Scalable Multi-Core LTL Model-Checking*

J. Barnat, L. Brim, and P. Rockai

Faculty of Informatics, Masaryk University
Brno, Czech Republic
{barnat,brim,xrockai }@Qfi. muni.cz

Abstract. Recent development in computer hardware has brought more
wide-spread emergence of shared-memory, multi-core systems. These ar-
chitectures offer opportunities to speed up various tasks among others
LTL model checking. In the paper we show a design for a parallel shared-
memory LTL model checker, that is based on a distributed-memory algo-
rithm. To achieve good scalability, we have devised and experimentally
evaluated several implementation techniques, which we present in the

paper.

1 Introduction

With the arrival of 64-bit technology the traditional space limitations in formal
verification may become less severe. Instead, time could quickly become an im-
portant bottleneck. This naturally raises interest in using parallelism to fight the
“time-explosion” problem.

Much of the extensive research on the parallelization of model checking algo-
rithms followed the distributed-memory programming model and the algorithms
were parallelized for networks of workstations, largely due to easy access to net-
works of workstations. Recent shift in architecture design toward multi-cores has
intensified research pertaining to shared-memory paradigm as well.

In [10] G. Holzmann proposed an extension of the SPIN model-checker for
dual-core machines. The algorithms keep their linear time complexity and the
liveness checking algorithm supports full LTL. The algorithm for checking safety
properties scales well to N-core systems. The algorithm for liveness checking,
which is based on the original SPIN’s nested DFS algorithm, is unable to scale to
N-core systems. It is still an open problem to do scalable verification of general
liveness properties on N-cores with linear time complexity.

A different approach to shared-memory model checking is presented in [13],
based on CTL* translation to Hesitant Alternating Automata. The proposed
algorithm uses so-called non-emptiness game for deciding validity of the original
formula and is therefore largely unrelated to the algorithms based on fair-cycle
detection.

In this paper we show a design for a parallel shared-memory model check-
ing tool, that is based on a distributed-memory algorithm due to Cerna and

* This work has been partially supported by the Grant Agency of Czech Republic
grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

Peldnek [7]. The algorithm used is linear for properties expressible as weak Biichi
automata, which comprises majority of LTL properties encountered in practice.
Although the worst-case complexity is quadratic, the algorithm exhibits very
good performance with real-life verification problems. To achieve good scala-
bility, we have devised several implementation techniques, as presented in this
paper, and applied them to this algorithm.

We expect, that application of the proposed implementation approaches to
several other distributed-memory algorithms for LTL model-checking may bring
similar improvements in scalability on N-core systems.

In Section 2 we summarize the existing parallel algorithms for LTL model-
checking (accepting cycle detection). In Section 3 we present several implemen-
tation techniques that were applied to multi-core implementation of the selected
algorithm. In Section 4 we report on scalability tests and on comparison with
dual-core Nested DFS algorithm.

2 Parallel LTL Model-Checking Algorithms

Efficient parallel solution of many problems often requires approaches radically
different from those used to solve the same problems sequentially. Classical exam-
ples are list rankings, connected components, depth-first search in planar graphs
etc. In the area of LTL model-checking the best known enumerative sequential
algorithms based on fair-cycle detection are the Nested DFS algorithm [8,12]
(implemented, e.g., in the model checker SPIN [11]) and SCC-based algorithms
originating in Tarjan’s algorithm for the decomposition of the graph into strongly
connected components (SCCs) [19]. However, both algorithms rely on inherently
sequential depth-first search postorder, hence it is difficult to adapt them to par-
allel architectures. Consequently, different techniques and algorithms are needed.
Unlike LTL model-checking, the reachability analysis is a verification problem
with efficient parallel solution. The reason is that the exploration of the state
space can be implemented e.g. using breadth-first search. In the following, we
sketch four parallel algorithms for enumerative LTL model checking that are,
more or less, based on performing repeated parallel reachability to detect reach-
able accepting cycles. The reader is kindly asked to consult the original sources
for the details.

imap] The main idea of the Maximal Accepting Predecessor Algorithm [4,
6] is based on the fact that every accepting vertex lying on an accepting cycle is
its own predecessor. An algorithm that is directly derived from the idea, would
require expensive computation as well as space to store all proper accepting
predecessors of all (accepting) vertices. To remedy this obstacle, the MAP algo-
rithm stores only a single representative of all proper accepting predecessor for
every vertex. The representative is chosen as the mazimal accepting predecessor
accordingly to a presupposed linear ordering < of vertices (given e.g. by their
memory representation). Clearly, if an accepting vertex is its own maximal ac-
cepting predecessor, it lies on an accepting cycle. Unfortunately, it can happen

that all the maximal accepting predecessor lie out of accepting cycles. In that
case, the algorithm removes all accepting vertices that are maximal accepting
predecessors of some vertex, and recomputes the maximal accepting predeces-
sors. This is repeated until an accepting cycle is found or there are no more
accepting vertices in the graph.

The time complexity of the algorithm is O(a? - m), where a is the number
of accepting vertices. One of the key aspects influencing the overall performance
of the algorithm is the underlying ordering of vertices used by the algorithm. It
is not possible to compute the optimal ordering in parallel, hence heuristics for
computing a suitable vertex ordering are used. O

towcty] The next algorithm [7] is an extended enumerative version of the One
Way Catch Them Young Algorithm [9]. The idea of the algorithm is to
repeatedly remove vertices from the graph that cannot lie on an accepting cycle.
The two removal rules are as follows. First, a vertex is removed from the graph
if it has no successors in the graph (the vertex cannot lie on a cycle), second, a
vertex is removed if it cannot reach an accepting vertex (a potential cycle the
vertex lies on is non-accepting). The algorithm performs removal steps as far
as there are vertices to be removed. In the end, either there are some vertices
remaining in the graph meaning that the original graph contained an accepting
cycle, or all vertices have been removed meaning that the original graph had no
accepting cycles.

The time complexity of the algorithm is O(h - m) where h = h(G). Here
the factor m comes from the computation of elimination rules while the factor
h relates to the number of global iterations the removal rules must be applied.
Also note, that an alternative algorithm is obtained if the rules are replaced with
their backward search counterparts. O

inecc] The idea behind the Negative Cycle Algorithm [5] is a transformation
of the LTL model checking problem to the problem of negative cycle detection.
Every edge of the graph outgoing from a non-accepting vertex is labeled with 0
while every edge outgoing from an accepting vertex is labeled with —1. Clearly,
the graph contains a negative cycle if and only if it has an accepting cycle.
The algorithm exploits the walk to root strategy to detect the presence of a
negative cycle. The strategy involves construction of the so called parent graph
that keeps the shortest path to the initial vertex for every vertex of the graph.
The parent graph is repeatedly checked for the existence of the path. If the
shortest path does not exist for a given vertex, then the vertex is a part of
negative, thus accepting, cycle. The worst case time complexity of the algorithm
is O(n - m). O

srepce; An edge (u,v) is called a back-level edge if it does not increase the
distance of the target vertex v form the initial vertex of the graph. The key
observation connecting the cycle detection problem with the back-level edge
concept, as used in the Back-Level Edges Algorithm [1], is that every cy-
cle contains at least one back-level edge. Back-level edges are, therefore, used

as triggers to start a procedure that checks whether the edge is a part of an
accepting cycle. However, this is too expensive to be done completely for every
back-level edge. Therefore, several improvements and heuristics are suggested
and integrated within the algorithm to decrease the number of tested edges and
speed-up the cycle test.

The BFS procedure which detects back-level edges runs in time O(m + n).
In the worst case, each back-level edge has to be checked to be a part of a cycle,
which requires linear time O(m +n) as well. Since there is at most m back-level
edges, the overall time complexity of the algorithm is O(m.(m + n)). O

All the algorithms allow for an efficient implementation on a parallel architecture.
The implementation is based on partitioning the graph (its vertices) into disjoint
parts. Suitable partitioning is important to benefit from parallelization.

One particular technique, that is specific to automata based LTL model
checking, is cycle locality preserving problem decomposition [2,14]. The graph
(product automaton) originates from synchronous product of the property and
system automata. Hence, vertices of product automaton graph are ordered pairs.
An interesting observation is that every cycle in a product automaton graph
emerges from cycles in system and property automaton graphs. Let A, B be
Biichi automata and A ® B their synchronous product. If C is a strongly con-
nected component in the automaton graph of A® B, then A-projection of C' and
B-projection of C are (not necessarily maximal) strongly connected components
in automaton graphs of A and B, respectively.

As the property automaton origins from the LTL formula to be verified, it
is typically quite small and can be pre-analyzed. In particular, it is possible to
identify all strongly connected components of the property automaton graph. A
partition function may then be devised, that respects strongly connected com-
ponents of the property automaton and therefore preserves cycle locality. The
partitioning strategy is to assign all vertices that project to the same strongly
connected component, of the property automaton graph to the same sub-problem.
Since no cycle is split among different sub-problems it is possible to employ lo-
calized Nested DFS algorithm to perform local accepting cycle detection simul-
taneously.

Yet another interesting information can be drawn from the property au-
tomaton graph decomposition. Maximal strongly connected components can be
classified into three categories:

Type F: (Fully Accepting) Any cycle within the component contains at least
one accepting vertex. (There is no non-accepting cycle within the compo-
nent.)

Type P: (Partially Accepting) There is at least one accepting cycle and one
non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the component.

Realizing that vertex of a product automaton graph is accepting only if the
corresponding vertex in the property automaton graph is accepting it is possible

to characterize types of strongly connected components of product automaton
graph according to types of components in the property automaton graph. This
classification of components into types N, F', and P can be used to gain addi-
tional improvements that may be incorporated into the above given algorithms.

3 Implementation Techniques

It is a well known fact, that a distributed-memory, parallel algorithm is straight-
forwardly transformed into a shared-memory one. However, there are several
inefficiencies involved in this direct translation. Several traits of shared-memory
architecture may be leveraged to improve real-world performance of such im-
plementations. In this section, we present our approaches at the challenges of
shared-memory architecture and its specific characteristics.

3.1 Shared-Memory Platform

We work with a model based on threads that share all memory, although they
have separate stacks in their shared address space and a special thread-local stor-
age to store thread-private data. Our working environment is POSIX, with its
implementation of threads as lightweight processes. Switching contexts among
different threads is cheaper than switching contexts among full-featured pro-
cesses with separate address spaces, so using more threads than there are CPUs
in the system incurs only a minor penalty.

Critical Sections, Locking and Lock Contention. In a shared-memory
setting, access to memory, that may be used for writing by more than a single
thread, has to be controlled through use of mutual exclusion, otherwise, race
conditions will occur. This is generally achieved through use of a “mutual ex-
clusion device”, so-called mutex. A thread wishing to enter a critical section has
to lock the associated mutex, which may block the calling thread if the mutex
is locked already by some other thread. An effect called resource or lock con-
tention is associated with this behaviour. This occurs, when two or more threads
happen to need to enter the same critical section (and therefore lock the same
mutex), at the same time. If critical sections are long or they are entered very
often, contention starts to cause observable performance degradation, as more
and more time is spent waiting for mutexes.

Role of Processor Cache. There are two fairly orthogonal issues associated
with processor cache. First, cache coherence which is implemented by hardware,
but its efficiency is affected by programmer, and cache efficiency, which mostly
depends on data structures and algorithms employed.

Cache coherence poses an efficiency penalty when there are many processors
writing to same area of memory. This is largely avoided by the distributed al-
gorithm, however, locking and access to shared data structures have no other
choice. Cache coherence on modern architectures works at a level of cache lines,
roughly 64 byte chunks of memory that are fetched from main memory into
cache at once.

Modern mutex implementations ensure that the mutex is the only thing
present, on a given cache line, so it does not affect other data, and, more impor-
tantly, it ensures that two mutexes never share a cache line, which would pose
a performance penalty.

Recent development in multi-core platforms deals with cache coherence prob-
lem in a different, more efficient manner, namely, by sharing the level two cache
among two or more cores, therefore reducing the cache coherence overhead sig-
nificantly. Yet, with the current state of technology, this still does not mitigate
the overhead completely.

3.2 Implementing Algorithms in Shared-Memory

The above considerations bring us to the actual algorithm implementation and
the associated techniques we came up with. They are all designed to reduce
communication overhead, exploiting traits of shared-memory systems that are
not available in distributed-memory environments. Consequently, the main goal
is to improve scalability of the implementation, which is inversely proportional to
communication overhead and its growth with increasing number of threads. That
said, keeping in mind the possibility to scale beyond shared-memory systems,
we try to keep the implementation in a shape that would make a combined tool
to work efficiently on clusters of multi-CPU machines achievable.

When we venture into a strictly shared-memory implementation, one may
pose a question, whether a different approach of using a standard serial algo-
rithm modified to allow parallelisation at lower levels of abstraction would give
a scalable, efficient program for multi-CPU and/or multi-core systems. Our ef-
forts at extracting such a micro-parallelism in our codebase have been largely
fruitless, due high synchronisation cost relative to amount of work we were able
to perform in parallel. Although we intend to do more research on this topic, we
do not expect significant results.

In the following sections, we explore the possibilities to build on existing
distributed-memory approaches, in the vein of statically-partitioned graphs, re-
ducing the overhead using idioms only possible due to locality of memory.

3.3 Communication

Generally, in a distributed computation, all communication is accomplished by
passing messages eg. using a library like MPI for cluster message passing. How-
ever, in communication-intensive programs, or those sensitive to communication
delay, using general-purpose message passing interface is fairly inefficient.

In shared-memory, most of the communication overhead can be eliminated
by using more appropriate communication primitives, like high-performance,
contention- and lock- free FIFOs (First In, First Out queues). We have adopted
a variant of the two-lock algorithm — a decent compromise between performance
on one hand and simplicity and portability on the other — presented in [17].
Our modifications involve improved cache-efficiency (by using a linked list of
memory-continuous blocks, instead of linked list of single items) and only using

a single write-lock, instead of a pair of locks, one for reading and one for writing,
since there is ever only one thread reading, while there may be several trying to
write.

Every thread involved in the computation owns a single instance of the FIFO
and all messages for this thread are pushed onto this single queue. This may
introduce a source of resource-contention, where many processes are trying to
append messages to a single queue, but considering the message distribution in
our system, this turns out to be a negligible problem in practice. With different
patterns of communication, a complete lock-free design may be more appropriate
(one is given in [17]).

type FIFO of T:
type Node:
buf fer: array of T
next: pointer to Node
read, write: integer
nodeSize: integer (size of buf fer)
head, tail: pointer to Node
writeLock: mutex

Fig. 1. FIFO representation

Require: f is a FIFO of T instance, x of type T is an element to enqueue
Ensure: f contains z as its last element
lock(fwriteMutex)
if f.tail.write = f.nodeSize then
t < newly allocated Node, all fields 0
else
t < f.tail
t.buf fer[t.write] < x
t.write < t.write + 1
if f.tail #t then
ftailmext =t
ftail =t
unlock(f.writeMuter)

Fig. 2. FIFO enqueue

Representation and pseudo-code for enqueue and dequeue algorithms are
found in Figures 1, 2 and 3, respectively. The correctness, linearizability and
liveness proofs as given in [17] are straightforwardly adapted to our implemen-
tation and thus left out.

Alternatives to our implementation, which may be more appropriate in dif-
ferent settings, include a ring-buffer fifo implementation (if there is a bound on

Require: f is a non-empty FIFO instance
Ensure: front element of f is dequeued and then returned
if f.head.read = f.nodeSize then
f-head + f.head.next
f-head.read < f.head.read + 1
return f.head.buf fer[f.head.read — 1]

Fig. 3. FIFO dequeue

the amount of in-flight data known beforehand, the ring-buffer implementation
may be more efficient) and possibly an algorithm based on swapping incoming
and outgoing queues (which could be easily implemented as a pointer swap).
The latter gives results comparable to the described FIFO method, although
the code and locking behaviour is much more complex and error-prone, which
made us opt for the simpler FIFO implementation.

3.4 Memory Allocation

In a distributed computation, every process has simply its own memory which it
fully manages. In a shared-memory, however, we prefer to manage the memory
as a single shared area, since an equal partitioning of available memory and
separate management may fall short of efficient resource usage. However, this
poses some challenges, especially in allocation-intensive environment like ours.

First, a naive approach of protecting the allocation routines with a simple
mutual exclusion is highly prone to resource contention. Fortunately, modern
general-purpose allocator implementations refrain from this idea and have a
generally non-contending behaviour on allocation. However, releasing memory
back for reuse is more complex to achieve without introducing contention, in a
setting where it is often the case that thread other than the one allocating the
chunk tries to release it.

There are known general-purpose solutions to this problem, eg. [16], however
they are currently not in widespread use, therefore we have to refrain from
the above-mentioned pattern of releasing memory from different than allocating
thread, in order to avoid contention and the accompanying slowdown.

The message-passing implementation we employ is pointer-based, in other
words, the message sent is only a pointer and the payload (actual interesting
message content) is allocated on the shared heap and it may be either reused or
released by the receiving thread. Observe however, that releasing the associated
memory in the receiving thread will introduce the situation which we are trying
to avoid.

We side-step the issue by adding a new communication FIFO to each thread
(recall that our communication induces only low overhead and virtually no con-
tention). When a receiving thread decides that the message content needs to be
disposed of, instead of doing it itself, sends the message back to the originating
thread using the second FIFO. The originating thread then, at convenient inter-

vals, releases the memory in a single batch, having an interesting side-effect of
slightly improving cache-efficiency.

3.5 Efficient Termination Detection

Since our algorithms rely on work distribution among several largely independent
threads, similarly to a distributed algorithm, we need a specific algorithm for
shared-memory termination detection, that would pose minimal overhead and
minimal serialisation.

One possible solution is presented in [15], which does not use locking and
relies on the system to provide an enqueue-with-wakeup primitive. However, in
our system, we have primitives available that support a somewhat different ap-
proach: implementation of sleeping/wakeup primitives already relies on locking
and we leverage this inherent locking in our termination detection algorithm.

The POSIX threading library offers a mechanism called “condition sig-
nalling” , which we use to implement thread sleeping and wakeup. A “condition”
is a device that allows to be waited-for by its owning thread and “signalling a
condition” from another thread will cause the waiting thread to wake up and
continue execution. However, this device in itself is race-prone, since the condi-
tion may be signalled just before the owner goes to sleep, leading to a deadlock —
another signal may never come. Therefore, the condition is always protected by
a mutex, which is always locked through the execution of the owner thread and
is only atomically unlocked when the thread enters sleep state and atomically
reclaimed before waking up.

Since the available mutex implementation allows a lock-or-fail behaviour, as
opposed to lock-or-wait which is usually employed for protecting critical sections,
we can use the condition device to implement an efficient termination detection
algorithm.

Observe, that at any time when a thread is idle, its condition-protecting mu-
tex is unlocked and conversely, whenever the thread is busy, this mutex is locked.
So the termination detection algorithm first tries to lock condition mutexes of all
worker threads, one by one, using the lock-or-fail behaviour. Then, it proceeds
to check the queues. If it succeeded locking all threads and all queues are empty,
termination has occurred. Pseudo-code for the algorithm is shown in Figure 4.

We run the termination detection in a dedicated scheduler thread, which also
wakes up threads that have pending work. Ie if it has successfully grabbed any
locks, queues belonging to those locked threads are checked, and if any is found
to be non-empty, the thread is awakened. After every run, all grabbed locks are
released again.

Moreover, although this algorithm works correctly as-is, it is rather inefficient
if left running in a loop. Therefore, the scheduler thread goes to sleep after every
iteration, and is woken up by any worker thread that goes idle. This requires
a slight modification to the algorithm above, since it adds a race-condition,
where the last thread going to sleep wakes up the scheduler, which then runs the
algorithm before the calling thread manages to go to sleep, assuming termination

Require: threads: array of Thread, Thread contains idle Mutex and idleCondition,
fifo
Ensure: termination has occurred iff true is returned
mutexr: Mutex, cond: Condition, held: array of Boolean
busy <« false
for t in threads do
if trylock(¢t.idle Mutex) then
held[t] < true
else
held[t] < false
busy <+ true
for ¢ in threads do
if not empty(t.fifo) then
busy <+ true
if held[t] then
signal(t.idleCondition)
for t in threads do
unlock(t.idle Mutez)
return not busy

Fig. 4. Termination Detection in Shared-Memory

did not happen and going to sleep, at which point the system deadlocks, as
everyone is idle.

An alternative approach would be to synchronously execute the termination
detection algorithm in the thread that has become idle, but due to the nature of
the system, the above is more practical code-wise and only incurs very insignif-
icant overhead.

3.6 Implementing OWCTY in Shared-Memory

Require: initial is initial state
S «Reachability (initial)
old + 0
while S # old do
old «— S
S +Reset(S)
S «Reachability(S)
S «Elimination(S)
return S # ()

Fig.5. OWCTY Pseudo-code

As can be seen from the pseudo-code (refer to Figure 5), the main OWCTY
loop consists of few steps, namely, reachability, elimination and reset. All of them

can be parallelised, but only on their own, which requires a barrier after each
of them. Only reachability and elimination run in parallel in the current code,
reset is to be implemented.

The algorithm uses a BFS state space visitor to implement both reachability
and elimination. The underlying BFS is currently implemented using a partition
function, ie, every state is unambiguously assigned to one of the threads. The
framework in which the algorithm is implemented offers a multi-threaded BFS
implementation based on this kind of state-space partitioning. The algorithm
itself is only presented with resulting transition and node-expansion events, un-
concerned with the partitioning or communication details.

The barriers are implemented using the termination detection algorithm pre-
sented the computation is initiated by the main thread and the termination
detection is then executed in this same thread, which also doubles as a sched-
uler. When the step terminates, the main thread prepares the next step, spawns
the worker threads and initiates the computation again. Since the hash table is
always thread-private, ie owned exclusively by a single thread, the main thread
has to transfer the hash table among different threads in the serial portion of
computation. This is nonetheless done cheaply (few pointer operations only) so
is probably not worth parallelising.

4 Experiments

4.1 Methodology

The main testing machine we have used is a 16-way AMD Opteron 885 (8 CPU
units with 2 cores each). All timed programs were compiled using gcc 4.1.2
20060525 (Red Hat 4.1.1-1) in 32-bit mode, using -O3. This limits addressable
memory to 3GB, which was enough for our testing. The machine has 64GB of
memory installed, which means that none of the runs were affected by swapping.

For this paper, our main concern is speed and scalability, therefore we focus
on these two parameters. Measurement was done using standard UNIX time
command, which measures real and cpu times used by program.

All the models we used as inputs to the model checking algorithms, come
from BEEM database [18]. The models are in the DVE modeling language, as
used in DIVINE [3], for SPIN we have used state-space equivalent models in the
ProMeLa language.

4.2 Results

First, we have measured run-times of algorithms presented in Section 2 that
were implemented using DIVINE framework and mpich2 library compiled for
shared-memory architecture.

These implementations do not exhibit desired scalability as shown in Fig-
ure 6. Some algorithms have scaled up to 4 cores. On the other hand, using
more cores did not bring any speedup and, as a matter of fact, slowed the com-
putation down due to communication overhead introduced by the MPI library.

BLEDGE MAP
300

12000 T
elevator
10000 [q 250 leader -----—- i
w VVVVVVVV
7 @ rether
€ 8000 E g 200 |- E
o o
S S
\“m_’/ 6000 | B \“m_’/ 150 |- B
o o
£ 4000 - 1 E 100 . 4
[[
2000 . [T — B 50 B
0 L \‘ L L 0 L L L L
1 2 4 8 1 2 4 8
Number of cores Number of cores
NEGC OWCTY
800 T 140 T T T T
elevator elevator:
700 leader ------- 7 120 | leader -----—- i
600 - peterson -------- i petefson --------
’%T rether ’%T 100 b “ rether i
S 500 4 £ . -
o o
g 400 - q g 8o) q
o |- - o -
g SO E 6o e 1
=200 R =
100 e 1 40 1
0 L L 20 L L L L
1 2 4 8 1 2 4 8
Number of cores Number of cores

Fig. 6. Run-times of algorithms implemented using DIVINE and MPI.

We have performed more experiments to evaluate the efficiency of techniques
introduced in Section 3. We have implemented parallel breadth-first search based
reachability and the OWCTY algorithm. Run-times of the thread-optimized BFS
reachability are given in Figure 8, while the run-times of the thread-optimized
implementation of OWCTY algorithm are reported in Figure 7.

The thread-optimized implementations display better scalability behavior,
since adding cores reduces computation time at least up to 12 cores, for some
models even to 16 cores. Between 12 and 16 cores, the communication overhead
reaches a limiting threshold, so adding more does not bring any further speedup
and may even impede a slight performance setback.

4.3 Comparison with SPIN

Since the multi-core version of SPIN was not publicly available, in order to make
a direct comparison, we run a single reachability on the product automaton
graph with SPIN. As SPIN was running only the first procedure of the Nested
DFS algorithm we get a good lower bound on runtime of the multi-core SPIN
implementation. SPIN was used with parameters -m10000000 -w27 to get the
best performance. We have not observed any performance penalty from using
bigger stack or hash table than strictly necessary.

We have also measured run-times of a dual-core Nested DFS algorithm as
proposed in [10], that was implemented using DIVINE state generator. The run-
times are reported in Table 1.

Time (seconds)

Time (seconds)

MT-OWCTY

100 T T T T
elevator
90 leader ------- 1
peterson --------
80 I rether - o
70 B
60 B
50 B
40 b 4
0 4
20F .
10 | \——»;,;;_;7»;_\\;\\\\\:;:_:;:;:; y
0 1 1 1 1 1
1 4 8 12 16
Number of cores
Model|1 4 8 12 |16
elevator2.3a.prop4(1:38.7|1:6.1 0:35.2|0:26 0:26.8
leader-filters.5.prop2|0:28.6{0:13.9(0:9.7 0:6.8 |0:7.9
peterson.4.prop4|0:42.5|0:22.1|0:12.3|0:9.3 [0:9.2
rether.5.prop5(1:30 |0:52.7|0:37.5|0:43.3(0:27.2

Fig. 7. Scalability of multi-threaded OWCTY

MT-BFS
160 T T T
elevator

leader -------
140 peterson -------- 7

rether -
120 B
100 B
80f -
60 —
40 | -
20 e

0 1 1 1 1 1
1 4 8 12 16
Number of cores
Model|1 4 8 12 16
anderson.6|2:35.7|1:48.8]0:48.9/|0:38.3|0:38.9
elevator2.3|1:29.7|1:7.2 [0:33 |0:24.9(0:21
elevator2.3a.prop4(0:47.5/0:35.9({0:18.1]0:13.6|0:12.1
peterson.4.prop4|0:21.7|0:13 [0:6.3 |0:4.7 |0:4.2

Fig. 8. Scalability of multi-threaded BFS reachability

Table 2 gives run-times for SPIN, multi-threaded BFS reachability, and
OWCTY cycle detection algorithm, both performed on 16 cores.

Model|real |cpu
elevator2.3a.prop4|0:53.4(1:16
leader-filters.5.prop2|0:9.7 |0:18.1
peterson.4.prop4|0:24.1|0:33.1
rether.5.prop5|0:45.3(1:5.9

Table 1. Parallel Nested DFS in DIVINE.

Model|SPIN reachability | BFS reachability OWCTY
elevator2.3a.prop4|0:14.4 0:12.1 0:26.8
peterson.4.prop4|0:7.4 0:4.2 0:9.2

Table 2. Comparison with SPIN

5 Conclusions

We observe, that the algorithms employed by DIVINE, when augmented with
the shared-memory-specific techniques, scale fairly well on multiple cores. Our
current OWCTY-based, multi-threaded implementation scales up to 12, and for
some models, even to 16 cores, which is a definite improvement over the MPI
version.

This basically fulfills the goal of implementing a scalable parallel model
checker. Thanks to the algorithm used, it has a linear time complexity for ma-
jority of LTL properties verified in practice and achieves scalability that makes
it practical to use on machines with several CPU cores available.

From the experimental data we see that SPIN outperforms DIVINE in raw
speed, but due to SPIN’s usage of the Nested DFS algorithm, even if using a
parallel nested search, it is bound to execute primary DFS on a single core,
which severely limits its scalability potential.

From the profiling work we have done, it is clear that the main bottleneck of
DiVINE is its state generator. Improvements in this area should reduce the abso-
lute running times, but will likely negatively affect relative scalability. Therefore,
we will continue to work on reducing parallel execution overhead, to maintain
or even improve current scalability.

In the pursue of scalability, we also intend to explore alternative approaches
to state-space partitioning, non-partitioning approaches and usefulness of load-
balancing in this context.

References

1.

10.

11.

12.

13.

14.

15.

J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search LTL Model-
Checking. In Proc. 18th IEEE International Conference on Automated Software
Engineering, pages 106 115. IEEE Computer Society, 2003.

J. Barnat, L. Brim, and I. Cerna. Property Driven Distribution of Nested DFS. In
Proceedinfs of the 3rd International Workshop on Verification and Computational
Logic (VCL’02 held at the PLI 2002 Symposium), pages 1 10. University of
Southampton, UK, Technical Report DSSE-TR-2002-5 in DSSE, 2002.

J. Barnat, L. Brim, I. Cernd, P. Moravec, P. Rockai, and P. Sime¢ek. DiVinE
A Tool for Distributed Verification (Tool Paper). In Computer Aided Verification,
volume 4144/2006 of LNCS, pages 278 281. Springer Berlin / Heidelberg, 2006.
L. Brim, I. Cern4, P. Moravec, and J. Simsa. Accepting Predecessors are Better
than Back Edges in Distributed LTL Model-Checking. In 5th International Con-
ference on Formal Methods in Computer-Aided Design (FMCAD’04), volume 3312
of LNCS, pages 352 366. Springer-Verlag, 2004.

L. Brim, I. Cernd, P. Kr¢dl, and R. Pelanek. Distributed LTL model checking
based on negative cycle detection. In Proc. of Foundations of Software Technology
and Theoretical Computer Science (FST TCS 2001), volume 2245 of LNCS, pages
96 107. Springer, 2001.

. L. Brim, I. Cerna, P. Moravec, and J. Sim3a. How to Order Vertices for Dis-

tributed LTL Model-Checking Based on Accepting Predecessors. In Proceedings of
the 4th International Workshop on Parallel and Distributed Methods in verifiCation
(PDMC 2005), pages 1-12, 2005.

I. Cerna and R. Peldnek. Distributed explicit fair cycle detection (set based ap-
proach). In T. Ball and S.K. Rajamani, editors, Model Checking Software. 10th
International SPIN Workshop, volume 2648 of Lecture Notes in Computer Science,
pages 49 — 73. Springer Verlag, 2003.

C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient
Algorithms for the Verification of Temporal Properties. Formal Methods in System
Design, 1:275 288, 1992.

K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? In Proc. Tools and Algorithms for the Construction and
Analysis of Systems, volume 2031 of LNCS, pages 420 434. Springer-Verlag, 2001.
G. Holzmann. The Design of a Distributed Model Checking Algorithm for SPIN.
In FMCAD, Invited Talk, 2006.

G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

G. J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First Search.
In The SPIN Verification System, pages 23-32. American Mathematical Society,
1996. Proc. of the 2nd SPIN Workshop.

C. Inggs and H. Barringer. Ct1* model checking on a shared memory architecture.
Formal Methods in System Design, 29(2):135 155, 2006.

A. L. Lafuente. Simplified distributed LTL model checking by localizing cycles.
Technical Report 00176, Institut fiir Informatik, University Freiburg, Germany,
July 2002.

Ho-Fung Leung and Hing-Fung Ting. An optimal algorithm for global termination
detection in shared-memory asynchronous multiprocessor systems. IEEE Trans-
actions on Parallel and Distributed Systems, 8(5):538 543, 1997.

16.

17.

18.

19.

M. M. Michael. Scalable lock-free dynamic memory allocation. SIGPLAN Not.,
39(6):35 46, 2004.

M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Symposium on Principles of Distributed
Computing, pages 267 275, 1996.

R. Pelanek. BEEM: BEnchmarks for Explicit Model checkers. http://anna.fi.
muni.cz/models/index.html, February 2007.

R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal on
Computing, pages 146-160, Januar 1972.

