
Directed Model Checking with
Distance-Preserving Abstractions
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Abstract. In directed model checking, the traversal of the state space
is guided by an estimate of the distance from the current state to the
nearest error state. This paper presents a distance-preserving abstraction
for concurrent systems that allows one to compute an interesting estimate
of the error distance without hitting the state explosion problem. Our
experiments show a dramatic reduction both in the number of states
explored by the model checker and in the total runtime.

1 Introduction

The number of states of a concurrent system is exponential in the number of
its components. This fundamental state explosion problem raises a complexity-
theoretic barrier for all algorithmic methods based on state space traversal. As
a consequence, it will always be interesting to investigate new approaches to
circumvent the problem at least in particular situations. Directed model checking
is one such approach that has received a lot of attention recently [4, 7, 13, 1, 2, 10,
20, 17]. The idea is to automatically compute an estimate of the error distance,
which is the distance between a state and its nearest error state in some execution
of the concurrent system. The state space traversal is then guided (“directed”)
by the estimate. In some situations, the benefit obtained from the guidance
drastically outweighs the cost of the computation of the estimate; for success
stories, we refer to [4, 7, 13, 1, 2, 10, 20, 17].

When we apply directed model checking to concurrent systems, the basic
research question is: how can one compute an interesting estimate of the error
distance without hitting the state explosion problem?

A natural idea is to compute an appropriate abstraction of the concurrent
system and to base the estimate of the error distance between concrete states
on the error distance between corresponding abstract states. We must make
clear, however, what appropriate here means. We are not in a setting where the
state space traversal is performed over abstract states and where the abstraction
of a state aims at preserving the reachability vs. non-reachability of an error
state. Instead, the state space traversal is performed over concrete states and
the abstraction of a state aims at preserving the distance to an error state (we
call it a “distance-preserving abstraction”).

The contribution of this paper is a distance-preserving abstraction for con-
current systems that allows one to compute an interesting estimate of the error



distance without hitting the state explosion problem. The definition of the ab-
straction originates from insights into the interplay between the impact of an
action-based synchronization mechanism on the error distance in concurrent sys-
tems on the one hand and the use of estimated error distances during the state
space traversal on the other hand.

We have implemented the directed model checking method with the distance-
preserving abstraction. Our experiments indicate the usefulness of the estimate
for a number of concurrent systems. We obtain a significant reduction both in the
number of states explored and in the total running time, compared to directed
model checking with an already existing estimate function that does not take
into account synchronization.

2 Preliminaries

2.1 Notation

We verify safety properties over concurrent finite-state systems that are given
as a finite set of processes P. A process is a tuple (Σ, Q, Q0, Qe,→) where Σ is
a finite alphabet of observable actions, Q is a finite set of states including the
initial states Q0 ⊆ Q and error states Qe ⊆ Q, and → ⊆ Q × (Σ ∪ {τ}) ×Q is
a transition relation, where τ represents an unobservable internal action not in
Σ. A transition (p, a, p′) ∈ → is denoted by p

a→ p′.
An error occurs if all processes are in one of their error states Qe. Often, one

of the processes acts as the monitor for the safety property, in which case all
other processes have the trivial error condition Qe = Q.

The error distance dP (q) ∈ N∪{∞} of a state q in a process P is the length
of the shortest path from q to an error state (or ∞ if no such path exists).

We use a CCS-style model of process synchronization as implemented for
example in UPPAAL [14]. We assume that each observable action is shared by
exactly two processes in P.

Consider two processes Pi = (Σi, Qi, Q
0
i , Q

e
i ,→i), i = 1, 2. The parallel com-

position
P1‖P2 = (Σ1 ∪Σ2, Q1 ×Q2, Q

0
1 ×Q0

2, Q
e
1 ×Qe

2,→)

synchronizes the two processes on their common action symbols (Σ1 ∩Σ2):

(p, q) a→ (p′, q′) iff


p

a→1 p′, q = q′, and a ∈ (Σ1 \Σ2) ∪ {τ}
p = p′, q

a→2 q′, and a ∈ (Σ2 \Σ1) ∪ {τ}
p

c→1 p′, q
c→2 q′ for some c ∈ Σ1 ∩Σ2, and a = τ.

Since parallel composition is associative and commutative, we do not dis-
tinguish systems that are composed from the same set of processes by parallel
composition in different orders. We denote the parallel composition of a set of
processes P = {P1, . . . , Pk} by

f
P∈P P = P1‖ . . . ‖Pk.
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Algorithm: ExpandingSearch

Input : Initial Node q0 of directed graph G
Output: true if a goal node is reachable from q0, false otherwise
/* Initialization */
Open := (s);
Closed := ();
while Open 6= () do

q := Open.pop();
if goal(q) then return true;
Closed.insert(q);
foreach successor q′ of q do

if q′ not in Open or Closed then
Open.insert(q′);

end

end
return false;

Fig. 1. Algorithm ExpandingSearch decides reachability of a goal node from
the initial node of a directed graph, using lists Open and Closed.

2.2 Directed Model Checking

Model checking can be implemented as a traversal on the state space, modelled
as an instance of the general expanding search algorithm for (implicitly given)
directed graphs as shown in Figure 1. The algorithm maintains an open list of
visited but not yet expanded states and a closed list of states that have been
expanded. In each step, a state is chosen from the open list, expanded (i.e. all
its successors that were not yet visited get added to the open list), and moved
to the closed list.

Organizing the open list as a FIFO queue results in a breadth-first traversal
of the state space, while a LIFO stack results in a depth-first traversal.

In directed model checking [4], the open list is organized as a priority queue
ordered by a function h(q) which indicates the desirability of exploring a state q,
usually based on an estimate f(q) of dP (q). The best-known directed traversal
algorithms are best-first traversal, where h(q) = f(q), and A*, where h(q) is
the sum of f(q) and the length of the shortest (currently known) path from an
initial state to q. The advantage of A* is that it finds shortest error traces if
the estimate function is admissible, which means it never overestimates dP (q).
Typically, best-first traversal is faster than A*.

In general, A* may require reopening states: q has to be put back on the
open list if it is encountered again with a new smaller value of g(q). An even
stronger property than admissibility is consistency. An estimate function f is
consistent if, for every state q and every successor q′ of q, f(q) ≤ f(q′)+1. If the
estimate function is consistent, it is never necessary to reopen successor states,
because we always find the shortest path first. Every consistent estimate is also
admissible [16].
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Algorithm: AbstractSystem

Input : concrete system, given as a finite set of processes P = {P1, . . . , Pn}
Output: • abstract system, given as process A

• mapping from concrete to abstract states:
α :

∏
P∈P QP → (QA ∪ {⊥})

/* Initialization */
P ′ := P;
for i = 1, . . . , n do αPi(q1, . . . , qn) = qi;

/* “Compose-and-abstract” loop */
while |P ′| > 1 do

(P, P ′) := S(P ′);
(C, γ) := AbstractProcess(P‖P ′);
P ′ := P ′ ∪ {C} \ {P, P ′};

αC(q) :=

{
⊥ if αP (q) = ⊥ or αP ′(q) = ⊥
γ(αP (q), αP ′(q)) otherwise;

end

A := the remaining member of P ′;
return A, αA;

Fig. 2. Algorithm AbstractSystem computes an abstract system for a given
concrete system.

Our estimate function is based on an abstraction of the system. We de-
fine the abstraction of a process as the quotient with respect to an equiva-
lence relation on the states. The quotient of a process P = (Σ, Q, Q0, Qe,→)
with respect to an equivalence relation ∼ ⊆ Q × Q is the process P/∼ =
(Σ, Q/∼, Q0/∼, {[qe]∼ | qe ∈ Qe},⇒), with

[p]∼
a⇒ [q]∼ iff p′

a→ q′ for some p′ ∼ p, q′ ∼ q,

where [q]∼ denotes the equivalence class of a state q ∈ Q with respect to ∼, and
Q/∼ = {[q]∼ | q ∈ Q} denotes the quotient set. Every abstraction P/∼ induces
a consistent estimate f(q) = dP/∼([q]∼) of dP (q) [16].

3 Computing the Abstract System

Our estimate function is based on an abstraction of the system, which we com-
pute in a preprocessing step before the model checking begins. Computing the
abstraction directly, by explicitly composing all processes into a single process
and then abstracting that process, is infeasible because of the state space explo-
sion. Instead, we construct the abstraction incrementally: each composition of
two processes is directly followed by an abstraction step.

Algorithm AbstractSystem, shown in Figure 2, describes this “compose-
and-abstract” loop. For now, we ignore the question of how to actually compute
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the abstraction of a process (we discuss algorithm AbstractProcess in Sec-
tion 4) as well as the question in which order the processes should be composed:
algorithm AbstractSystem is parameterized by the composition strategy, a
function S that selects a pair of two different processes from a set of processes.
We discuss the composition strategy in Section 5.

Algorithm AbstractSystem maintains a set of processes P ′, which is ini-
tially equal to the given set of processes P and is eventually reduced to the
singleton set {A}, where the process A represents the abstract system. Associ-
ated with each process P ′ in P ′ is the function αP ′ :

∏
P∈P QP → (QP ′ ∪ {⊥}),

which maps each concrete state q either to its abstraction in process P ′ or to ⊥.
The result αP ′(q) = ⊥ indicates that q is irrelevant, i.e. either q is not reachable
from the initial states or the error states are not reachable from q. For the pro-
cesses in P, αP is initialized with the projection to the respective component of
the product states.

In each iteration of the “compose-and-abstract” loop, two processes P and
P ′ are selected from the current set P ′ by the composition strategy S. Their
parallel composition P‖P ′ is first computed explicitly and then immediately
abstracted by AbstractProcess to process C. In the new process set P ′,
process C replaces P and P ′. Associated with C is the new mapping αC , which
is composed from a mapping from the states of P‖P ′ to the states of C (which
is provided by AbstractProcess) with the mappings associated with P and
P ′, respectively.

The results of AbstractSystem are the abstract process A with associated
distance function dA, and the function α which maps concrete states to abstract
states or ⊥. From these we derive the estimate function

f(q) =

{
∞ if α(q) = ⊥
dA(α(q)) otherwise.

Since the mapping α induces an equivalence on the states of the concrete system
(p∼ q ⇔ α(p) = α(q)), this estimate is consistent for any choice of a process
abstraction and composition strategy.

4 Computing Abstract Processes

How can we ensure that the error distance of the abstract state provides a good
estimate for the error distance of the concrete state? A natural idea is to use one
state in the abstraction as a representative for each set of concrete states with
the same error distance. While this preserves the error distance in the immediate
abstraction, it changes the synchronization behavior of the process. This, in turn,
changes the error distance in the next iteration of the “compose-and-abstract”
loop, when the abstracted process is composed with some other process. The
straightforward solution of this problem, to identify only bisimilar states and
thus preserve the synchronization behavior of the process, generally does not
sufficiently reduce the state space.
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Algorithm: AbstractProcess

Input : concrete process P = (Σ, Q, Q0, Qe,→)
Output: • abstract process A,

• mapping from concrete to abstract states:
α : Q → (QA ∪ {⊥})

/* Initialization */
Q′ := {q ∈ Q | dP (q) < ∞ and q reachable from Q0};
P ′ := (Σ, Q′, Q0 ∩Q′, Qe ∩Q′,→ ∩ (Q′ × (Σ ∪ {τ})×Q′));
∼ := {(q, q′) ∈ Q′ ×Q′ | min(dP (q), N − 1) = min(dP (q′), N − 1)};
K := |Q′/∼|;
for i = 0, . . . , K − 1 do

Bi := {q ∈ Q′ | min(dP (q), N − 1) = i};
Ri :=∼ ∩(Bi ×Bi) ;

end

/* Refinement loop */
repeat

∼′ := ∼;
for i = 0, . . . , K − 1 do

R∗
i := {(q, q′) ∈ Ri | ∀a {[r]∼ | q

a→ r} = {[r′]∼ | q′
a→ r′}};

if |Q′/(R1 ∪ · · · ∪R∗
i ∪ · · · ∪RK)| ≤ N then

Ri := R∗
i ;

∼ :=
⋃K−1

i=0 Ri;

end

until ∼ = ∼′ ;

A := P ′/∼;

α(q) :=

{
[q]∼ if q ∈ Q′

⊥ otherwise;

return A, α;

Fig. 3. Algorithm AbstractProcess computes an abstract process for a given
concrete process.

Our approach draws from both ideas. We fix a bound N on the maximal
number of states in the abstraction. Within this bound, our first priority is
to ensure that only states with the same error distance are identified, and our
second priority is to preserve the synchronization behavior.

Algorithm AbstractProcess is shown in Figure 3. As part of the initial-
ization, AbstractProcess prunes irrelevant states. Process P ′ contains only
states that are both reachable and have paths to some error state. The compu-
tation of the equivalence relation ∼ starts with the equivalence that identifies
two states iff they have the same error distance. During the entire run of the
algorithm, we only consider refinements of this equivalence. We therefore parti-
tion the states into buckets B0, . . . , BN−1 according to their error distance and
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Fig. 4. Comparison of algorithm AbstractProcess with an alternative solution that
considers buckets with high error distance first. The graph shows the average differ-
ence between estimated and actual error distance over all states with the same actual
error distance in percent of the actual error distance. (Data from the Towers of Hanoi
benchmark with three disks and a bound of 40 states.)

consider a separate equivalence relation Ri =∼ ∩ (Bi×Bi), i = 1, . . . , N − 1, on
each bucket.

The subsequent loop refines ∼ until a fixpoint is reached. For each relation
Ri, we tentatively split the equivalence classes in Ri according to the equivalence
classes of their successors in ∼. If the refined equivalence R∗

i does not increase the
total number of equivalence classes beyond the bound N , we refine ∼ according
to R∗

i . The buckets are considered in the order of increasing error distance,
starting with B0. This choice is based on the intuition that paths from states
with high error distance traverse states with lower error distance on their way
to the error state. Inaccuracies introduced for states with high error distance
are therefore likely to affect fewer states than inaccuracies introduced for states
with low error distance.

When the fixpoint is reached (after at most N iterations of the refinement
loop), the abstraction is computed as the quotient P ′/∼. The function α maps
each relevant concrete state q to its equivalence class [q]∼.
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Experiments. To evaluate this approach experimentally, we compare Abstract-
Process to an alternative solution that considers buckets with high error dis-
tance first. The advantage of AbstractProcess is especially clear in systems
with long error paths, such as the Towers of Hanoi example described in Sec-
tion 6. Figure 4 is based on data from the Towers of Hanoi benchmark with
three disks. The graph shows the average difference between estimated and ac-
tual error distance over all states with the same actual error distance in percent
of the actual error distance. The estimate obtained with AbstractProcess
is significantly more accurate than the estimate obtained by considering buck-
ets with high error distance first. Both estimate functions have an area around
the error states with perfect precision, but the area of the estimate obtained
with AbstractProcess is twice as large, resulting in a perfectly informed esti-
mate at error distance 9, where the alternative solution already reaches its peak
imprecision of 57%.

5 The Composition Strategy

Algorithm AbstractProcess is guaranteed to preserve the error distance in
the immediate abstraction, but may cause changes to the error distance once
the abstract process is composed with further processes. The goal of the com-
position strategy is to minimize the resulting inaccuracy by choosing a pair of
processes such that the error distance in their parallel composition provides a
good estimate of the error distance in the completely composed system.

A first observation is that in processes with trivial error condition Qe = Q,
the local error distance is 0 for all states. We therefore only consider pairs of
processes where at least one process has a non-trivial error condition. Among
these, we choose a pair such that their joint actions occur close to error states.
The result of this strategy is that we build an area close to the error states where
no synchronization is necessary to reach the error. Within this area, the local
error distance accurately reflects the error distance in the completely composed
system.

To implement this strategy, we introduce a ranking on the actions

r(P, a) = min{dP (q) | ∃q′ : q′
a→ q}.

A low ranking indicates that the action may be taken in close proximity of the
error. We associate with each pair (P1, P2) of two different processes the weight

min{max{r(P1, a), r(P2, a)} | a ∈ Σ1 ∩Σ2}

and choose a pair that minimizes this weight.

Experiments. We compare the described ranking-based strategy with the default
strategy that composes processes in the order in which they are defined. The
advantage of the ranking-based strategy is especially clear in systems where
only few processes have a non-trivial error condition. Figure 5 is based on data
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Fig. 5. Comparison of the ranking-based composition strategy with the default strat-
egy, which composes processes in the order in which they are defined. The graph shows
the average difference between estimated and actual error distance over all states with
the same actual error distance in percent of the actual error distance. (Data from the
Arbiter Tree benchmark with eight processes and a bound of 20 states.)

from the Arbiter Tree benchmark (see Section 6) with eight processes, where
only two out of the eight processes have non-trivial error conditions. The graph
shows the average difference between estimated and actual error distance over all
states with the same actual error distance in percent of the actual error distance.
The ranking-based strategy results in an estimate function that is roughly twice
as accurate as the estimate function resulting from the default strategy.

6 Experiments

Our collection of benchmarks contains standard examples for distributed systems
(Arbiter Tree, Towers of Hanoi), randomly generated systems, and industrial
case studies. We have implemented our algorithms in an experimental version of
the model checker UPPAAL [14]. Our implementation and the benchmarks are
available online3.

3 http://react.cs.uni-sb.de/˜draeger/dmc.tar.gz
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Table 1. Experimental Results: Comparison of best-first traversal using our estimate
function for two different bounds (N50 and N100) to best-first traversal using the FSM
estimate function (FSM) and to randomized depth-first traversal (rDF).

explored states seconds trace length
Exp rDF FSM N50 N100 rDF FSM N50 N100 rDF FSM N50 N100

A2 85 54 53 46 0.01 0.01 0.06 0.10 46 45 37 25
A3 6878 420 174 187 0.05 0.05 0.24 0.56 323 183 79 43
A4 1994 1.3e5 1.5e5 10633 0.06 1.01 3.16 2.78 429 1003 509 157
A5 *** 9.9e5 7619 10673 1198 12.48 5.66 26.73 *** 5213 3869 1151
A6 * ** 4.3e5 5.2e5 ** ** 62.30 196.9 * ** 2.0e5 55535

H4 3027 4996 1283 711 0.03 0.05 0.07 0.09 573 761 181 125
H5 52417 57600 6497 6368 0.24 0.24 0.13 0.18 5528 3705 381 405
H6 3.1e5 5.0e5 1.1e5 63403 1.39 1.92 0.65 0.53 31225 26605 1445 1317
H7 1.5e6 4.5e6 7.4e5 7.5e5 7.50 20.37 4.09 4.32 2.3e5 2.0e5 3377 3177
H8 2.9e7 1.6e7 8.6e6 4.5e6 336.2 132.3 60.61 29.34 1.8e6 1.5e6 12073 6705

R5 5840 4177 697 443 0.04 0.04 0.05 0.06 936 154 62 64
R6 71098 19903 395 363 0.32 0.11 0.07 0.10 858 97 43 41
R7 3.1e5 83582 6656 8199 1.42 0.32 0.12 0.17 1040 81 56 50
R8 1.5e6 2.7e5 2.2e5 1.2e5 9.13 1.01 1.32 0.87 1453 138 58 59
R9 *** *** 2.9e5 4.9e5 336.3 80.43 2.05 3.64 *** *** 77 80
R10 *** *** *** 2.6e5 496.3 71.83 38.87 2.20 *** *** *** 122

M1 23894 31927 19063 12780 0.54 0.45 0.35 0.23 926 1349 129 74
M2 1.6e5 2.0e5 46545 46337 2.19 2.92 0.74 0.86 3717 7695 131 190
M3 68313 1.7e5 64522 42414 0.92 2.34 0.99 0.80 3589 5690 119 92
M4 2.0e5 5.8e5 1.7e5 1.3e5 2.71 7.34 2.49 1.86 14415 25819 146 105
N1 43655 42931 27275 1660 1.56 1.62 1.02 0.15 985 1803 187 194
N2 1.7e5 2.6e5 1.0e5 67168 5.61 9.43 3.55 2.16 4611 9279 218 138
N3 1.7e5 1.3e5 1.4e5 81804 5.85 4.96 4.99 2.69 3794 11656 178 130
N4 1.0e6 1.5e6 4.8e5 3.8e5 34.71 51.10 17.91 11.07 17851 41986 234 169

C1 25122 19263 871 810 0.24 0.24 0.30 0.49 1087 1442 188 191
C2 65275 68070 1600 2620 0.56 0.59 0.40 1.03 886 2032 203 206
C3 86439 97733 2481 2760 0.74 0.82 0.47 1.14 786 1663 204 198
C4 8.5e5 9.8e5 22223 25206 6.52 6.90 0.91 1.83 1680 5419 247 297
C5 8.3e6 8.8e6 1.6e5 1.6e5 66.41 66.85 2.90 3.97 1900 14163 322 350
C6 *** ** 1.7e6 1.2e6 1181 ** 18.32 14.87 *** ** 480 404
C7 * ** 1.3e7 1.3e7 * ** 156.1 162.4 * ** 913 672
C8 * ** 1.4e7 1.2e7 * ** 163.0 155.3 * ** 1305 2210
C9 * ** ** 3.6e7 * ** ** 1046 * ** ** 1020

* timeout; ** out of memory; *** timeout on some instances

We evaluate our estimate function both for best-first traversal (Table 1) and
for A* (Table 2). For each benchmark, the tables show the running time, the
number of explored states, and the length of the discovered error trace. We
compare our estimate function with two different bounds (N50 and N100) to
randomized depth-first traversal (rDF) and directed model checking with the
FSM estimate function (FSM).
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Table 2. Experimental results: Comparison of A* traversal using our estimate function
for two different bounds (N50 and N100) to A* traversal using the FSM estimate
function (FSM).

explored states seconds trace
Exp FSM N50 N100 FSM N50 N100 length

A2 498 215 46 0.02 0.06 0.10 25
A3 81883 32106 20658 0.41 0.48 0.73 35

H4 6289 3876 3348 0.06 0.08 0.10 105
H5 67202 52348 48361 0.29 0.32 0.36 229
H6 627669 540286 516242 2.46 2.80 2.82 481
H7 5.8e6 5.4e6 5.3e6 27.08 32.29 31.48 989

R5 35784 4642 2392 0.15 0.06 0.08 27
R6 174589 6047 4295 0.69 0.07 0.12 22
R7 764727 14037 12083 3.30 0.16 0.20 27
R8 2.1e6 98420 60322 12.94 0.67 0.52 23
R9 ** 93806 70578 125.95 0.71 0.69 25
R10 ** 271935 279693 88.46 2.22 2.47 25

M1 50147 25103 23917 0.79 0.52 0.48 50
M2 223034 100513 94426 3.30 1.82 1.82 51
M3 231357 130747 129269 3.42 2.43 2.51 53
M4 971736 561599 516178 13.99 10.57 9.54 54
N1 99840 56550 52564 5.59 3.44 3.03 50
N2 446465 238369 218351 25.30 14.86 13.21 53
N3 473117 286506 257530 27.04 17.86 15.23 53
N4 2.0e6 1.2e6 1.1e6 117.43 74.83 70.88 56

C1 35768 13863 13455 0.37 0.42 0.62 55
C2 110593 38483 36888 0.99 0.76 1.37 55
C3 144199 44730 42366 1.27 0.91 1.54 55
C4 1.4e6 368813 354091 11.23 4.30 5.05 56
C5 1.3e7 2.8e6 2.7e6 116.28 29.60 29.97 57
C6 * 2.8e7 2.7e7 * 377.77 364.15 57

* (**) out of memory (on some instances)

Our experiments were carried out on an Intel Xeon 3.06 Ghz system with
4 GByte of RAM. For all experiments, we set a time limit of 30 minutes. In
the case of rDF, the table shows the average runtime over three runs. For some
benchmarks, some but not all of these runs hit our time limit. These runs were
added into the runtime average with the 30-minute timeout as their runtime.

Arbiter Tree. The Arbiter Tree [19] establishes mutual exclusion between 2k

client processes. The processes are arranged in a binary tree of height k, where
each leaf node is a client and each internal node is an arbiter that ensures mutual
exclusion between its two children, passes requests and releases upward, and
passes grants downward. One additional process handles the requests of the root
node by immediately sending a grant upon receiving a request and then waiting
for the release. The benchmarks A2 – A6 contain arbiter trees of height 2 – 6,
with an exponentially growing number of processes (A2 has 8 processes, A6 has
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128). We specified mutual exclusion for one particular pair of client processes
and introduced a fault in the form of an incorrect client that erroneously sends
several release signals when done.

The error in a tree with 128 processes is found in approx. 1 minute using
a bound of 50 states. Because not all processes contribute to reaching an er-
ror state, this low bound already produces a well-informed heuristic. Using the
higher bound of 100 states is expensive: since in this benchmark the length of
the shortest error path is only linear in the height of the tree, computing the
estimate involves composing a large number of processes with few and therefore
large buckets. The more accurate estimate produced by N100 does, however,
lead to shorter error traces.

The Towers of Hanoi. Benchmarks H4 – H8 model the standard problem of
moving a stack of differently sized disks from one of three columns to another,
with the constraints that the disks may only be moved one at a time and a disk
may never be stacked on top of a smaller disk. We modeled the problem with
one process for each disk. A disk can at any time send a request upwards in the
hierarchy of smaller disks to check whether itself and a target column is clear of
smaller disks. If it gets an “ok” signal, it moves from its current column to the
target column. To find a trace that leads to the target configuration we specify
the target configuration as the error condition. In this benchmark, the length of
the shortest error path grows exponentially with the number of processes. This
explains why the bound N100 performs significantly better than the bound N50
in the largest benchmark H8.

Randomly generated systems. We obtained a further suite of benchmarks by ran-
domly generating systems of processes. The parameters of the construction are
the number of processes, the minimum and maximum number of states of the
processes, and the seed for the random number generator (the Mersenne Twister
[15]). Excluded from the benchmarks are systems with no error paths and sys-
tems that contain independent subsystems, i.e., systems where the process graph,
with edges between processes that have shared actions, is not connected.

Benchmarks R5 – R10 each consist of 15 different randomly generated sys-
tems, with the size ranging from 5 (R5) to 10 (R10) processes. We set the
number of actions to twice the number of processes, the minimum/maximum
size to 3/10, and averaged the results over the 15 systems for each size. The only
method besides our estimate function that also finds the error in all systems
with 10 processes is rDF, which, however, takes significantly more time.

A* is usually much more expensive than best-first traversal. In this bench-
mark, however, A* results in a much more focused traversal, as the number of
visited states shows. As a result, A* even becomes faster than best-first traversal.

Industrial Examples. Henning Dierks provided us with a collection of UPPAAL
benchmarks from two industrial case studies: A real-time mutual exclusion pro-
tocol in a distributed system with asynchronous communication [3] (benchmarks
M1 – M4 and N1 – N4) and a tramway controller from the UniForM project [11]
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(C1 – C9). The two case studies add real-time constraints and integer variables
to the discrete setting of the other benchmarks: the faults in both case studies
are introduced as erroneous time bounds. Even though our implementation is
not yet optimized for this type of system (in the computation of the estimate,
we simply ignore the clocks and use a flat representation of the integer values
as discrete states), the directed model checker performs remarkably well, solving
several benchmarks that were previously out of UPPAAL’s reach.

7 Related Work

Several researchers have investigated techniques to guide the model checker.
Typically, the guidance is application-specific and must be provided by the user.
For example, Behrmann et al [1] describe UPPAAL case studies in which a
dramatic reduction of the state space was achieved by a user-provided estimate
of the error distance. Bloem et al [2] use hints in the form of assertions on the
primary inputs and state variables of the model: the transition relation can then
be underapproximated (by ignoring transitions out of states that violate the
hint) or overapproximated (by allowing any transition from a state that violates
the hint). Similarly, Kaltenbach and Misra [10] use hints in the form of regular
expressions over the actions of the program.

Directed model checking with an automatically computed estimate of the er-
ror distance has been pioneered by Edelkamp, Leue, and Lluch-Lafuente with the
tool HSF-SPIN [5]. In addition to several simpler heuristics for safety and live-
ness properties (including deadlock-detection), HSF-SPIN implements the FSM
heuristic [7]. The FSM heuristic approximates the error distance by the maxi-
mum (or, alternatively, the sum) of the error distances in individual processes
and is a significant improvement over program-independent estimates like the
Hamming-distance [20]. The drawback of the FSM heuristic is that it ignores the
synchronization between the processes. It is therefore less useful when searching
for errors that require a complex interaction between multiple processes.

Similar to our approach, the pattern databases of Qian and Nymeyer [17]
and the abstraction databases by Edelkamp and Lluch-Lafuente [6] also make
use of an abstraction of the system. The error distances in the abstract state
space are stored in a table, from which they are read off during the traversal
of the concrete state space. Our abstraction technique extends these methods:
while both pattern databases and abstraction databases assume that a partic-
ular abstraction function is chosen beforehand, we automatically compute an
abstraction function that aims at preserving the error distance.

Related to our incremental abstraction technique is the Incremental Compo-
sition and Reduction (ICR) Method [18], which reduces the partially composed
system after each composition of two processes to an observationally equivalent
process. Since ICR maintains an accurate representation of the behavior of the
partially composed system (which often requires more states than the completely
composed system), ICR is only feasible if the user provides additional constraints
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on the process interaction [8]. By contrast, our method, which only maintains
an approximate representation of the behavior, is fully automatic.

In very recent work, also submitted to SPIN 2006, Kupferschmid et al [12]
investigate using an estimate function from AI planning for directed model check-
ing. The estimate is based on a relaxation of the system in which every state
variable, once it has obtained a value, keeps that value forever. Because Kupfer-
schmid et al’s estimate function is computed on-the-fly, it can be used in systems
with infinite data types (such as unbounded integers), which are currently out
of our scope. On the other hand, our precomputed abstraction reflects the pro-
cess synchronization more accurately, which leads to much better performance in
systems with complex process interaction, such as the Towers of Hanoi bench-
mark (see Section 6). There is obvious potential in a combination of the two
approaches, which we plan to explore in future work.

An important complement to directed model checking with estimates
of the error distance are structural heuristics as implemented in the Java
PathFinder [9]. These heuristics exploit the program structure for example by
maximizing thread interleavings and code coverage.

8 Conclusion

Abstraction has always been considered a key in fighting the state explosion
problem. Here, we have given a new twist to abstraction. We traverse abstract
states in order to compute an estimate of the error distance, and then traverse
concrete states in order to find an error path. The quality of an abstraction is not
determined by a Boolean value (“does the abstraction preserve the reachability
of an error state by the initial state?”). It is rather determined by the ratio
between the estimated and the actual error distance.

While we are still in the beginning of the systematic design of such ab-
stractions, this paper has made an initial contribution. It presents a distance-
preserving abstraction for concurrent systems that allows one to compute an
interesting estimate of the error distance without hitting the state explosion
problem. As detailed in the paper, the definition of the abstraction originates
from insights into the interplay between the impact of an action-based synchro-
nization mechanism on the error distance in concurrent systems on the one hand
and the use of estimated error distances during the state space traversal on the
other hand.

We have implemented the resulting directed model checking method, and we
have lead a series of experiments that indicate the usefulness of an estimate that
takes into account synchronization.

With abstraction, one always encounters a tradeoff between cost and preci-
sion. A potential advantage of our abstraction method is that it is parameterized
(by the size of the abstract state space), and that one can fine-tune the param-
eter (and thus the accuracy of the abstraction). To demonstrate the tradeoff
on an example, we took a randomly generated system with eight processes and
changed the parameter gradually. Figure 6 shows the corresponding running
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Fig. 6. Running time of the directed model checker for different bounds on the abstract
state space. (Data from a randomly generated system with eight processes.)

times. Initially, the runtime decreases with a increasing parameter. After the
sweet spot in the tradeoff is reached (in the region between 60 and 80), the run-
time increases with increasing parameter. More experience is needed in order to
provide systematic ways to choose the parameter.
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