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zAbstra
t. Re
ent development in 
omputer hardware has brought morewide-spread emergen
e of shared-memory, multi-
ore systems. These ar-
hite
tures o�er opportunities to speed up various tasks { among othersLTL model 
he
king. In the paper we show a design for a parallel shared-memory LTL model 
he
ker, that is based on a distributed-memory algo-rithm. To a
hieve good s
alability, we have devised and experimentallyevaluated several implementation te
hniques, whi
h we present in thepaper.1 Introdu
tionWith the arrival of 64-bit te
hnology the traditional spa
e limitations in formalveri�
ation may be
ome less severe. Instead, time 
ould qui
kly be
ome an im-portant bottlene
k. This naturally raises interest in using parallelism to �ght the\time-explosion" problem.Mu
h of the extensive resear
h on the parallelization of model 
he
king algo-rithms followed the distributed-memory programming model and the algorithmswere parallelized for networks of workstations, largely due to easy a

ess to net-works of workstations. Re
ent shift in ar
hite
ture design toward multi-
ores hasintensi�ed resear
h pertaining to shared-memory paradigm as well.In [10℄ G. Holzmann proposed an extension of the SPIN model-
he
ker fordual-
ore ma
hines. The algorithms keep their linear time 
omplexity and theliveness 
he
king algorithm supports full LTL. The algorithm for 
he
king safetyproperties s
ales well to N-
ore systems. The algorithm for liveness 
he
king,whi
h is based on the original SPIN's nested DFS algorithm, is unable to s
ale toN-
ore systems. It is still an open problem to do s
alable veri�
ation of generalliveness properties on N-
ores with linear time 
omplexity.A di�erent approa
h to shared-memory model 
he
king is presented in [13℄,based on CTL� translation to Hesitant Alternating Automata. The proposedalgorithm uses so-
alled non-emptiness game for de
iding validity of the originalformula and is therefore largely unrelated to the algorithms based on fair-
y
ledete
tion.In this paper we show a design for a parallel shared-memory model 
he
k-ing tool, that is based on a distributed-memory algorithm due to �Cern�a and? This work has been partially supported by the Grant Agen
y of Cze
h Republi
grant No. 201/06/1338 and the A
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Pel�anek [7℄. The algorithm used is linear for properties expressible as weak B�u
hiautomata, whi
h 
omprises majority of LTL properties en
ountered in pra
ti
e.Although the worst-
ase 
omplexity is quadrati
, the algorithm exhibits verygood performan
e with real-life veri�
ation problems. To a
hieve good s
ala-bility, we have devised several implementation te
hniques, as presented in thispaper, and applied them to this algorithm.We expe
t, that appli
ation of the proposed implementation approa
hes toseveral other distributed-memory algorithms for LTL model-
he
king may bringsimilar improvements in s
alability on N-
ore systems.In Se
tion 2 we summarize the existing parallel algorithms for LTL model-
he
king (a

epting 
y
le dete
tion). In Se
tion 3 we present several implemen-tation te
hniques that were applied to multi-
ore implementation of the sele
tedalgorithm. In Se
tion 4 we report on s
alability tests and on 
omparison withdual-
ore Nested DFS algorithm.2 Parallel LTL Model-Che
king AlgorithmsEÆ
ient parallel solution of many problems often requires approa
hes radi
allydi�erent from those used to solve the same problems sequentially. Classi
al exam-ples are list rankings, 
onne
ted 
omponents, depth-�rst sear
h in planar graphset
. In the area of LTL model-
he
king the best known enumerative sequentialalgorithms based on fair-
y
le dete
tion are the Nested DFS algorithm [8, 12℄(implemented, e.g., in the model 
he
ker SPIN [11℄) and SCC-based algorithmsoriginating in Tarjan's algorithm for the de
omposition of the graph into strongly
onne
ted 
omponents (SCCs) [19℄. However, both algorithms rely on inherentlysequential depth-�rst sear
h postorder, hen
e it is diÆ
ult to adapt them to par-allel ar
hite
tures. Consequently, di�erent te
hniques and algorithms are needed.Unlike LTL model-
he
king, the rea
hability analysis is a veri�
ation problemwith eÆ
ient parallel solution. The reason is that the exploration of the statespa
e 
an be implemented e.g. using breadth-�rst sear
h. In the following, wesket
h four parallel algorithms for enumerative LTL model 
he
king that are,more or less, based on performing repeated parallel rea
hability to dete
t rea
h-able a

epting 
y
les. The reader is kindly asked to 
onsult the original sour
esfor the details.[MAP℄ The main idea of theMaximal A

epting Prede
essor Algorithm [4,6℄ is based on the fa
t that every a

epting vertex lying on an a

epting 
y
le isits own prede
essor. An algorithm that is dire
tly derived from the idea, wouldrequire expensive 
omputation as well as spa
e to store all proper a

eptingprede
essors of all (a

epting) verti
es. To remedy this obsta
le, the MAP algo-rithm stores only a single representative of all proper a

epting prede
essor forevery vertex. The representative is 
hosen as the maximal a

epting prede
essora

ordingly to a presupposed linear ordering � of verti
es (given e.g. by theirmemory representation). Clearly, if an a

epting vertex is its own maximal a
-
epting prede
essor, it lies on an a

epting 
y
le. Unfortunately, it 
an happen



that all the maximal a

epting prede
essor lie out of a

epting 
y
les. In that
ase, the algorithm removes all a

epting verti
es that are maximal a

eptingprede
essors of some vertex, and re
omputes the maximal a

epting prede
es-sors. This is repeated until an a

epting 
y
le is found or there are no morea

epting verti
es in the graph.The time 
omplexity of the algorithm is O(a2 � m), where a is the numberof a

epting verti
es. One of the key aspe
ts in
uen
ing the overall performan
eof the algorithm is the underlying ordering of verti
es used by the algorithm. Itis not possible to 
ompute the optimal ordering in parallel, hen
e heuristi
s for
omputing a suitable vertex ordering are used. ut[OWCTY℄ The next algorithm [7℄ is an extended enumerative version of the OneWay Cat
h Them Young Algorithm [9℄. The idea of the algorithm is torepeatedly remove verti
es from the graph that 
annot lie on an a

epting 
y
le.The two removal rules are as follows. First, a vertex is removed from the graphif it has no su

essors in the graph (the vertex 
annot lie on a 
y
le), se
ond, avertex is removed if it 
annot rea
h an a

epting vertex (a potential 
y
le thevertex lies on is non-a

epting). The algorithm performs removal steps as faras there are verti
es to be removed. In the end, either there are some verti
esremaining in the graph meaning that the original graph 
ontained an a

epting
y
le, or all verti
es have been removed meaning that the original graph had noa

epting 
y
les.The time 
omplexity of the algorithm is O(h � m) where h = h(G). Herethe fa
tor m 
omes from the 
omputation of elimination rules while the fa
torh relates to the number of global iterations the removal rules must be applied.Also note, that an alternative algorithm is obtained if the rules are repla
ed withtheir ba
kward sear
h 
ounterparts. ut[NEGC℄ The idea behind the Negative Cy
le Algorithm [5℄ is a transformationof the LTL model 
he
king problem to the problem of negative 
y
le dete
tion.Every edge of the graph outgoing from a non-a

epting vertex is labeled with 0while every edge outgoing from an a

epting vertex is labeled with �1. Clearly,the graph 
ontains a negative 
y
le if and only if it has an a

epting 
y
le.The algorithm exploits the walk to root strategy to dete
t the presen
e of anegative 
y
le. The strategy involves 
onstru
tion of the so 
alled parent graphthat keeps the shortest path to the initial vertex for every vertex of the graph.The parent graph is repeatedly 
he
ked for the existen
e of the path. If theshortest path does not exist for a given vertex, then the vertex is a part ofnegative, thus a

epting, 
y
le. The worst 
ase time 
omplexity of the algorithmis O(n �m). ut[BLEDGE℄ An edge (u; v) is 
alled a ba
k-level edge if it does not in
rease thedistan
e of the target vertex v form the initial vertex of the graph. The keyobservation 
onne
ting the 
y
le dete
tion problem with the ba
k-level edge
on
ept, as used in the Ba
k-Level Edges Algorithm [1℄, is that every 
y-
le 
ontains at least one ba
k-level edge. Ba
k-level edges are, therefore, used



as triggers to start a pro
edure that 
he
ks whether the edge is a part of ana

epting 
y
le. However, this is too expensive to be done 
ompletely for everyba
k-level edge. Therefore, several improvements and heuristi
s are suggestedand integrated within the algorithm to de
rease the number of tested edges andspeed-up the 
y
le test.The BFS pro
edure whi
h dete
ts ba
k-level edges runs in time O(m + n).In the worst 
ase, ea
h ba
k-level edge has to be 
he
ked to be a part of a 
y
le,whi
h requires linear time O(m+n) as well. Sin
e there is at most m ba
k-leveledges, the overall time 
omplexity of the algorithm is O(m:(m+ n)). utAll the algorithms allow for an eÆ
ient implementation on a parallel ar
hite
ture.The implementation is based on partitioning the graph (its verti
es) into disjointparts. Suitable partitioning is important to bene�t from parallelization.One parti
ular te
hnique, that is spe
i�
 to automata based LTL model
he
king, is 
y
le lo
ality preserving problem de
omposition [2, 14℄. The graph(produ
t automaton) originates from syn
hronous produ
t of the property andsystem automata. Hen
e, verti
es of produ
t automaton graph are ordered pairs.An interesting observation is that every 
y
le in a produ
t automaton graphemerges from 
y
les in system and property automaton graphs. Let A;B beB�u
hi automata and A 
 B their syn
hronous produ
t. If C is a strongly 
on-ne
ted 
omponent in the automaton graph of A
B, then A-proje
tion of C andB-proje
tion of C are (not ne
essarily maximal) strongly 
onne
ted 
omponentsin automaton graphs of A and B, respe
tively.As the property automaton origins from the LTL formula to be veri�ed, itis typi
ally quite small and 
an be pre-analyzed. In parti
ular, it is possible toidentify all strongly 
onne
ted 
omponents of the property automaton graph. Apartition fun
tion may then be devised, that respe
ts strongly 
onne
ted 
om-ponents of the property automaton and therefore preserves 
y
le lo
ality. Thepartitioning strategy is to assign all verti
es that proje
t to the same strongly
onne
ted 
omponent of the property automaton graph to the same sub-problem.Sin
e no 
y
le is split among di�erent sub-problems it is possible to employ lo-
alized Nested DFS algorithm to perform lo
al a

epting 
y
le dete
tion simul-taneously.Yet another interesting information 
an be drawn from the property au-tomaton graph de
omposition. Maximal strongly 
onne
ted 
omponents 
an be
lassi�ed into three 
ategories:Type F: (Fully A

epting) Any 
y
le within the 
omponent 
ontains at leastone a

epting vertex. (There is no non-a

epting 
y
le within the 
ompo-nent.)Type P: (Partially A

epting) There is at least one a

epting 
y
le and onenon-a

epting 
y
le within the 
omponent.Type N: (Non-A

epting) There is no a

epting 
y
le within the 
omponent.Realizing that vertex of a produ
t automaton graph is a

epting only if the
orresponding vertex in the property automaton graph is a

epting it is possible



to 
hara
terize types of strongly 
onne
ted 
omponents of produ
t automatongraph a

ording to types of 
omponents in the property automaton graph. This
lassi�
ation of 
omponents into types N , F , and P 
an be used to gain addi-tional improvements that may be in
orporated into the above given algorithms.3 Implementation Te
hniquesIt is a well known fa
t, that a distributed-memory, parallel algorithm is straight-forwardly transformed into a shared-memory one. However, there are severalineÆ
ien
ies involved in this dire
t translation. Several traits of shared-memoryar
hite
ture may be leveraged to improve real-world performan
e of su
h im-plementations. In this se
tion, we present our approa
hes at the 
hallenges ofshared-memory ar
hite
ture and its spe
i�
 
hara
teristi
s.3.1 Shared-Memory PlatformWe work with a model based on threads that share all memory, although theyhave separate sta
ks in their shared address spa
e and a spe
ial thread-lo
al stor-age to store thread-private data. Our working environment is POSIX, with itsimplementation of threads as lightweight pro
esses. Swit
hing 
ontexts amongdi�erent threads is 
heaper than swit
hing 
ontexts among full-featured pro-
esses with separate address spa
es, so using more threads than there are CPUsin the system in
urs only a minor penalty.Criti
al Se
tions, Lo
king and Lo
k Contention. In a shared-memorysetting, a

ess to memory, that may be used for writing by more than a singlethread, has to be 
ontrolled through use of mutual ex
lusion, otherwise, ra
e
onditions will o

ur. This is generally a
hieved through use of a \mutual ex-
lusion devi
e", so-
alled mutex. A thread wishing to enter a 
riti
al se
tion hasto lo
k the asso
iated mutex, whi
h may blo
k the 
alling thread if the mutexis lo
ked already by some other thread. An e�e
t 
alled resour
e or lo
k 
on-tention is asso
iated with this behaviour. This o

urs, when two or more threadshappen to need to enter the same 
riti
al se
tion (and therefore lo
k the samemutex), at the same time. If 
riti
al se
tions are long or they are entered veryoften, 
ontention starts to 
ause observable performan
e degradation, as moreand more time is spent waiting for mutexes.Role of Pro
essor Ca
he. There are two fairly orthogonal issues asso
iatedwith pro
essor 
a
he. First, 
a
he 
oheren
e whi
h is implemented by hardware,but its eÆ
ien
y is a�e
ted by programmer, and 
a
he eÆ
ien
y, whi
h mostlydepends on data stru
tures and algorithms employed.Ca
he 
oheren
e poses an eÆ
ien
y penalty when there are many pro
essorswriting to same area of memory. This is largely avoided by the distributed al-gorithm, however, lo
king and a

ess to shared data stru
tures have no other
hoi
e. Ca
he 
oheren
e on modern ar
hite
tures works at a level of 
a
he lines,roughly 64 byte 
hunks of memory that are fet
hed from main memory into
a
he at on
e.



Modern mutex implementations ensure that the mutex is the only thingpresent on a given 
a
he line, so it does not a�e
t other data, and, more impor-tantly, it ensures that two mutexes never share a 
a
he line, whi
h would posea performan
e penalty.Re
ent development in multi-
ore platforms deals with 
a
he 
oheren
e prob-lem in a di�erent, more eÆ
ient manner, namely, by sharing the level two 
a
heamong two or more 
ores, therefore redu
ing the 
a
he 
oheren
e overhead sig-ni�
antly. Yet, with the 
urrent state of te
hnology, this still does not mitigatethe overhead 
ompletely.3.2 Implementing Algorithms in Shared-MemoryThe above 
onsiderations bring us to the a
tual algorithm implementation andthe asso
iated te
hniques we 
ame up with. They are all designed to redu
e
ommuni
ation overhead, exploiting traits of shared-memory systems that arenot available in distributed-memory environments. Consequently, the main goalis to improve s
alability of the implementation, whi
h is inversely proportional to
ommuni
ation overhead and its growth with in
reasing number of threads. Thatsaid, keeping in mind the possibility to s
ale beyond shared-memory systems,we try to keep the implementation in a shape that would make a 
ombined toolto work eÆ
iently on 
lusters of multi-CPU ma
hines a
hievable.When we venture into a stri
tly shared-memory implementation, one maypose a question, whether a di�erent approa
h of using a standard serial algo-rithm modi�ed to allow parallelisation at lower levels of abstra
tion would givea s
alable, eÆ
ient program for multi-CPU and/or multi-
ore systems. Our ef-forts at extra
ting su
h a mi
ro-parallelism in our 
odebase have been largelyfruitless, due high syn
hronisation 
ost relative to amount of work we were ableto perform in parallel. Although we intend to do more resear
h on this topi
, wedo not expe
t signi�
ant results.In the following se
tions, we explore the possibilities to build on existingdistributed-memory approa
hes, in the vein of stati
ally-partitioned graphs, re-du
ing the overhead using idioms only possible due to lo
ality of memory.3.3 Communi
ationGenerally, in a distributed 
omputation, all 
ommuni
ation is a

omplished bypassing messages { eg. using a library like MPI for 
luster message passing. How-ever, in 
ommuni
ation-intensive programs, or those sensitive to 
ommuni
ationdelay, using general-purpose message passing interfa
e is fairly ineÆ
ient.In shared-memory, most of the 
ommuni
ation overhead 
an be eliminatedby using more appropriate 
ommuni
ation primitives, like high-performan
e,
ontention- and lo
k- free FIFOs (First In, First Out queues). We have adopteda variant of the two-lo
k algorithm { a de
ent 
ompromise between performan
eon one hand and simpli
ity and portability on the other { presented in [17℄.Our modi�
ations involve improved 
a
he-eÆ
ien
y (by using a linked list ofmemory-
ontinuous blo
ks, instead of linked list of single items) and only using



a single write-lo
k, instead of a pair of lo
ks, one for reading and one for writing,sin
e there is ever only one thread reading, while there may be several trying towrite.Every thread involved in the 
omputation owns a single instan
e of the FIFOand all messages for this thread are pushed onto this single queue. This mayintrodu
e a sour
e of resour
e-
ontention, where many pro
esses are trying toappend messages to a single queue, but 
onsidering the message distribution inour system, this turns out to be a negligible problem in pra
ti
e. With di�erentpatterns of 
ommuni
ation, a 
omplete lo
k-free design may be more appropriate(one is given in [17℄).type FIFO of T:type Node:buffer: array of Tnext: pointer to Noderead, write: integernodeSize: integer (size of buffer)head, tail: pointer to NodewriteLo
k: mutex Fig. 1. FIFO representationRequire: f is a FIFO of T instan
e, x of type T is an element to enqueueEnsure: f 
ontains x as its last elementlo
k( f:writeMutex )if f:tail:write = f:nodeSize thent newly allo
ated Node, all �elds 0elset f:tailt:buffer[t:write℄ xt:write t:write+ 1if f:tail 6= t thenf:tail:next = tf:tail = tunlo
k( f:writeMutex ) Fig. 2. FIFO enqueueRepresentation and pseudo-
ode for enqueue and dequeue algorithms arefound in Figures 1, 2 and 3, respe
tively. The 
orre
tness, linearizability andliveness proofs as given in [17℄ are straightforwardly adapted to our implemen-tation and thus left out.Alternatives to our implementation, whi
h may be more appropriate in dif-ferent settings, in
lude a ring-bu�er �fo implementation (if there is a bound on



Require: f is a non-empty FIFO instan
eEnsure: front element of f is dequeued and then returnedif f:head:read = f:nodeSize thenf:head f:head:nextf:head:read f:head:read+ 1return f:head:buffer[f:head:read� 1℄Fig. 3. FIFO dequeuethe amount of in-
ight data known beforehand, the ring-bu�er implementationmay be more eÆ
ient) and possibly an algorithm based on swapping in
omingand outgoing queues (whi
h 
ould be easily implemented as a pointer swap).The latter gives results 
omparable to the des
ribed FIFO method, althoughthe 
ode and lo
king behaviour is mu
h more 
omplex and error-prone, whi
hmade us opt for the simpler FIFO implementation.3.4 Memory Allo
ationIn a distributed 
omputation, every pro
ess has simply its own memory whi
h itfully manages. In a shared-memory, however, we prefer to manage the memoryas a single shared area, sin
e an equal partitioning of available memory andseparate management may fall short of eÆ
ient resour
e usage. However, thisposes some 
hallenges, espe
ially in allo
ation-intensive environment like ours.First, a na��ve approa
h of prote
ting the allo
ation routines with a simplemutual ex
lusion is highly prone to resour
e 
ontention. Fortunately, moderngeneral-purpose allo
ator implementations refrain from this idea and have agenerally non-
ontending behaviour on allo
ation. However, releasing memoryba
k for reuse is more 
omplex to a
hieve without introdu
ing 
ontention, in asetting where it is often the 
ase that thread other than the one allo
ating the
hunk tries to release it.There are known general-purpose solutions to this problem, eg. [16℄, howeverthey are 
urrently not in widespread use, therefore we have to refrain fromthe above-mentioned pattern of releasing memory from di�erent than allo
atingthread, in order to avoid 
ontention and the a

ompanying slowdown.The message-passing implementation we employ is pointer-based, in otherwords, the message sent is only a pointer and the payload (a
tual interestingmessage 
ontent) is allo
ated on the shared heap and it may be either reused orreleased by the re
eiving thread. Observe however, that releasing the asso
iatedmemory in the re
eiving thread will introdu
e the situation whi
h we are tryingto avoid.We side-step the issue by adding a new 
ommuni
ation FIFO to ea
h thread(re
all that our 
ommuni
ation indu
es only low overhead and virtually no 
on-tention). When a re
eiving thread de
ides that the message 
ontent needs to bedisposed of, instead of doing it itself, sends the message ba
k to the originatingthread using the se
ond FIFO. The originating thread then, at 
onvenient inter-



vals, releases the memory in a single bat
h, having an interesting side-e�e
t ofslightly improving 
a
he-eÆ
ien
y.3.5 EÆ
ient Termination Dete
tionSin
e our algorithms rely on work distribution among several largely independentthreads, similarly to a distributed algorithm, we need a spe
i�
 algorithm forshared-memory termination dete
tion, that would pose minimal overhead andminimal serialisation.One possible solution is presented in [15℄, whi
h does not use lo
king andrelies on the system to provide an enqueue-with-wakeup primitive. However, inour system, we have primitives available that support a somewhat di�erent ap-proa
h: implementation of sleeping/wakeup primitives already relies on lo
kingand we leverage this inherent lo
king in our termination dete
tion algorithm.The POSIX threading library o�ers a me
hanism 
alled \
ondition sig-nalling", whi
h we use to implement thread sleeping and wakeup. A \
ondition"is a devi
e that allows to be waited-for by its owning thread and \signalling a
ondition" from another thread will 
ause the waiting thread to wake up and
ontinue exe
ution. However, this devi
e in itself is ra
e-prone, sin
e the 
ondi-tion may be signalled just before the owner goes to sleep, leading to a deadlo
k {another signal may never 
ome. Therefore, the 
ondition is always prote
ted bya mutex, whi
h is always lo
ked through the exe
ution of the owner thread andis only atomi
ally unlo
ked when the thread enters sleep state and atomi
allyre
laimed before waking up.Sin
e the available mutex implementation allows a lo
k-or-fail behaviour, asopposed to lo
k-or-wait whi
h is usually employed for prote
ting 
riti
al se
tions,we 
an use the 
ondition devi
e to implement an eÆ
ient termination dete
tionalgorithm.Observe, that at any time when a thread is idle, its 
ondition-prote
ting mu-tex is unlo
ked and 
onversely, whenever the thread is busy, this mutex is lo
ked.So the termination dete
tion algorithm �rst tries to lo
k 
ondition mutexes of allworker threads, one by one, using the lo
k-or-fail behaviour. Then, it pro
eedsto 
he
k the queues. If it su

eeded lo
king all threads and all queues are empty,termination has o

urred. Pseudo-
ode for the algorithm is shown in Figure 4.We run the termination dete
tion in a dedi
ated s
heduler thread, whi
h alsowakes up threads that have pending work. Ie if it has su

essfully grabbed anylo
ks, queues belonging to those lo
ked threads are 
he
ked, and if any is foundto be non-empty, the thread is awakened. After every run, all grabbed lo
ks arereleased again.Moreover, although this algorithm works 
orre
tly as-is, it is rather ineÆ
ientif left running in a loop. Therefore, the s
heduler thread goes to sleep after everyiteration, and is woken up by any worker thread that goes idle. This requiresa slight modi�
ation to the algorithm above, sin
e it adds a ra
e-
ondition,where the last thread going to sleep wakes up the s
heduler, whi
h then runs thealgorithm before the 
alling thread manages to go to sleep, assuming termination



Require: threads: array of Thread, Thread 
ontains idleMutex and idleCondition,fifoEnsure: termination has o

urred i� true is returnedmutex: Mutex, 
ond: Condition, held: array of Booleanbusy  falsefor t in threads doif trylo
k(t:idleMutex) thenheld[t℄ trueelseheld[t℄ falsebusy  truefor t in threads doif not empty( t:fifo ) thenbusy  trueif held[t℄ thensignal(t:idleCondition)for t in threads dounlo
k( t:idleMutex )return not busyFig. 4. Termination Dete
tion in Shared-Memorydid not happen and going to sleep, at whi
h point the system deadlo
ks, aseveryone is idle.An alternative approa
h would be to syn
hronously exe
ute the terminationdete
tion algorithm in the thread that has be
ome idle, but due to the nature ofthe system, the above is more pra
ti
al 
ode-wise and only in
urs very insignif-i
ant overhead.3.6 Implementing OWCTY in Shared-MemoryRequire: initial is initial stateS  Rea
hability(initial)old ;while S 6= old doold SS  Reset(S)S  Rea
hability(S)S  Elimination(S)return S 6= ; Fig. 5. OWCTY Pseudo-
odeAs 
an be seen from the pseudo-
ode (refer to Figure 5), the main OWCTYloop 
onsists of few steps, namely, rea
hability, elimination and reset. All of them




an be parallelised, but only on their own, whi
h requires a barrier after ea
hof them. Only rea
hability and elimination run in parallel in the 
urrent 
ode,reset is to be implemented.The algorithm uses a BFS state spa
e visitor to implement both rea
habilityand elimination. The underlying BFS is 
urrently implemented using a partitionfun
tion, ie, every state is unambiguously assigned to one of the threads. Theframework in whi
h the algorithm is implemented o�ers a multi-threaded BFSimplementation based on this kind of state-spa
e partitioning. The algorithmitself is only presented with resulting transition and node-expansion events, un-
on
erned with the partitioning or 
ommuni
ation details.The barriers are implemented using the termination dete
tion algorithm pre-sented { the 
omputation is initiated by the main thread and the terminationdete
tion is then exe
uted in this same thread, whi
h also doubles as a s
hed-uler. When the step terminates, the main thread prepares the next step, spawnsthe worker threads and initiates the 
omputation again. Sin
e the hash table isalways thread-private, ie owned ex
lusively by a single thread, the main threadhas to transfer the hash table among di�erent threads in the serial portion of
omputation. This is nonetheless done 
heaply (few pointer operations only) sois probably not worth parallelising.4 Experiments4.1 MethodologyThe main testing ma
hine we have used is a 16-way AMD Opteron 885 (8 CPUunits with 2 
ores ea
h). All timed programs were 
ompiled using g

 4.1.220060525 (Red Hat 4.1.1-1) in 32-bit mode, using -O3. This limits addressablememory to 3GB, whi
h was enough for our testing. The ma
hine has 64GB ofmemory installed, whi
h means that none of the runs were a�e
ted by swapping.For this paper, our main 
on
ern is speed and s
alability, therefore we fo
uson these two parameters. Measurement was done using standard UNIX time
ommand, whi
h measures real and 
pu times used by program.All the models we used as inputs to the model 
he
king algorithms, 
omefrom BEEM database [18℄. The models are in the DVE modeling language, asused in DiVinE [3℄, for SPIN we have used state-spa
e equivalent models in theProMeLa language.4.2 ResultsFirst, we have measured run-times of algorithms presented in Se
tion 2 thatwere implemented using DiVinE framework and mpi
h2 library 
ompiled forshared-memory ar
hite
ture.These implementations do not exhibit desired s
alability as shown in Fig-ure 6. Some algorithms have s
aled up to 4 
ores. On the other hand, usingmore 
ores did not bring any speedup and, as a matter of fa
t, slowed the 
om-putation down due to 
ommuni
ation overhead introdu
ed by the MPI library.
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Fig. 6. Run-times of algorithms implemented using DiVinE and MPI.We have performed more experiments to evaluate the eÆ
ien
y of te
hniquesintrodu
ed in Se
tion 3. We have implemented parallel breadth-�rst sear
h basedrea
hability and the OWCTY algorithm. Run-times of the thread-optimized BFSrea
hability are given in Figure 8, while the run-times of the thread-optimizedimplementation of OWCTY algorithm are reported in Figure 7.The thread-optimized implementations display better s
alability behavior,sin
e adding 
ores redu
es 
omputation time at least up to 12 
ores, for somemodels even to 16 
ores. Between 12 and 16 
ores, the 
ommuni
ation overheadrea
hes a limiting threshold, so adding more does not bring any further speedupand may even impede a slight performan
e setba
k.4.3 Comparison with SPINSin
e the multi-
ore version of SPIN was not publi
ly available, in order to makea dire
t 
omparison, we run a single rea
hability on the produ
t automatongraph with SPIN. As SPIN was running only the �rst pro
edure of the NestedDFS algorithm we get a good lower bound on runtime of the multi-
ore SPINimplementation. SPIN was used with parameters -m10000000 -w27 to get thebest performan
e. We have not observed any performan
e penalty from usingbigger sta
k or hash table than stri
tly ne
essary.We have also measured run-times of a dual-
ore Nested DFS algorithm asproposed in [10℄, that was implemented using DiVinE state generator. The run-times are reported in Table 1.
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Table 2 gives run-times for SPIN, multi-threaded BFS rea
hability, andOWCTY 
y
le dete
tion algorithm, both performed on 16 
ores.Model real 
puelevator2.3a.prop4 0:53.4 1:16leader-�lters.5.prop2 0:9.7 0:18.1peterson.4.prop4 0:24.1 0:33.1rether.5.prop5 0:45.3 1:5.9Table 1. Parallel Nested DFS in DiVinE.
Model SPIN rea
hability BFS rea
hability OWCTYelevator2.3a.prop4 0:14.4 0:12.1 0:26.8peterson.4.prop4 0:7.4 0:4.2 0:9.2Table 2. Comparison with SPIN

5 Con
lusionsWe observe, that the algorithms employed by DiVinE, when augmented withthe shared-memory-spe
i�
 te
hniques, s
ale fairly well on multiple 
ores. Our
urrent OWCTY-based, multi-threaded implementation s
ales up to 12, and forsome models, even to 16 
ores, whi
h is a de�nite improvement over the MPIversion.This basi
ally ful�lls the goal of implementing a s
alable parallel model
he
ker. Thanks to the algorithm used, it has a linear time 
omplexity for ma-jority of LTL properties veri�ed in pra
ti
e and a
hieves s
alability that makesit pra
ti
al to use on ma
hines with several CPU 
ores available.From the experimental data we see that SPIN outperforms DiVinE in rawspeed, but due to SPIN's usage of the Nested DFS algorithm, even if using aparallel nested sear
h, it is bound to exe
ute primary DFS on a single 
ore,whi
h severely limits its s
alability potential.From the pro�ling work we have done, it is 
lear that the main bottlene
k ofDiVinE is its state generator. Improvements in this area should redu
e the abso-lute running times, but will likely negatively a�e
t relative s
alability. Therefore,we will 
ontinue to work on redu
ing parallel exe
ution overhead, to maintainor even improve 
urrent s
alability.In the pursue of s
alability, we also intend to explore alternative approa
hesto state-spa
e partitioning, non-partitioning approa
hes and usefulness of load-balan
ing in this 
ontext.
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