further optimization is obtained, if the
validity function is also adapted during the refinement calculation, e.g., by backwards
search when a state is determined to become (in)validSamglify is only called for

more exact determination of least fixpoint properties.

No reuse of theorem prover calls. Typically the same satisfiability checks are calcu-
lated multiple times, since they (mainly) depend on the abstract state and not on the
property of the configuration. Therefore, those calls can be reused, ideally by using an
additional generalized Kripke modal transition system, where the abstract states and
their may and must (hyper)transitions are stored, resp. negatively stored, whenever a
corresponding satisfiability check is made. Here, a tradeoff between time and space
arises. Furthermore, the heuristics can be tuned to prefer those game-states for which
no (or less) new satisfiability checks have to be made to determine the refinement.

16

Unnecessary many theorem prover callsin case of refinement, a forward search of
game-states reachable via junction transitions always takes place. However, it is pos-
sible that the current refined game-state will immediately become (in)valid (e.g., due
to the first optimization) and thus the (in)validity of its reachable game-states will be
irrelevant. Therefore, such a forward search should only take place if the validity of the
current game-state cannot be determined immediately.

Complexpre(t))-calculations. The algorithm starts with the most general abstraction
consisting of only one abstract state, thus coarse abstractions arise. Such abstractions
have the disadvantage that the calculatiopief) is in general expensive. Therefore,

it is beneficial to start with a less coarse initial abstraction, which can be determined
by pre-examination of the underlying systems (e.g., by partitioning the code-lines). The
techniques of interpolations [13, 22] might also help to avoid the high castedf))-
calculations.

Too complex formulas for the theorem prover. Due to satisfiability checks of com-

plex formulas, the calculation time of the theorem prover can outweigh the calculation

time of the parity game algorithm. A remedy is to drop precision and use further ap-

proximations. A refinement step can, in addition to the extension of the abstract state
space, perform a more precise calculation of the used approximations. We suggest the
following approximations:

— Approximate the predicates of the different states by using two formulas: one for
an over and the other for an under approximation of the precise formula. In each
calculation those approximation formulas that guarantee soundness are used.

— Approximate the must transitions, i.e., only calculate a subset of possible must tran-
sitions. For example, first calculate those having a single target and as a refinement
step calculate those having two elements as target, etc. Alternatively, only calculate
the hypertransitions on demand inside the parity game algorithm, as in [24].

— Approximate the system, e.g., instead of usifguse an approximated system for
which pre(¢)) can be more efficiently calculated.

— Approximate the theorem prover queries by clustering predicates [16]. In this ap-
proach, one theorem prover call is split into many having less complex formulas and
their results are combined afterwards, where precision is lost.

How exactly these approximation techniques can be applied is a topic of future work.

7 Conclusion

We presented a new CEGAR-based algorithm for ghealculus, where refinement

is local and the refinement determination is separated from the model checking algo-
rithm. Three different refinement heuristics are developed, where the most promising
one heavily depends on the local refinement approach. It is even possible that our algo-
rithm will yield improvements for safety properties, since by using a 3-valued abstract
model better refinement heuristics can be obtained. Exact examinations will take place
after the implementation of our algorithm, which is future work. The investigation of
other refinement heuristics is also the subject of future work.

17

References

(o]

10.

11.

12.
13.

14.
15.

16.
17.
18.
19.
20.
21.

22.
23.

24.
25.
26.

27.

. T. Ball and O. Kupferman. An abstraction-refinement framework for multi-agent systems.
In LICS |IEEE Computer Society Press, 2006.

. T.Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstraction for model check-
ing C programs. IMACAS volume 2031 of. NCS pages 268-283. Springer, 2001.

. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. ACM 50(5):752—-794, 2003.

. D. Dams and K. S. Namjoshi. The existence of finite abstractions for branching time model
checking. INLICS pages 335-344. IEEE Computer Society Press, 2004.

. L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of games: Uncer-
tainty, but with precision. ILICS, pages 170-179, 2004.

. H. Fecher and M. Huth. Complete abstraction through extensions of disjunctive modal tran-
sition systems. Technical Report 0604, Christian-Albrechts-Unirait Kiel, 2006.

. H. Fecher and M. Huth. Ranked predicate abstraction for branching time: Complete, incre-
mental, and precise. IATVA volume 4218 oL NCS pages 322-336. Springer, 2006.

. S. Graf and H. Saidi. Construction of abstract state graphs with PVSAHh1997.

. O. Grumberg, M. Lange, M. Leucker, and S. Shohabon't knowin the u-calculus. In

VMCAI, volume 3385 0. NCS pages 233-249. Springer, 2005.

O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not losing is better than win-

ning: Abstraction and refinement for the fultcalculus. Information and Compuatation

2007. doi: 10.1016/j.ic.2006.10.009.

B. Gulavani, T. A. Henzinger, Y. Kannan, A. Nori, and S. K. Rajamani. Synergy: A new

algorithm for property checking. IRSE ACM, 2006.

A. Gurfinkel and M. Chechik. Why waste a perfectly good abstractionPARAS 2006.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In

POPL, pages 232-244. ACM, 2004.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstractiddORL, 2002.

M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition systems: A foundation for

three-valued program analysis. BSOR volume 2028 of NCS pages 155-169, 2001.

H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke. Word level predicate abstraction and

refinement for verifying RTL verilog. IIDAC, pages 445-450. ACM, 2005.

M. Jurdzinski. Deciding the winner in parity games is in ORo-UP. Inf. Process. Lett.

68(3):119-124, 1998.

H. Klauck. Algorithms for parity games. lAutomata Logics, and Infinite Games: A Guide

to Current Researchvolume 2500 o£NCS pages 107-129. Springer, 2002.

D. Kozen. Results on the propositionalkcalculus.Theor. Comput. S¢i27:333-354, 1983.

K. G. Larsen and B. Thomsen. A modal process logid_IlBS, pages 203-210, 1988.

K. G. Larsen and L. Xinxin. Equation solving using modal transition systemd.IQ%,

pages 108-117. IEEE Computer Society Press, 1990.

K. L. McMillan. Lazy abstraction with interpolants. DAV, pages 123-136, 2006.

A. Pardo and G. D. Hachtel. Incremental CTL model checking using BDD subsetting. In

DAC, pages 457-462, 1998.

S. Shoham and O. Grumberg. 3-valued abstraction: More precision at less dd€SIf6.

S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTLAGQAS 2004.

Th. Wilke. Alternating tree automata, parity games, and mpeedlculus.Bull. Soc. Math.

Belg, 8(2):359-391, May 2001.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on

infinite trees.Theor. Comput. Sgi200(1-2):135-183, 1998.

18

A Pseudo code of the remaining procedures

The function that determines the abstract states for which the corresponding game-
states are valid, resp. depending on the kind of property invalid, is formally defined as
follows:

Ue + Quun — P(Z) Wit Uale) = { 2] 421 4) Z 1500 = B0

The pseudo code of the procedures useldeafine are presentedddd is presented
in Table 6,0utgoingMayCalculation andOutgoingMustCalculation are presented in
Table 7, andncomingMayCalculation andincomingMustCalculation are presented
in Table 8.Satisfiable corresponds to a satisfiability check made by a theorem prover
and is not discussed further in this paper.

Note that if the abstraction is precise thei@ntgoingMayCalculation andincom-
ingMayCalculation the second satisfiability check is only necessary if the first one was
successful, since otherwise the second one must hold by the precision of the abstraction.
If this simplification is used, the initial abstraction should be precise as well, otherwise
the relative completeness is lost (soundness remains guaranteed in both approaches).

Algorithm Add (P: an abstract property-game(n,q): (Z x Q) U (P(Z) X Qqua))
1. if (n,q) ¢ C then

2: if neP(Z) then R :=R U{((n,q),(zsucc(q)) |z € n}

3 C=Cu{nag}

4: if (Ge@QiAneZ)V(GeQanneP(Z)) then Ci:=CiU{(n,q)}
5: if (GeEQaAneZ)V(geQiAneP(Z)) then Cy:=CU{(n,q)}
6: 0(n.q) =06(q)

7: w(n,q) =L

8: if d(q) € L then w%inthiscase; € Z

9: if — Satisfiable (o[n] A—d(q)) then w(n,q) := true

10: else if - Satisfiable (o[n] Ad(¢)) then w(n,q) := false

11 fi

12:fi

Table 6.Procedure that adds a new game-state

B Proof sketches

Proof (Proposition 1).It is easily seen that every winning strategy for validity (in-
validity) is also a winning strategy for refutation of invalidity (resp. validity), which
establishes the statement.

19

Algorithm OutgoingMayCalculation (P, z, zi, 22,) % calculation of the weak transitions
leaving(z1, q) or (z2, q)

1. While {(z,4)}.R" # {} do

2: remove an elemer’, §') from {(z,§)}.R*

3: if Satisfiable (o(z1) Apre(o(2'))) then R := RTU{((21,4),(#,d))}

4; if ~Satisfiable (o(z2) Apre(o(2'))) then R := RT U{((22,9),(Z,d))}

5. od

7))
7))

Algorithm OutgoingMustCalculation (P, =z, 21, z2, §) % calculation of the must transitions
leaving(z1, q) or (z2, q)

Local variables M, M2, N1,N2 : P(Z) % M; stores the yet determined relevant must transition for
(zi,q); N; stores the not yet considered, relevant must transitio(#prq)

1 M= {Znm({(z2,)}RY) | Z e m({(z,9)}.R7)}
20 My ={Znm({(22,0}.R") | Z € m({(z.0)}.R")}
3: remove all elements frofi(z,) }.R™
4: Ny :=mP{(z21,))}.R))\{Z1 |3Z e M, : Z C Z,}
5: Ny :=m(P({(22,§)}.R))\{Z2 | 3Z € My : Z C Z1}
6: for i=1 to 2 do
7: While N; # {} do
8: take (not remove) an elemedtfrom N;
% Check if a must transition exists (iff(z;) = pre(\V/ seug(uz o(2)))) by using a satisfiability check
9: if — (Satisfiable (o(z:) A —(pre(V ey, guz 0(2))))) then
10: M; = M; U{ZY\{Zi | ZC Z:} ; Ni:=Ni\{Z|ZC Z:}
11: else N;,:=N;\{Z|Z C Z}
12: od

% Add the calculated hyper-transitions

13: For ZGMZ- do

14: Add (P,(Z,q))

15: R™ =R U{((2:,d),(Z,d)}
16: next

17: next

Table 7. Procedures for the calculation of the outgoing may, resp. must, transitions

20

Algorithm IncomingMayCalculation (P, z, zi, 22, () % calculation of the weak transitions
incoming(z1,) and(z2, q)

1. While R".{(z,§)}# {} do

2: remove an elemerfg’, ') from R .{(z,§)}

3: if ~Satisfiable (o(2') Apre(o(z1))) then R := RTU{((#,q),(z1,§)}

4: if Satisfiable (o(2') Apre(o(22))) then R := RTU{((#,q), (22,§)}

5. od

Algorithm IncomingMustCalculation (P, =z, 21, z2,) % calculation of the must transitions
incoming(z1,) and(z2, §)

Local variables = : {0,1}

1: While R™.{(2,9)}# {} do

2: remove an elemerftz’, §') from R~ .{(z,§)} % By an invariant: € Z’

3 While R .{(Z,§)}#{}

4: remove an elemertg’, ¢') from R~ .{(Z’, q)}

5: x := 0 %z = 1 indicates that the upper hypertransition becomes redundant
6: For i=1to 2 do

7 if - (Satisfiable (o(z") A _'(pre(\/geuc(q’)u{zi}uz’\{z} 0(2))))) then
8: Add (P, ({z}UZ'\{z},q)

o: v:=1; R =R U{((Z,d),({z}UZ\{z},@))}
10: fi

11: next

12: if x=0 then

13: Add (P, ({z1,20} U Z'\ {2},)

14: R =R U{((Z,d), ({21, 22} UZ'\ {2}, 7))}

15: fi

16: od

17: remove all elements from{(Z',§')}.R~

18 C:=C\{(Z,7)} ; Ci:=C\{(Z,3)} ; Co:=C\{(Z,3)}
19: od

Table 8. Procedures for the calculation of the incoming may, resp. must, transitions

21

Proof (Theorem 1) First we show that after every step an equivalent strong-weak-
parity-game is obtained. The fact that a strong-weak-parity-game is obtained can be
easily seen. The fact that after the validity (resp. invalidity) determination an equivalent
game is obtained follows from the fact that a winning strategy before the (in)validity
determination is also a winning strategy afterwards and vice versa. The removal of the
transitions also has no influence on winning strategies, since the removed transitions
will never be used in a winning strategy of the corresponding player, thus an equivalent
strong-weak-parity-game is obtained. It is easily seen that it is also a simplified one.
Termination ofSimplify follows from the termination of the parity game algorithrils.

Proof (Theorem 2)Consider the following invariant;

— only abstract property-games having the following properties occur: (i) the abstract
states can only be changed after a transition if the property of the source game-
state is from) ., and (i) the property of a game-state can only be changed after a
transition as in4,

— if a game-staté€z, ¢) becomes valid (invalid) then all concrete states fifutr)]
satisfy (resp. falsify},

— a concrete transition leaving a stédtéz)] can either be matched at any game-state
(z,q), whereq € Qqua, by (i) a correspondent may transition (the concrete targets
and the abstract states are related gjiaor (ii) the corresponding target of such
a hypothetic may transition is valid, resp. depending on the type of the property
invalid, (i.e., no winning strategy would use this transition),

— if a must hypertransition from an abstract stateg) to (Z, q) exists then for every
concrete state € [o(z)] there is a transition into a concrete state relatedovia
(i) element fromZ or to (ii) an abstract stat€ such thatz’, succ(q)) is valid, resp.
depending on the type of the property invalid, and

— if a transition from a hyper-point or from a game state where the property is of type
A orV is missing then the corresponding target is valid, resp. depending on the type
of the property invalid.

This invariant can be checked, whereRafine and its used procedures more detailed
invariants have to be formulated, which (i) depend on the program positions, (ii) do not
have to hold for the to be split state, and (iii) allow also to take transitions necessary
for the invariant either at the new states or at the state being split. The statement of the
theorem follows immediately from the above invariant. ||

Proof (Theorem 3)In [7] a partition (together with ranking functions and a ggtis
presented that yields completeness for thedetlalculus, i.e., its abstraction satisfy the
formula. Since the formula does not contain least fixpoints, no ranking functions are
necessary. Furthermorg,can be chosen to be a singleton, since it has only influence
on the fairness constraint (which does not occur here). The usage of a singlatwh
the absence of ranking functions yield an abstract model where no may hypertransitions
occur, i.e., the abstraction yields a generalized Kripke modal transition system.

Now take a refinement heuristic that splits every game-state according to the above
partition until the configuration structure based on the above generalized Kripke modal
transition system, better an abbreviation of the configuration structure (since transitions

22

and states can be removed in our algorithm), is reached. From the fact that only those
transitions and states are removed that are irrelevant and the hypertransitions calculation
also takes the valid, resp. invalid, game-states into account, it can be shown that the
obtained configuration structure also satisfies the property. |

Proof (Proposition 2).The proof is made by contraposition. If no predicate-unknown
state or a real may transition exists, then every winning strategy for validity is also a
winning strategy for refutation of invalidity and vice versa. Hence, it is a two valued
approach. Thus, the abstract property-game is (in)valifl i@onsequently, the abstract
property-game cannot be simplified, as required. |

Proof (Theorem 4)The following facts can be easily checked. (i) Nontermination can
only occur if infinitely many refinements are made. (ii) Every set of concrete states
described by an abstract state is closed under bisimilarity. (iii) An abstract state that has
only one related bisimilarity-equivalence class of concrete states can only have may
transitions that are also must transitions. (iv) Every resolving of an abstract-state via
a pre-based refinement heuristics yields a non-trivial division of the related concrete
states. Hence, only finitely many such steps can be made, since only finitely many
bisimilarity-equivalence classes exist (afds finite).

23

