
Salable Multi-Core LTL Model-Cheking?J. Barnat, L. Brim, and P. Ro�kaiFaulty of Informatis, Masaryk UniversityBrno, Czeh Republifbarnat,brim,xrokaig��.muni.zAbstrat. Reent development in omputer hardware has brought morewide-spread emergene of shared-memory, multi-ore systems. These ar-hitetures o�er opportunities to speed up various tasks { among othersLTL model heking. In the paper we show a design for a parallel shared-memory LTL model heker, that is based on a distributed-memory algo-rithm. To ahieve good salability, we have devised and experimentallyevaluated several implementation tehniques, whih we present in thepaper.1 IntrodutionWith the arrival of 64-bit tehnology the traditional spae limitations in formalveri�ation may beome less severe. Instead, time ould quikly beome an im-portant bottlenek. This naturally raises interest in using parallelism to �ght the\time-explosion" problem.Muh of the extensive researh on the parallelization of model heking algo-rithms followed the distributed-memory programming model and the algorithmswere parallelized for networks of workstations, largely due to easy aess to net-works of workstations. Reent shift in arhiteture design toward multi-ores hasintensi�ed researh pertaining to shared-memory paradigm as well.In [10℄ G. Holzmann proposed an extension of the SPIN model-heker fordual-ore mahines. The algorithms keep their linear time omplexity and theliveness heking algorithm supports full LTL. The algorithm for heking safetyproperties sales well to N-ore systems. The algorithm for liveness heking,whih is based on the original SPIN's nested DFS algorithm, is unable to sale toN-ore systems. It is still an open problem to do salable veri�ation of generalliveness properties on N-ores with linear time omplexity.A di�erent approah to shared-memory model heking is presented in [13℄,based on CTL� translation to Hesitant Alternating Automata. The proposedalgorithm uses so-alled non-emptiness game for deiding validity of the originalformula and is therefore largely unrelated to the algorithms based on fair-yledetetion.In this paper we show a design for a parallel shared-memory model hek-ing tool, that is based on a distributed-memory algorithm due to �Cern�a and? This work has been partially supported by the Grant Ageny of Czeh Republigrant No. 201/06/1338 and the Aademy of Sienes grant No. 1ET408050503.



Pel�anek [7℄. The algorithm used is linear for properties expressible as weak B�uhiautomata, whih omprises majority of LTL properties enountered in pratie.Although the worst-ase omplexity is quadrati, the algorithm exhibits verygood performane with real-life veri�ation problems. To ahieve good sala-bility, we have devised several implementation tehniques, as presented in thispaper, and applied them to this algorithm.We expet, that appliation of the proposed implementation approahes toseveral other distributed-memory algorithms for LTL model-heking may bringsimilar improvements in salability on N-ore systems.In Setion 2 we summarize the existing parallel algorithms for LTL model-heking (aepting yle detetion). In Setion 3 we present several implemen-tation tehniques that were applied to multi-ore implementation of the seletedalgorithm. In Setion 4 we report on salability tests and on omparison withdual-ore Nested DFS algorithm.2 Parallel LTL Model-Cheking AlgorithmsEÆient parallel solution of many problems often requires approahes radiallydi�erent from those used to solve the same problems sequentially. Classial exam-ples are list rankings, onneted omponents, depth-�rst searh in planar graphset. In the area of LTL model-heking the best known enumerative sequentialalgorithms based on fair-yle detetion are the Nested DFS algorithm [8, 12℄(implemented, e.g., in the model heker SPIN [11℄) and SCC-based algorithmsoriginating in Tarjan's algorithm for the deomposition of the graph into stronglyonneted omponents (SCCs) [19℄. However, both algorithms rely on inherentlysequential depth-�rst searh postorder, hene it is diÆult to adapt them to par-allel arhitetures. Consequently, di�erent tehniques and algorithms are needed.Unlike LTL model-heking, the reahability analysis is a veri�ation problemwith eÆient parallel solution. The reason is that the exploration of the statespae an be implemented e.g. using breadth-�rst searh. In the following, wesketh four parallel algorithms for enumerative LTL model heking that are,more or less, based on performing repeated parallel reahability to detet reah-able aepting yles. The reader is kindly asked to onsult the original souresfor the details.[MAP℄ The main idea of theMaximal Aepting Predeessor Algorithm [4,6℄ is based on the fat that every aepting vertex lying on an aepting yle isits own predeessor. An algorithm that is diretly derived from the idea, wouldrequire expensive omputation as well as spae to store all proper aeptingpredeessors of all (aepting) verties. To remedy this obstale, the MAP algo-rithm stores only a single representative of all proper aepting predeessor forevery vertex. The representative is hosen as the maximal aepting predeessoraordingly to a presupposed linear ordering � of verties (given e.g. by theirmemory representation). Clearly, if an aepting vertex is its own maximal a-epting predeessor, it lies on an aepting yle. Unfortunately, it an happen



that all the maximal aepting predeessor lie out of aepting yles. In thatase, the algorithm removes all aepting verties that are maximal aeptingpredeessors of some vertex, and reomputes the maximal aepting predees-sors. This is repeated until an aepting yle is found or there are no moreaepting verties in the graph.The time omplexity of the algorithm is O(a2 � m), where a is the numberof aepting verties. One of the key aspets inuening the overall performaneof the algorithm is the underlying ordering of verties used by the algorithm. Itis not possible to ompute the optimal ordering in parallel, hene heuristis foromputing a suitable vertex ordering are used. ut[OWCTY℄ The next algorithm [7℄ is an extended enumerative version of the OneWay Cath Them Young Algorithm [9℄. The idea of the algorithm is torepeatedly remove verties from the graph that annot lie on an aepting yle.The two removal rules are as follows. First, a vertex is removed from the graphif it has no suessors in the graph (the vertex annot lie on a yle), seond, avertex is removed if it annot reah an aepting vertex (a potential yle thevertex lies on is non-aepting). The algorithm performs removal steps as faras there are verties to be removed. In the end, either there are some vertiesremaining in the graph meaning that the original graph ontained an aeptingyle, or all verties have been removed meaning that the original graph had noaepting yles.The time omplexity of the algorithm is O(h � m) where h = h(G). Herethe fator m omes from the omputation of elimination rules while the fatorh relates to the number of global iterations the removal rules must be applied.Also note, that an alternative algorithm is obtained if the rules are replaed withtheir bakward searh ounterparts. ut[NEGC℄ The idea behind the Negative Cyle Algorithm [5℄ is a transformationof the LTL model heking problem to the problem of negative yle detetion.Every edge of the graph outgoing from a non-aepting vertex is labeled with 0while every edge outgoing from an aepting vertex is labeled with �1. Clearly,the graph ontains a negative yle if and only if it has an aepting yle.The algorithm exploits the walk to root strategy to detet the presene of anegative yle. The strategy involves onstrution of the so alled parent graphthat keeps the shortest path to the initial vertex for every vertex of the graph.The parent graph is repeatedly heked for the existene of the path. If theshortest path does not exist for a given vertex, then the vertex is a part ofnegative, thus aepting, yle. The worst ase time omplexity of the algorithmis O(n �m). ut[BLEDGE℄ An edge (u; v) is alled a bak-level edge if it does not inrease thedistane of the target vertex v form the initial vertex of the graph. The keyobservation onneting the yle detetion problem with the bak-level edgeonept, as used in the Bak-Level Edges Algorithm [1℄, is that every y-le ontains at least one bak-level edge. Bak-level edges are, therefore, used



as triggers to start a proedure that heks whether the edge is a part of anaepting yle. However, this is too expensive to be done ompletely for everybak-level edge. Therefore, several improvements and heuristis are suggestedand integrated within the algorithm to derease the number of tested edges andspeed-up the yle test.The BFS proedure whih detets bak-level edges runs in time O(m + n).In the worst ase, eah bak-level edge has to be heked to be a part of a yle,whih requires linear time O(m+n) as well. Sine there is at most m bak-leveledges, the overall time omplexity of the algorithm is O(m:(m+ n)). utAll the algorithms allow for an eÆient implementation on a parallel arhiteture.The implementation is based on partitioning the graph (its verties) into disjointparts. Suitable partitioning is important to bene�t from parallelization.One partiular tehnique, that is spei� to automata based LTL modelheking, is yle loality preserving problem deomposition [2, 14℄. The graph(produt automaton) originates from synhronous produt of the property andsystem automata. Hene, verties of produt automaton graph are ordered pairs.An interesting observation is that every yle in a produt automaton graphemerges from yles in system and property automaton graphs. Let A;B beB�uhi automata and A 
 B their synhronous produt. If C is a strongly on-neted omponent in the automaton graph of A
B, then A-projetion of C andB-projetion of C are (not neessarily maximal) strongly onneted omponentsin automaton graphs of A and B, respetively.As the property automaton origins from the LTL formula to be veri�ed, itis typially quite small and an be pre-analyzed. In partiular, it is possible toidentify all strongly onneted omponents of the property automaton graph. Apartition funtion may then be devised, that respets strongly onneted om-ponents of the property automaton and therefore preserves yle loality. Thepartitioning strategy is to assign all verties that projet to the same stronglyonneted omponent of the property automaton graph to the same sub-problem.Sine no yle is split among di�erent sub-problems it is possible to employ lo-alized Nested DFS algorithm to perform loal aepting yle detetion simul-taneously.Yet another interesting information an be drawn from the property au-tomaton graph deomposition. Maximal strongly onneted omponents an belassi�ed into three ategories:Type F: (Fully Aepting) Any yle within the omponent ontains at leastone aepting vertex. (There is no non-aepting yle within the ompo-nent.)Type P: (Partially Aepting) There is at least one aepting yle and onenon-aepting yle within the omponent.Type N: (Non-Aepting) There is no aepting yle within the omponent.Realizing that vertex of a produt automaton graph is aepting only if theorresponding vertex in the property automaton graph is aepting it is possible



to haraterize types of strongly onneted omponents of produt automatongraph aording to types of omponents in the property automaton graph. Thislassi�ation of omponents into types N , F , and P an be used to gain addi-tional improvements that may be inorporated into the above given algorithms.3 Implementation TehniquesIt is a well known fat, that a distributed-memory, parallel algorithm is straight-forwardly transformed into a shared-memory one. However, there are severalineÆienies involved in this diret translation. Several traits of shared-memoryarhiteture may be leveraged to improve real-world performane of suh im-plementations. In this setion, we present our approahes at the hallenges ofshared-memory arhiteture and its spei� harateristis.3.1 Shared-Memory PlatformWe work with a model based on threads that share all memory, although theyhave separate staks in their shared address spae and a speial thread-loal stor-age to store thread-private data. Our working environment is POSIX, with itsimplementation of threads as lightweight proesses. Swithing ontexts amongdi�erent threads is heaper than swithing ontexts among full-featured pro-esses with separate address spaes, so using more threads than there are CPUsin the system inurs only a minor penalty.Critial Setions, Loking and Lok Contention. In a shared-memorysetting, aess to memory, that may be used for writing by more than a singlethread, has to be ontrolled through use of mutual exlusion, otherwise, raeonditions will our. This is generally ahieved through use of a \mutual ex-lusion devie", so-alled mutex. A thread wishing to enter a ritial setion hasto lok the assoiated mutex, whih may blok the alling thread if the mutexis loked already by some other thread. An e�et alled resoure or lok on-tention is assoiated with this behaviour. This ours, when two or more threadshappen to need to enter the same ritial setion (and therefore lok the samemutex), at the same time. If ritial setions are long or they are entered veryoften, ontention starts to ause observable performane degradation, as moreand more time is spent waiting for mutexes.Role of Proessor Cahe. There are two fairly orthogonal issues assoiatedwith proessor ahe. First, ahe oherene whih is implemented by hardware,but its eÆieny is a�eted by programmer, and ahe eÆieny, whih mostlydepends on data strutures and algorithms employed.Cahe oherene poses an eÆieny penalty when there are many proessorswriting to same area of memory. This is largely avoided by the distributed al-gorithm, however, loking and aess to shared data strutures have no otherhoie. Cahe oherene on modern arhitetures works at a level of ahe lines,roughly 64 byte hunks of memory that are fethed from main memory intoahe at one.



Modern mutex implementations ensure that the mutex is the only thingpresent on a given ahe line, so it does not a�et other data, and, more impor-tantly, it ensures that two mutexes never share a ahe line, whih would posea performane penalty.Reent development in multi-ore platforms deals with ahe oherene prob-lem in a di�erent, more eÆient manner, namely, by sharing the level two aheamong two or more ores, therefore reduing the ahe oherene overhead sig-ni�antly. Yet, with the urrent state of tehnology, this still does not mitigatethe overhead ompletely.3.2 Implementing Algorithms in Shared-MemoryThe above onsiderations bring us to the atual algorithm implementation andthe assoiated tehniques we ame up with. They are all designed to redueommuniation overhead, exploiting traits of shared-memory systems that arenot available in distributed-memory environments. Consequently, the main goalis to improve salability of the implementation, whih is inversely proportional toommuniation overhead and its growth with inreasing number of threads. Thatsaid, keeping in mind the possibility to sale beyond shared-memory systems,we try to keep the implementation in a shape that would make a ombined toolto work eÆiently on lusters of multi-CPU mahines ahievable.When we venture into a stritly shared-memory implementation, one maypose a question, whether a di�erent approah of using a standard serial algo-rithm modi�ed to allow parallelisation at lower levels of abstration would givea salable, eÆient program for multi-CPU and/or multi-ore systems. Our ef-forts at extrating suh a miro-parallelism in our odebase have been largelyfruitless, due high synhronisation ost relative to amount of work we were ableto perform in parallel. Although we intend to do more researh on this topi, wedo not expet signi�ant results.In the following setions, we explore the possibilities to build on existingdistributed-memory approahes, in the vein of statially-partitioned graphs, re-duing the overhead using idioms only possible due to loality of memory.3.3 CommuniationGenerally, in a distributed omputation, all ommuniation is aomplished bypassing messages { eg. using a library like MPI for luster message passing. How-ever, in ommuniation-intensive programs, or those sensitive to ommuniationdelay, using general-purpose message passing interfae is fairly ineÆient.In shared-memory, most of the ommuniation overhead an be eliminatedby using more appropriate ommuniation primitives, like high-performane,ontention- and lok- free FIFOs (First In, First Out queues). We have adopteda variant of the two-lok algorithm { a deent ompromise between performaneon one hand and simpliity and portability on the other { presented in [17℄.Our modi�ations involve improved ahe-eÆieny (by using a linked list ofmemory-ontinuous bloks, instead of linked list of single items) and only using



a single write-lok, instead of a pair of loks, one for reading and one for writing,sine there is ever only one thread reading, while there may be several trying towrite.Every thread involved in the omputation owns a single instane of the FIFOand all messages for this thread are pushed onto this single queue. This mayintrodue a soure of resoure-ontention, where many proesses are trying toappend messages to a single queue, but onsidering the message distribution inour system, this turns out to be a negligible problem in pratie. With di�erentpatterns of ommuniation, a omplete lok-free design may be more appropriate(one is given in [17℄).type FIFO of T:type Node:buffer: array of Tnext: pointer to Noderead, write: integernodeSize: integer (size of buffer)head, tail: pointer to NodewriteLok: mutex Fig. 1. FIFO representationRequire: f is a FIFO of T instane, x of type T is an element to enqueueEnsure: f ontains x as its last elementlok( f:writeMutex )if f:tail:write = f:nodeSize thent newly alloated Node, all �elds 0elset f:tailt:buffer[t:write℄ xt:write t:write+ 1if f:tail 6= t thenf:tail:next = tf:tail = tunlok( f:writeMutex ) Fig. 2. FIFO enqueueRepresentation and pseudo-ode for enqueue and dequeue algorithms arefound in Figures 1, 2 and 3, respetively. The orretness, linearizability andliveness proofs as given in [17℄ are straightforwardly adapted to our implemen-tation and thus left out.Alternatives to our implementation, whih may be more appropriate in dif-ferent settings, inlude a ring-bu�er �fo implementation (if there is a bound on



Require: f is a non-empty FIFO instaneEnsure: front element of f is dequeued and then returnedif f:head:read = f:nodeSize thenf:head f:head:nextf:head:read f:head:read+ 1return f:head:buffer[f:head:read� 1℄Fig. 3. FIFO dequeuethe amount of in-ight data known beforehand, the ring-bu�er implementationmay be more eÆient) and possibly an algorithm based on swapping inomingand outgoing queues (whih ould be easily implemented as a pointer swap).The latter gives results omparable to the desribed FIFO method, althoughthe ode and loking behaviour is muh more omplex and error-prone, whihmade us opt for the simpler FIFO implementation.3.4 Memory AlloationIn a distributed omputation, every proess has simply its own memory whih itfully manages. In a shared-memory, however, we prefer to manage the memoryas a single shared area, sine an equal partitioning of available memory andseparate management may fall short of eÆient resoure usage. However, thisposes some hallenges, espeially in alloation-intensive environment like ours.First, a na��ve approah of proteting the alloation routines with a simplemutual exlusion is highly prone to resoure ontention. Fortunately, moderngeneral-purpose alloator implementations refrain from this idea and have agenerally non-ontending behaviour on alloation. However, releasing memorybak for reuse is more omplex to ahieve without introduing ontention, in asetting where it is often the ase that thread other than the one alloating thehunk tries to release it.There are known general-purpose solutions to this problem, eg. [16℄, howeverthey are urrently not in widespread use, therefore we have to refrain fromthe above-mentioned pattern of releasing memory from di�erent than alloatingthread, in order to avoid ontention and the aompanying slowdown.The message-passing implementation we employ is pointer-based, in otherwords, the message sent is only a pointer and the payload (atual interestingmessage ontent) is alloated on the shared heap and it may be either reused orreleased by the reeiving thread. Observe however, that releasing the assoiatedmemory in the reeiving thread will introdue the situation whih we are tryingto avoid.We side-step the issue by adding a new ommuniation FIFO to eah thread(reall that our ommuniation indues only low overhead and virtually no on-tention). When a reeiving thread deides that the message ontent needs to bedisposed of, instead of doing it itself, sends the message bak to the originatingthread using the seond FIFO. The originating thread then, at onvenient inter-



vals, releases the memory in a single bath, having an interesting side-e�et ofslightly improving ahe-eÆieny.3.5 EÆient Termination DetetionSine our algorithms rely on work distribution among several largely independentthreads, similarly to a distributed algorithm, we need a spei� algorithm forshared-memory termination detetion, that would pose minimal overhead andminimal serialisation.One possible solution is presented in [15℄, whih does not use loking andrelies on the system to provide an enqueue-with-wakeup primitive. However, inour system, we have primitives available that support a somewhat di�erent ap-proah: implementation of sleeping/wakeup primitives already relies on lokingand we leverage this inherent loking in our termination detetion algorithm.The POSIX threading library o�ers a mehanism alled \ondition sig-nalling", whih we use to implement thread sleeping and wakeup. A \ondition"is a devie that allows to be waited-for by its owning thread and \signalling aondition" from another thread will ause the waiting thread to wake up andontinue exeution. However, this devie in itself is rae-prone, sine the ondi-tion may be signalled just before the owner goes to sleep, leading to a deadlok {another signal may never ome. Therefore, the ondition is always proteted bya mutex, whih is always loked through the exeution of the owner thread andis only atomially unloked when the thread enters sleep state and atomiallyrelaimed before waking up.Sine the available mutex implementation allows a lok-or-fail behaviour, asopposed to lok-or-wait whih is usually employed for proteting ritial setions,we an use the ondition devie to implement an eÆient termination detetionalgorithm.Observe, that at any time when a thread is idle, its ondition-proteting mu-tex is unloked and onversely, whenever the thread is busy, this mutex is loked.So the termination detetion algorithm �rst tries to lok ondition mutexes of allworker threads, one by one, using the lok-or-fail behaviour. Then, it proeedsto hek the queues. If it sueeded loking all threads and all queues are empty,termination has ourred. Pseudo-ode for the algorithm is shown in Figure 4.We run the termination detetion in a dediated sheduler thread, whih alsowakes up threads that have pending work. Ie if it has suessfully grabbed anyloks, queues belonging to those loked threads are heked, and if any is foundto be non-empty, the thread is awakened. After every run, all grabbed loks arereleased again.Moreover, although this algorithm works orretly as-is, it is rather ineÆientif left running in a loop. Therefore, the sheduler thread goes to sleep after everyiteration, and is woken up by any worker thread that goes idle. This requiresa slight modi�ation to the algorithm above, sine it adds a rae-ondition,where the last thread going to sleep wakes up the sheduler, whih then runs thealgorithm before the alling thread manages to go to sleep, assuming termination



Require: threads: array of Thread, Thread ontains idleMutex and idleCondition,fifoEnsure: termination has ourred i� true is returnedmutex: Mutex, ond: Condition, held: array of Booleanbusy  falsefor t in threads doif trylok(t:idleMutex) thenheld[t℄ trueelseheld[t℄ falsebusy  truefor t in threads doif not empty( t:fifo ) thenbusy  trueif held[t℄ thensignal(t:idleCondition)for t in threads dounlok( t:idleMutex )return not busyFig. 4. Termination Detetion in Shared-Memorydid not happen and going to sleep, at whih point the system deadloks, aseveryone is idle.An alternative approah would be to synhronously exeute the terminationdetetion algorithm in the thread that has beome idle, but due to the nature ofthe system, the above is more pratial ode-wise and only inurs very insignif-iant overhead.3.6 Implementing OWCTY in Shared-MemoryRequire: initial is initial stateS  Reahability(initial)old ;while S 6= old doold SS  Reset(S)S  Reahability(S)S  Elimination(S)return S 6= ; Fig. 5. OWCTY Pseudo-odeAs an be seen from the pseudo-ode (refer to Figure 5), the main OWCTYloop onsists of few steps, namely, reahability, elimination and reset. All of them



an be parallelised, but only on their own, whih requires a barrier after eahof them. Only reahability and elimination run in parallel in the urrent ode,reset is to be implemented.The algorithm uses a BFS state spae visitor to implement both reahabilityand elimination. The underlying BFS is urrently implemented using a partitionfuntion, ie, every state is unambiguously assigned to one of the threads. Theframework in whih the algorithm is implemented o�ers a multi-threaded BFSimplementation based on this kind of state-spae partitioning. The algorithmitself is only presented with resulting transition and node-expansion events, un-onerned with the partitioning or ommuniation details.The barriers are implemented using the termination detetion algorithm pre-sented { the omputation is initiated by the main thread and the terminationdetetion is then exeuted in this same thread, whih also doubles as a shed-uler. When the step terminates, the main thread prepares the next step, spawnsthe worker threads and initiates the omputation again. Sine the hash table isalways thread-private, ie owned exlusively by a single thread, the main threadhas to transfer the hash table among di�erent threads in the serial portion ofomputation. This is nonetheless done heaply (few pointer operations only) sois probably not worth parallelising.4 Experiments4.1 MethodologyThe main testing mahine we have used is a 16-way AMD Opteron 885 (8 CPUunits with 2 ores eah). All timed programs were ompiled using g 4.1.220060525 (Red Hat 4.1.1-1) in 32-bit mode, using -O3. This limits addressablememory to 3GB, whih was enough for our testing. The mahine has 64GB ofmemory installed, whih means that none of the runs were a�eted by swapping.For this paper, our main onern is speed and salability, therefore we fouson these two parameters. Measurement was done using standard UNIX timeommand, whih measures real and pu times used by program.All the models we used as inputs to the model heking algorithms, omefrom BEEM database [18℄. The models are in the DVE modeling language, asused in DiVinE [3℄, for SPIN we have used state-spae equivalent models in theProMeLa language.4.2 ResultsFirst, we have measured run-times of algorithms presented in Setion 2 thatwere implemented using DiVinE framework and mpih2 library ompiled forshared-memory arhiteture.These implementations do not exhibit desired salability as shown in Fig-ure 6. Some algorithms have saled up to 4 ores. On the other hand, usingmore ores did not bring any speedup and, as a matter of fat, slowed the om-putation down due to ommuniation overhead introdued by the MPI library.
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Fig. 6. Run-times of algorithms implemented using DiVinE and MPI.We have performed more experiments to evaluate the eÆieny of tehniquesintrodued in Setion 3. We have implemented parallel breadth-�rst searh basedreahability and the OWCTY algorithm. Run-times of the thread-optimized BFSreahability are given in Figure 8, while the run-times of the thread-optimizedimplementation of OWCTY algorithm are reported in Figure 7.The thread-optimized implementations display better salability behavior,sine adding ores redues omputation time at least up to 12 ores, for somemodels even to 16 ores. Between 12 and 16 ores, the ommuniation overheadreahes a limiting threshold, so adding more does not bring any further speedupand may even impede a slight performane setbak.4.3 Comparison with SPINSine the multi-ore version of SPIN was not publily available, in order to makea diret omparison, we run a single reahability on the produt automatongraph with SPIN. As SPIN was running only the �rst proedure of the NestedDFS algorithm we get a good lower bound on runtime of the multi-ore SPINimplementation. SPIN was used with parameters -m10000000 -w27 to get thebest performane. We have not observed any performane penalty from usingbigger stak or hash table than stritly neessary.We have also measured run-times of a dual-ore Nested DFS algorithm asproposed in [10℄, that was implemented using DiVinE state generator. The run-times are reported in Table 1.
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Table 2 gives run-times for SPIN, multi-threaded BFS reahability, andOWCTY yle detetion algorithm, both performed on 16 ores.Model real puelevator2.3a.prop4 0:53.4 1:16leader-�lters.5.prop2 0:9.7 0:18.1peterson.4.prop4 0:24.1 0:33.1rether.5.prop5 0:45.3 1:5.9Table 1. Parallel Nested DFS in DiVinE.
Model SPIN reahability BFS reahability OWCTYelevator2.3a.prop4 0:14.4 0:12.1 0:26.8peterson.4.prop4 0:7.4 0:4.2 0:9.2Table 2. Comparison with SPIN

5 ConlusionsWe observe, that the algorithms employed by DiVinE, when augmented withthe shared-memory-spei� tehniques, sale fairly well on multiple ores. Oururrent OWCTY-based, multi-threaded implementation sales up to 12, and forsome models, even to 16 ores, whih is a de�nite improvement over the MPIversion.This basially ful�lls the goal of implementing a salable parallel modelheker. Thanks to the algorithm used, it has a linear time omplexity for ma-jority of LTL properties veri�ed in pratie and ahieves salability that makesit pratial to use on mahines with several CPU ores available.From the experimental data we see that SPIN outperforms DiVinE in rawspeed, but due to SPIN's usage of the Nested DFS algorithm, even if using aparallel nested searh, it is bound to exeute primary DFS on a single ore,whih severely limits its salability potential.From the pro�ling work we have done, it is lear that the main bottlenek ofDiVinE is its state generator. Improvements in this area should redue the abso-lute running times, but will likely negatively a�et relative salability. Therefore,we will ontinue to work on reduing parallel exeution overhead, to maintainor even improve urrent salability.In the pursue of salability, we also intend to explore alternative approahesto state-spae partitioning, non-partitioning approahes and usefulness of load-balaning in this ontext.
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