
jMosel: A Flexible Tool-Set for Monadic

Second-Order Logic on Strings

Christian Topnik1 Eva Wilhelm1 Tiziana Margaria2

Bernhard Steffen1

1Universität Dortmund, FB Informatik, Lehrstuhl 5,
{christian.topnik,eva.wilhelm}@uni-dortmund.de

steffen@cs.uni-dortmund.de
2Universität Göttingen, Service Engineering for Distributed Systems,
margaria@cs.uni-goettingen.de

Abstract. jMosel is a tool-set for the analysis and verification of linear para-
metric systems in monadic second-order logic on strings. In this paper we
concentrate on the presentation of the core tool which supports several input
and output formats as well as the interchange of the tool-set’s internal com-
ponents. The main design principles of jMosel are its layered approach to the
logic, the definition of a formal semantics for a minimal subset, its modular
design and its integration into the jABC application design environment. The
tool demonstration in the appendix shows how to use jMosel as a stand-alone
tool and as a plugin for the jABC environment.

1 Introduction

Monadic second-order logic on strings (M2L(Str)) was proposed as an appro-
priate formalism for reasoning about bit vector sequences by A. Church in the
1960’s [3]. It is expressive enough to capture parametric finite-state systems and
it is also decidable, though in non-elementary time. However, many relevant
practical problems have proved to be solvable in reasonable time.

A convenient characteristic of this logic is that it is both an abstract specifi-
cation language and a powerful programming language, since every specification
corresponds to a finite-state automaton representing an executable behaviour.

It has been applied for the specification and verification of classes of para-
metric hardware systems [2, 6, 7, 9] and software systems [10, 11], in which the
logic can serve, for example, as a description language for model-based analysis.

This paper introduces the new tool jMosel, that offers a tool-set for handling
M2L(Str) formulas, i.e. constructing the automata representing the desired se-
mantics and providing the means to further work with them in different contexts.
jMosel is designed to include a flexible set of decision procedures for several the-
ories of the logic, complemented by different input and output formats, as well
as by interfaces to other logics and tools for analysis, verification and synthesis.
The semantics for the Minimal Logic is defined via finite-state automata.

It is developed as the successor to the MoSeL tool-set from the 1990’s, but
using current technologies like Java and XML. The emphasis is placed on flexi-
bility, to allow the customisation of nearly every aspect of the tool’s properties,



which also is one of jMosel’s unique features distinguishing it from other imple-
mentations like the ones mentioned above. The input syntax, the output format,
and libraries referenced by the compiler unit can be exchanged easily, which
already enables jMosel to be combined with a variety of other applications.

2 The jMosel Concept

2.1 Design Principles

Two central design principle of jMosel are the layered approach to the logic and
the library-based design.

Layered approach to the logic. jMosel’s logic is built according to a hierarchy
of logic layers (see figure 1) with increasingly powerful constructs. These layers
are related by either direct embedding or more elaborate encodings realized in
form of a more or less complex compiler.

– The Minimal Logic contains a minimal set of primitives, for which the se-
mantics is formally defined in terms of corresponding automata.

– The Kernel Logic extends the Minimal Logic by additional derived constructs
and coincides with the set of constructs actually implemented as primitives
in the semantic decision procedure. The goal is here an optimisation of the
execution time by offering more powerful constructs.

– A set of user logics can be encoded in the Kernel Logic. They are either con-
venient for generic applications or tailored to a specific application domain.

Fig. 1. The Hierarchy of Logics



Library-based design. jMosel supports flexible adaptation and extension to
new input or output formalisms, as well as the interchange of many components,
including the most crucial algorithms and libraries. This allows the user to ex-
periment with a great variety of technologies. The aim is that the best-fitting
incarnation of the tool for a specific application area may be put together at
need from the collection of existing components.

– Exchangeability concerns e.g. the BDD libraries. The performance of the
operations on the BDDs, which label the edges of a jMosel automaton, has
a great impact on the overall performance of the compilation process. To
encourage the user to compare different implementations, jMosel already
supports the use of the following BDD libraries: CUDD [17], BuDDy [5],
CAL BDD [14], JavaBDD (Java port of BuDDy) [19], JavaBDD Micro (Java
port of BuDDy) [19], JDD [18]. Switching between these libraries can be done
easily by changing the corresponding lib parameter of the command line tool
(see appendix).

– Even such fundamental compiler parts, like the algorithms for determini-
sation and minimisation, can be easily changed or replaced.

– Various visualisation tools, like Graphviz or our own jABC libraries for
graph layout and rendering, can be used - as shown in the demonstration
(see appendix).

– Furthermore, jMosel has been integrated as a plugin in jABC [12], a mod-
ular general purpose modelling and design tool for heterogenous software
systems.

– The jABC can be itself used as a plugin to the Eclipse environment, thus
jMosel can be directly accessed within a generic software development envi-
ronment.

2.2 The Syntax

jMosel’s syntax slightly differs from the original MoSeL syntax of [4]. Changes
have been introduced to uniform it with (modern) standard notations.

Minimal logic The Minimal Logic (figure 2) is a concrete syntactic version
of the monadic second-order logic on strings, using a minimal set of primitives.
It serves as the reference logic for jMosel, relative to which the correctness and
completeness of the implementation can be verified and the semantics of the
various extensions of the language can be defined.

Kernel Logic The drawback of a very tiny language, like the Minimal Logic, is
the fact that nearly all the constructs of a typical user-level language correspond
to complex expressions. To avoid the cost of breaking down frequently used user-
level constructs to the few primitives of the Minimal Logic every time they are
used, the Kernel Logic (see figure 3) was defined to support a reasonable set of
derived constructs by direct semantic translations.



T ::= Id

A ::= subseteq(T,T) | shifteq(T,T)

F ::= A | ∼F | F & F | ex Id: F | (F)

Fig. 2. The Minimal Logic of the jMosel Tool

T ::= Id | all | empty | union(T,T) | inter(T,T) |
comp(T) | (T)

A ::= sing(T) | ∼sing(T) | subset(T,T) | ∼subset(T,T) |
subseteq(T,T) | ∼subseteq(T,T) | T = T | T ∼= T |
shifteq(T,T) | ∼shifteq(T,T) | T < T | T <= T |
roteq(T,T) | ∼roteq(T,T) |
0 in T | 0 ∼in T | $ in T | $ ∼in T

F ::= true | false | F & F | F | F | F -> F |
F <-> F | F ^ F | Id(T,...,T) | ∼Id(T,...,T) |
ex Id,...,Id: F | ∼ex Id,...,Id: F |
"<automaton filename>"(T,...,T) |
∼"<automaton filename>"(T,...,T) |
let Id(Id,...,Id) in F | A | (F)

Fig. 3. The Kernel Logic of the jMosel Tool

2.3 The Semantics

The jMosel formulas are transformed into complete and deterministic finite-
state automata in such a way that the language recognized by an automaton
corresponds to the interpretation of the represented formula. The semantics of
the two atomic formulas of the Minimal Logic shifteq and subseteq are given
in figure 4 and figure 6 respectively. These automata are not constructed, but
primitive.

3 Implementation

jMosel is implemented in Java, for easy maintainance of the code and to make
the tool instantly available on nearly every important hardware and operating
system. Only for the most crucial and time consuming part, the potentially
complex edge labels represented by BDDs, C++ libraries can be referenced, to
ensure fast calculations with minimum overhead. At need, the same mechanism
can be used to access packages written in other languages or in assembler - but
this would then reintroduce platform-dependence.

The architecture of jMosel’s parser/compiler unit is shown in figure 5. A
formula (given as a parameter string or a reference to a *.mos - file) is passed to
the command line tool jMoselC, which invokes the parsing of the corresponding



Fig. 4. Automaton for “shifteq(x,y)”

Fig. 5. The Parser/Compiler Architecture

syntax tree. The compiler traverses the tree to create the automaton represent-
ing the formula’s semantics, which is finally translated into the desired output
format.

4 Future Work

The main emphasis of the development within the jMosel group is placed on the
following tasks:

– The jETI System [8, 13] will enable jMosel to be remotely executed over the
internet as a WebService.

– An extension of the Kernel Logic will contain first-order and bit variables,
e.g. as arguments to quantifiers.



– A PSL [1] user logic will offer means for the formulation and verification of
PSL assertions based on regular expressions.

– An exhaustive library of hardware circuits will allow the intuitive description
and verification of parametric hardware systems at register-transfer and gate
level. This approach abstracts from the underlying logic layers and therefore
is accessible for users unfamiliar with M2L(Str).

References

1. Accellera Organization, Inc. Accellera Property Specification Language 1.1 Refer-
ence Manual, 2004.

2. David A. Basin and Nils Klarlund. Hardware Verification using Monadic Second-
Order Logic. In Proc. CAV’95, volume 939 of Lecture Notes in Computer Science,
pages 31–41. Springer Verlag, 1995.

3. Alonzo Church. Logic, arithmetic and automata. In Proc. Intern. Congr. Math.,
pages 23–35. Almqvist and Wiksells, 1963.

4. Peter Kelb, Tiziana Margaria, Michael Mendler, and Claudia Gsottberger.
MOSEL: A Flexible Toolset for Monadic Second-Order Logic. In Proc. TACAS’97,
volume 1217 of Lecture Notes in Computer Science, pages 183–202. Springer Ver-
lag, 1997.

5. Jørn Lind-Nielsen. BuDDy. http://sourceforge.net/projects/buddy.
14. 12. 2005.

6. Tiziana Margaria. Fully Automatic Verification and Error Detection for Parame-
terized Iterative Sequential Circuits. In Proc. TACAS ’96, volume 1055 of Lecture
Notes in Computer Science, pages 258–277. Springer Verlag, 1996.

7. Tiziana Margaria. Verification of Systolic Arrays in M2L(Str). In Technical Report
MIP-9613. Fakultät für Mathematik und Informatik, Universität Passau, 1996.

8. Tiziana Margaria. Web Services-based Tool-Integration in the ETI Platform. In
SoSyM, International Journal on Software and System Modelling. Springer Verlag,
2004.

9. Tiziana Margaria and Michael Mendler. Automatic Treatment of Sequential Cir-
cuits in Second-Order Monadic Logic. In Proc. 4th GI/ITG/GME Workshop on
”Methoden des Entwurfs und der Verifikation digitaler Systeme”, pages 21–30.
Shaker Verlag, 1996.

10. Tiziana Margaria and Michael Mendler. Model-based Automatic Synthesis and
Analysis in Second-Order Monadic Logic. In Proccedings AAS’97, ACM/SIGPLAN
Int. Worksh. on Automated Analysis of Software, pages 99–112, 1997.

11. Anders Møller. Program Verification with Monadic Second-Order Logic & Lan-
guages for Web Service Development. Technical report, Brics, Daimi, 2002. PhD
thesis.

12. Ralf Nagel. jABC. http://jabc.cs.uni-dortmund.de. 14. 12. 2005.
13. Ralf Nagel. jETI. http://jeti.cs.uni-dortmund.de. 14. 12. 2005.
14. Rajeev Ranjan. CAL BDD. http://www-cad.eecs.berkeley.edu/Research/cal_

bdd/. 14. 12. 2005.
15. AT&T Research. Dot format. http://www.graphviz.org/cvs/doc/info/lang.

html. 14. 12. 2005.
16. AT&T Research. Graphviz. http://www.graphviz.org/. 14. 12. 2005.
17. Fabio Somenzi. CUDD. http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.

html. 14. 12. 2005.



18. Arash Vahidi. JDD. http://javaddlib.sourceforge.net/jdd/index.html.
14. 12. 2005.

19. John Whaley. JavaBDD. http://javabdd.sourceforge.net/. 14. 12. 2005.



A Tool Demonstration

A.1 The Command Line Tool (for jETI Integration)

This short demonstration of the command line tool shows the functionality that
will be integrated in jETI as a WebService and at the same time puts emphasis
on two of the different output formats (dot, XML).

Visualizing an automaton with Graphviz
The command

jmoselc -in cmd "subseteq(x,y)." -out dot graph.dot

invokes the generation of the following output in the dot format [15] that is
stored in the file “graph.dot”:

/* Automaton generated by JMoselC */

digraph Automaton

{

void [style=invis]; /* Used for starting pointer */

void -> 0;

0 [label="", shape=circle, peripheries=2];

0 -> 0 [label="(~x&~y)|y"];

0 -> 1 [label="x&~y"];

1 [label="", shape=circle, peripheries=1];

1 -> 1 [label="true"];

}

When viewed with a tool like Graphviz [16], the automaton looks like the
one displayed in figure 6.

Fig. 6. Automaton for
“subseteq(x,y)”

Fig. 7. Constant true automaton



Changing the BDD package and producing XML output
The invocation of the tool via the command

jmoselc -in cmd "subseteq(x,y)." -out xml graph.xml -lib cudd

computes the same automaton, but now using the CUDD library during
compilation (instead of the standard Java BDD implementation), and changing
the output format to XML. The resulting file looks as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!-- Automaton generated by jMosel -->

<moselautomaton initialstate="s0">

<state id="s0" accepting="yes">

<edge to="s0">

<label>

(~x&~y)|y

</label>

</edge>

<edge to="s1">

<label>

x&~y

</label>

</edge>

</state>

<state id="s1" accepting="no">

<edge to="s1">

<label>

true

</label>

</edge>

</state>

</moselautomaton>

The exact format of the XML output could be customized further, depending
on what information is needed by a target application. For example, it is possible
to store a representation of the BDDs within the <label> tags, or to include a
representation of the formula out of which the automaton was computed.

A.2 jMosel as jABC plugin

In this second part of the demonstration we show how to use jMosel inside the
jABC, where it has been integrated as a plugin. In particular,

1. We construct a jMosel formula by drawing it as a SIB-Graph inside the
Formula Builder. Fig. 8 shows the formula

subseteq(x,y) & x~= empty & y~= all.



Fig. 8. Creating a formula graphically

which accepts all the nontrivial x-subsets of y.
2. The automaton to that formula is transformed into a SIB-Graph and visu-

alized in the jABC (figure 9), where we also see the XML export format.
3. We show here how the Kernel Logic constructs can be verified to be correct

wrt. the Minimal Logic. In figure 10 the definition of sing is typed in the
jMosel input field, it is translated into an automaton and exported as a dot
file.



Fig. 9. Visualizing the automaton in jABC and XML export

Fig. 10. Consistency proof of the sing construct (formula input on the left) and dot
export


