
Abstract Matching for Software Model Checking?

Pedro de la Cámara, Maŕıa del Mar Gallardo, and Pedro Merino

University of Málaga
Campus de Teatinos s/n,

29071, Málaga, Spain
pedro.delacamara@gmail.com,{gallardo,pedro}@lcc.uma.es

Abstract. Current research in software model checking explores new
techniques to handle the storage of visited states (usually called the
heap). One approach consists in saving only parts or representations of
the states in the heap. This paper presents a new technique to imple-
ment sound abstract matching of states. This kind of matching produces
a reduction in the number of states and traces explored. With the aim
of obtaining a useful result, it is necessary to establish some correctness
conditions on the matching scheme. In this paper, we use static analysis
to automatically construct an abstract matching function which depends
on the program and the property to be verified. The soundness of the
static analysis guarantees the soundness of verification. This paper de-
scribes the overall technique applied to Spin, the correctness issues and
some examples which show its efficiency.
Keywords: State Explosion, Model Extraction, Static Analysis

1 Introduction

Using model checking techniques for software verification usually involves the
manual construction of high-level models. This construction process allows de-
signers to exploit many abstraction techniques in order to reduce the size of the
model and its complexity. However, it requires a deep understanding of both
the real software and the modelling language features. Furthermore, the manual
construction process is susceptible to human error due to misunderstandings or
simply programming bugs. These errors are especially subtle because they may
lead to false results in the process of model checking, thus failing to detect the
presence of errors in the program being verified. Recently, many projects are de-
veloping automatic model extraction techniques, that can contribute to solving
this problem with minimal human interaction (see Feaver [7], JPF1 [5] and Ban-
dera [2]). However, extracted models are too cumbersome and have too many
implementation details. Therefore, it is desirable to develop further optimization
(abstraction) techniques in order to reduce the complexity of the model. This
paper is devoted to a new optimization technique which reduces the explored
state space in models extracted for Spin. The technique is based on the use of
abstractions to implement the matching functions to discard visited states, as
? This work has been supported by the Spanish MEC under grant TIN2004-7943-C04

introduced in [6] and [9]. The main novelty of our abstract matching method
is the ability to preserve soundness in the verification results, due to how the
abstract matching function is constructed.

The method proposed in [6] consists in hiding specific C variables in such
a way that they are never used to compare global states and decide whether
they have been visited or not. However all the variables are always visible when
making backtracking or producing new states. The mechanism used to implement
this abstraction scheme in [6] is based on a new Promela extension that allows
verifier to hide variables when performing the matching of states.

Our approach is an extension of the implementation mechanism in [6], that
adds soundness to the verification results for a given class of abstraction func-
tions. In particular, we employ a property-oriented static analysis to locate the
set of variables that should be hidden or matched after every execution step.
The analysis is a variant of dependency analysis, called influence analysis, that
produces a set of visible variables for every sentence in the model. These vari-
ables should be visible after executing the sentence (after producing a new global
state), in such a way that their values are considered to match the global state.

In our method, the correctness conditions and the algorithm used to carry out
the static analysis can be changed depending on the properties to be preserved
during verification. In the paper we describe methods for three kinds of prop-
erties: a) code reachability, b) safety properties (state properties in Spin) and
c) liveness properties (sequence properties in Spin). For all these cases, static
analysis is done prior to verification, during the model extraction, producing
a Promela model with property-oriented abstract matching. The new model is
verified as usual with Spin.

The new approach can be directly implemented for other tools that perform
model extraction for Spin (like FeaVer or Bandera), however we are integrating
the static analysis in our tool SocketMC [3]. This tool is a model extractor fo-
cused on verifying concurrent software with well defined-APIs. The experimental
results with the new optimization are very promising.

Regarding another closely related work, the implementation of abstract match-
ing in [9] is based on applying predicate abstraction to the global states to be
compared, in such a way that explicit hiding is not used. Predicate abstraction
works matching over-approximations of the states, so the method can produce
unsoundness when verifying properties. For that reason, a refinement method,
assisted with a theorem prover, is used in order to improve the quality of the
analysis.

As far as we know, our work contains valuable contributions compared with
[6] and [9]. For example,

1. The method for obtaining the abstraction function based on static analysis
can be done automatically

2. Static analysis provides a sound function for each given property.
3. The soundness conditions also allow the verification of liveness properties.

The paper is organized as follows. The preliminary material in Section 2
summarizes the extraction approach in our tool SocketMC, which is used as

2

our first target tool to include the new optimization. Section 3 gives an overview
of the method and its application to a real example. The soundness of the method
is presented in the next two sections. Section 4 explains the static analysis called
influence analysis, and Section 5 contains a discussion on the correctness of this
approach. Conclusions are given in Section 6. Finally, Appendix A contains the
proofs of the results in the paper.

2 Model extraction and SocketMC

// Client process

int main() {

struct hostent *ptrh;

struct protoent *ptrp;

struct sockaddr_in sad;

int sd;

int port;

char *host;

.................

memset((char *)&sad,0,sizeof(sad));

sad.sin_family = AF_INET;

sad.sin_port = htons((u_short)port);

socket(PF_INET, SOCK_STREAM, ptrp-
>p_proto);

..

read(0,cadena,sizeof(cadena));

n = write(sd,cadena,strlen(cadena));

n = read(sd, buf, sizeof(buf));

// Client process

int main() {

// Server process

int main() {

Operating System Support
Concurrency,

Communications,

I/O,

Memory management,

Files, ...

APIS

Parser
(filtering,

normalization, ..)

Model generator

LTL,

Büchi

C, C++

Socket based software

Properties

PROMELA

SPIN 4

Operational

Semantics

(Sockets)

// Client process

int main() {

struct hostent *ptrh;

struct protoent *ptrp;

struct sockaddr_in sad;

int sd;

int port;

char *host;

.................

memset((char *)&sad,0,sizeof(sad));

sad.sin_family = AF_INET;

sad.sin_port = htons((u_short)port);

socket(PF_INET, SOCK_STREAM, ptrp-
>p_proto);

..

read(0,cadena,sizeof(cadena));

n = write(sd,cadena,strlen(cadena));

n = read(sd, buf, sizeof(buf));

// Client process

int main() {

// Server process

int main() {

Operating System Support
Concurrency,

Communications,

I/O,

Memory management,

Files, ...

APIS

Parser
(filtering,

normalization, ..)

Model generator

LTL,

Büchi

C, C++

Socket based software

Properties

PROMELA

SPIN 4

Operational

Semantics

(Sockets)

Fig. 1. Extracting models with SocketMC

The aim of tool SocketMC is to verify concurrent C applications that make
an extensive use of operating system facilities through system calls. We have
constructed a Spin oriented model of the behavior of the operating system API.
This model is used to automatically obtain a correct abstraction of the software
that makes use of this API. Following [7], we have defined a mapping from
the original C code to extended Promela. The tool SocketMC automatically
transforms each API call into Promela code preserving the semantics of the calls.
The new Promela model constructed can be verified with standard Spin. Figure 1
shows the main parts of SocketMC, the parser and the model generator. The
figure also shows the relevant role of the formal semantics given to the operating
system API. The semantics is used as a reference to construct a sound Promela
version of each API call.

Our basic mapping scheme works as shown in Figure 2. Given a set of C pro-
cesses (main() functions), the mapping from the original code to Promela is done
replacing every process (every main() function) with a proctype() definition.
Then, the body of every proctype() is filled using the Promela extensions for
C code (c decl, c state, c expr and c code). This is done breaking the orig-
inal C code in the points where a call to API appears. The final Promela code

3

preserves the sequential execution of every C block code between two system
calls. Thus, when verifying the model, Spin interleaves blocks and system calls
as atomic sentences. The way of implementing the extraction, together with the
semantic-driven API implementation, ensures the correctness of our verification
model.

By default, the Promela models produced by the first version of the tool
contain all the C variables in the original code. The approach presented in the
following sections is oriented to automatically reduce the set of variables that
should actually be managed to produce the state space. The proposals are im-
plemented as new versions of the two components of SocketMC (the parser
and the model generator in Figure 1), and the result is a new mapping scheme to
extract the final Promela models. It is worth noting, however, that our method to
construct abstract matching functions can be applied to other model extraction
approaches and even to other model checking tools.

Clients and servers (C code)

global vars

main()
{
Local vars

C block;
API call;
............
C block;
API call;

}

Functions

global vars

main()
{
Local vars

C block;
API call;
............
C block;
API call;

}

Functions

Additional C global vars;

proctype p1()
{

C global vars
C local vars;

C block;
API call;
............
C block;
API call;

}

proctype p2()
{

C block;
API call;
............
C block;
API call;

}

Clients and servers (Pormela code)

Fig. 2. Mapping scheme in SocketMC

3 Sound Abstract Matching

The technique to include abstract matching in Spin and the problem of how
to ensure validity of abstract matching functions was originally presented by
Holzmann and Joshi in [6]. The first issue, the implementation approach, is pre-
sented in the context of the nested depth-first search algorithm with abstraction
described in [1]. The idea is to avoid starting a new search from a given state
if an essentially equal state has been visited before. In summary, including ab-
straction when storing visited states works as follows. Given a global state s,

4

abstraction consists in replacing the usual operation “add s to States”, that
stores it as a visited state, by the new operation “add f(s) to States”, where
f() represents the abstraction function. Function f() generates the abstraction
of s to be matched and stored (note that in [1] and [6], operation add has a
second argument that does not affect the abstraction process). It is worth not-
ing that function f() is only used to cut the search tree, but the exploration is
actually realized with the concrete state s, without losing information. Observe
that when we use abstraction during the model checking process as explained
above, we explore a subset of the original state space. Thus, in this case, abstrac-
tion produces an under-approximation of the original model, in contrast to the
usual applications of abstraction which produce over-approximation. In order to
assure that the explored tree via abstract matching is equivalent to the original
one, function f() has to satisfy some correctness conditions.

As proposed in [6], a particular version of function f() is implemented as a
C function which is invoked within a c code construct. The implementation also
benefits from the c track primitive to hide the values of C variables from the
state-vector. Thus, the abstraction function computes abstract representations
of the hidden data and copies the result onto the state-vector.

In [6], the authors do not address any particular method to generate f(),
however they present necessary conditions to define sound abstract functions
that preserve CTL properties. This is the starting point for our work. We provide
implementable methods to produce abstraction functions, which are sound and
oriented to the property to be checked.

Our abstraction approach In our implementation scheme, abstraction func-
tions are implemented in such a way that they can (automatically) identify the
variables to be hidden from the state-vector in every global state, after the ex-
ecution of every verification step. A simple case shows how it works. Let us
consider the following code which can be obtained by a model extractor like the
first version of SocketMC:

proctype p()
{
c_track "&x" "sizeof(int)" "Matched"
c_track "&y" "sizeof(int)" "Matched"
....
L0: initialize();
L1: c_code{x = 1};
L2: c_code{y = x};
...
}

Note that in this code variables x and y are visible in the state-vector. Sup-
pose that we extract the model assuming, by default, that C variables do not
influence the verification of properties. Following this assumption, both variables
x and y are declared as hidden (UnMatched). Consider now that we are interested
in checking a particular property that needs the precise value of x after execut-
ing the code at L1. Then, in this case, the model extracted must keep variable x
visible after executing the instruction at L1, as the following code shows:

5

proctype p()
{
c_track "&x" "sizeof(int)" "UnMatched"
c_track "&y" "sizeof(int)" "UnMatched"
c_track "&x_" "sizeof(int)" "Matched"
c_track "&y_" "sizeof(int)" "Matched"
....
L0: atomic{initialize(); f(L0)};
L1: c_code{x = 1; f(L1)};
L2: c_code{y = x; f(L2)};
...
}
void f(int label)
{

switch(label)
{

......
case L0:

now.x_ = Hide()
now.y_ = Hide()

case L1:
now.x_ = Show(x)

case L2:
now.x_ = Hide()
now.y_ = Hide(y)

....
}

}

This second version calls f() at any point where the global state should be
stored. This function uses its argument to check the current execution point in
the model. 1 The function updates the variables to be hidden or updated before
matching them with the current set of visited states, depending on the current
label. For instance, variable x can be hidden until it is updated in L1. However,
it is made visible at L1 because it will be used to update y, and it is again hidden
after updating y. The extra variables x and y are used to store the values of
the real (hidden) variables or a representation of their values. We propose to
construct f() using the information provided by a static analysis of the model.
This construction approach for f() can be extended to models with multiple
processes.

Example We illustrate the use of this technique with a simple case study. In
this example, we use a model of a simple server and check the property P1 which
states that “If the process receives a message END, then it eventually leaves the
main loop”. In Figure 3 (left), it is possible to see the main loop of the server,
including those variables which are visible at each control point in order to verify
P1 with abstract matching.

In the example, READ and CREATERESPONSE are actually non-deterministic
selections returning a message from a limited set. PREPROCESS and POSTPROCESS
are loops simulating heavy work between the reception of the message and the
response. Variable ReadBuf is a receiving buffer that may take multiple non-

1 Note that it would not be necessary to pass the label as an argument of f(), if
Promela would allow to access the current label of process p with some code such as
label = now.Pp-> label

6

do ::c_expr{enter_loop}->
atomic {

READ(cRead,sock2,ReadBuf,
sizeof(ReadBuf));

c_code { f(21);};};
Message_Rx:
// ReadBuf and cRead are visible

atomic {
PREPROCESS(cRead,ReadBuf);
c_code { f(22);}; };

// ReadBuf and cRead are visible
atomic {

CREATERESPONSE(cResp,ReadBuf,
WriteBuf,cRead);

c_code { f(23);}; };
// WriteBuf and cResp are visible

atomic {
POSTPROCESS(cResp, WriteBuf);
c_code { f(24);}; };

// WriteBuf and cResp are visible
atomic {

WRITE(cResp,sock2,WriteBuf,cResp);
c_code { f(25);};

};
// cResp is visible

c_code{ enter_loop=(cResp)>0;
f(26); };

// enter_loop is visible
:: else ->

c_code { f(27);}; break;
od;

do ::c_expr{enter_loop}->
atomic {

READ(cRead,sock2,ReadBuf,
sizeof(ReadBuf));

c_code { f(21);};};
Message_Rx:
// ReadBuf and cRead are visible

atomic {
PREPROCESS(cRead,ReadBuf);
c_code { f(22);}; };

// ReadBuf and cRead are visible
atomic {

CREATERESPONSE(cResp,ReadBuf,
WriteBuf,cRead);

c_code { f(23);}; };
// ReadBuf, WriteBuf and cResp are visible

atomic {
POSTPROCESS(cResp, WriteBuf);
c_code { f(24);}; };

// ReadBuf, WriteBuf and cResp are visible
atomic {

WRITE(cResp,sock2,WriteBuf,cResp);
c_code { f(25);};

};
// ReadBuf and cResp are visible

c_code{ enter_loop=(cResp)>0;
f(26); };

// ReadBuf and enter_loop are visible
:: else ->

c_code { f(27);}; break;
od;

Fig. 3. ReadBuf partially hidden (left) and ReadBuf fully visible (right)

deterministic values. Suppose that the static analysis to verify P1 determines
that ReadBuf is not significant from CREATERESPONSE on. Thus, if ReadBuf is
hidden after executing CREATERESPONSE, we avoid multiple re-exploration of the
executing paths starting at this point. It is clear that the amount of saved mem-
ory (and time) depends on the range of values ReadBuf may take. The static
analysis decides to hide ReadBuf because property P1 only checks ReadBuf at
label Message Rx.

Suppose that we modify the property in such a way that we need to check
ReadBuf at every control point. For example, assume a new property P2 stating
that “ReadBuf never contains a RETRY message”. In order to verify P2, we
cannot hide variable ReadBuf after CREATERESPONSE. Figure 3 (right) shows the
result of the new model extracted. Note that the set of visible variables associated
to the sentences has changed.

Figure 4 shows an estimation of the performance of our proposal for the
previous example. We have assumed that variables ReadBuf and WriteBuf may
take 20 different values, and that loops PREPROCESS and POSTPROCESS iterate
100 times. The table shows the state space explored in three cases: (1) without
abstract matching (2) with abstract matching oriented to property P1, and (3)
with abstract matching oriented to property P2.

7

No Abstract

Matching

Abstract Matching.

(ReadBuf partial hiding)

Abstract Matching

(ReadBuf fully visible)

State-vector 152 bytes 28 bytes 28 bytes

Errors 26753 23 862

States stored 787705 117 1761

Total memory 90.929 MB 2.724MB 5.389 MB

Elapsed time 14:26.44 0:00.72 0:03.33

Fig. 4. Test Results

Figure 5 explains the different reduction results obtained for the three cases
described above. When we do not use abstract matching, we have 20x20 different
traces to explore at the end of the loop (left column). If we hide WriteBuf after
WRITE, the number of traces is divided by 20 (right column). Additionally, when
ReadBuf is partially hidden, we have only one representative for all the traces
(center column). This phenomenon also happens with other variables and it is
the main reason for state reduction.

Fig. 5. Reachability trees for the case study

Optimizations The actual representation of the visible variables is a bit more
complex than shown before. Instead of using duplicate variables (like x and y ,
in the previous example), we employ a vector as described below.

8

void f(int label) {
switch (label){

...
case 21: now.idVector[0]=Hide();

now.idVector[1]=ShowVariable(1, sizeof(cRead), &cRead);
now.idVector[2]=Hide();
...}
break;

... }

Global variable idVector is in fact the abstract representation of the visible
variables which are implemented as a vector of identifiers. Auxiliary function
ShowVariable() computes the identifier associated to the current value of a
given variable, while the Hide() function returns always a null identifier.

A lookup table allows us to map identifies to values. This table is dynam-
ically updated in such a way that it always keeps an entry for every reached
value. In addition, the table is never included in the usual data structures of
the model checker (stack and heap). It can be seen as a global data structure
for all execution paths. The results shown in Figure 4 were obtained with this
technique.

Experimental results show that our approach to automatically construct ab-
stract functions is very promising, however we still have to discuss about how to
ensure soundness. The following sections are devoted to this key issue.

4 Static Analysis

In this section, we describe the static analysis from which we construct sound
abstract matching functions. In particular, we develop the so-called influence
analysis (IA) to annotate each program point with a set of significant variables
needed to correctly analyze a given property. This static analysis is a refinement
of the live variables analysis given in [8] (adapted to the case of Promela) where
the properties of interest to be verified are taken into account. Note that in the
analysis we do not distinguish between C variables and pure Promela variables,
although currently we have only implemented abstract matching for C variables.
In order to simplify the presentation, we only use the traditional Promela syntax
for the variables.

The influence analysis is used to decide which variables should be visible at
each program point during the model checking process. It determines for each
program control point the variables which influence a given set of variables V of
interest. The analysis then records the variables which are alive wrt a particular
property. Thus, if a variable does not affect any variable in V at a given program
point, we may hide it since its current value is not relevant for the verification.

Clearly, the most precise analysis is the one attaching the smallest set of
variables to each program point. In the following sections, we show different
versions of IA. Each extension gives us a different precision degree for the analysis
and the abstract matching function induced preserves a different set of program
properties. The first analysis IA1 is the most precise one, it produces the best
abstract matching function, the one inducing the best state space reduction.

9

active proctype p1(int n) {
int x = n;
int y = 1;
L1:if

:: x > 0 -> L2: x = x - 1;
L3: y = 2 * y; goto L1

:: else -> L4: printf(y); goto End:
fi;

End:
}

active proctype p2() {
int x1,x2,x3,x4;
L1:if

:: true -> L2: x2 = 0;
:: true -> L3: x2 = 1;
fi;

L4: x1 = x2;
L5: if

:: x3 < 2 -> L6: x1 = x1 + 1; goto L5;
:: else -> L7: skip;

L8: if
:: true -> L9: x4 = 0;
:: true -> L10: x4 = -1;
fi;

L11: if
:: x4 >= 0 -> L12: assert(x1 == 2);
:: else -> L3: skip
fi

fi;
End:

}

Fig. 6. Two Promela processes

However, IA1 only preserves the code reachability tree of the original Promela
model. In addition, since global variables must be dealt with very carefully, IA1

assumes that the model under analysis has only local variables. The second
analysis IA2 produces bigger sets of variables, but it preserves safety properties.
The third analysis IA3 studies the case of models with global variables, and,
finally, IA4 is the least precise analysis, but in contrast, it preserves liveness
properties.

4.1 Influence Analysis for Promela models

Given a Promela program M , the goal of IA is to associate each program point
in M with the least set of variables whose value is needed to analyze M .

Let V be the set of program variables. Informally, given x, y ∈ V, we say
that variable y influences variable x at a given program point, if there exists an
execution path in M from this point to an assignment x = exp and the current
value of y is used to calculate exp, that is, if the current value of y is needed to
construct the value of x in the future. In Section 5, when we prove the correctness
of the analysis, we give a formal definition of the influence notion.

In this section, we focus on describing the four above-mentioned IA analyses.
We first define the input language and some previous notions.

Let Inst be the set of all valid Promela instructions including the Basic sen-
tences (boolean expressions, assignments, and input/output instructions over
channels), If, Do, Atomic, Unless sentences, etc. In the sequel, we do not dis-
tinguish between C variables and pure Promela variables. We also consider that
blocks of C instructions inside c code are Basic instructions, and that the C
boolean expressions are managed as pure Promela boolean expressions. In order
to simplify the analysis, we assume that Do instructions are implemented using
If and goto statements. In addition, we assume that branches of If instructions
always begin with a boolean expression followed by at least one sentence. We use
true and skip to complete the instruction when necessary (for example, see the

10

1

2

3

4

End

x>0 else

x = x - 1

y = 2 * y

Prinf(y)

x

x

x

Fig. 7. Result of IA1 for process p1

codes of Figure 6). Finally, when an else branch appears, we assume that it has
been replaced by the corresponding boolean expression. In the sequel, BoolExp
will denote the set of boolean expressions that can be constructed with the usual
arithmetical and boolean operators and with the constant and variables of the
model.

As commented above, the first approach IA1 is focussed on preserving the
code reachability tree of M , that is, the abstract matching function induced by
IA1 should preserve each possible execution path in the original model. Since the
control flow is determined by boolean expressions and If instructions, in order
to simulate all the execution paths, we need to record all possible values of the
variables appearing in the guards of the control sentences.

Let us define the set Init ⊆ V of all program variables appearing in some
boolean expression in M . We perform the influence analysis IA1 attaching each
program counter of M with the set of program variables influencing some variable
in the set Init.

For instance, set Init is respectively defined as {x} and {x3, x4} for the
Promela codes of processes p1 and p2 given in Figure 6. In addition, Figure 7
shows the intended result of IA1 for p1. For this process, the static analysis
associates the set {x} with the labels L1, L2, and L3. The utility of the analysis
is clear. If we are interested in knowing whether a particular label of process
p1() is reachable, we only have to store variable x at labels L1, L2, and L3. In
particular, variable y may be completely hidden because its value is not relevant
for this analysis.

The rest of this section is devoted to formalizing IA1. Let M = P1|| · · · ||Pn be
the Promela model to be analyzed, where each Pi denotes a concurrent process
declared in M . We assume that all instructions of the Promela model M to be
analyzed are labelled, i.e., each one has the form L : ins where L ∈ L is a unique
label of the instruction ins. Labels may be defined by the user or automatically
assigned. End denotes the set of user-defined labels starting with end. The code
of each process is finished with a label L ∈ End. Note that labels represent
program counters of processes. For the sake of simplicity, we assume that labels
in each Promela process are different.

11

Function I : L → Inst returns the basic/If instruction following a label. For
instance, considering the code of process p2 of Figure 6, I(L6) = x1 = x1 + 1
and I(L1) = if :: true− > L2 : x2 = 0; :: true− > L3 : x2 = 1;fi ;.

Let us define function next : L → L which associates each label l with
the label pointing to the basic/If instruction following I(l). For example, in the
process p2 of Figure 6, next(L2) = L4, and next(L6) = L5. Function next is
well defined because we always apply it to labels pointing to basic instructions,
although it may return labels pointing to a basic/If sentence.

Given any expression or instruction, we denote with var(e) ⊆ V the set of
program variables appearing in e. In order to simplify the description, we first
define how to apply the static analysis to a simple process P , and then, we
extend it to a whole program M composed of several concurrent processes. We
also assume that M contains only local variables, and then we again extend the
analysis to the case of global variables.

The static analysis IA1 is formally constructed as the least fixed point of
function F1 : ℘(V)L → ℘(V)L which associates each process label with a set of
variables.

Given −→s = {sl|l ∈ L} ∈ ℘(V)L, the l component of −→s is denoted as −→s (l)
and it corresponds to a subset of variables attached to label l at a given moment
during the computation of IA1. Similarly, we denote the l-component of F1(−→s) as
F1(−→s)(l). F1 is a backward analysis, that is, it extracts information following the
reverse control flow of the program. Thus, to calculate the significant variables
at a given label l ∈ L, we have to collect all variables which are needed by
any execution path starting at this point. Recall that a variable is needed at
l if its value is needed for executing the next instruction I(l) or for executing
any instruction following I(l). Considering this, given −→s ∈ ℘(V)L we construct
F1(−→s)(l) making use of function F1∗, defined below, as follows:

F1(−→s)(l) = F1∗(I(l),−→s (next(l))) if I(l) ∈ Basic and
F1(−→s)(l) = ∪n

i=1F1∗(bi,
−→s (li))if I(l) = if :: b1 → l1 : · · · :: bn → ln : · · · ;fi

where F1∗ : Basic × ℘(V) → ℘(V) calculates the significant variables before
executing a basic instruction as:

F1∗(x = exp, s) =
{

s if x 6∈ s
s− {x} ∪ var(exp) if x ∈ s

F1∗(bool, s) = s ∪ var(bool), bool being a Boolean expression

That is, assignment x = exp modifies set s only if it has been deduced that x
influences some variable in Init. In that case, the effect of x = exp consists of
introducing in s all variables appearing in exp, excluding x because its value
is changed in the assignment. In addition, all variables appearing in a boolean
expression influence variables in Init (in fact, they belong to Init).

Consider the initial vector −−→sinit = {sl}l∈L where ∀l ∈ L.sl = ∅. Then, the
static analysis IA1 ∈ ℘(V)L is given by the least fixed point of the equation −→s =
F1(−→s) which can be calculated as the limit of the sequence −−→sinit, F1(−−→sinit), · · · .

Proposition 1. The following assertions regarding succession −−→sinit, F1(−−→sinit), · · ·
hold: (1) ∀i ∈ N, F1i(−−→sinit) ⊆ F1i+1(−−→sinit); (2) ∃k ≥ 0, F1k(−−→sinit) = F1k+1(−−→sinit).

12

Now, consider a Promela program M = P1|| · · · ||Pn involving the concurrent
execution of several processes. Let IAi

1 be the vector produced by the Influence
Analysis for the process Pi. If we denote with Li the set of labels appearing in
process Pi, then a program point of M may be represented by a tuple (l1, · · · , ln)
with li ∈ Li being the current program counter of process Pi. Considering this,
we define function IA1 : L1 × · · · × Ln → ℘(V) as: IA1(l1, · · · , ln) =

⋃n
i=1 IAi

1(li)
That is, the information regarding analysis IA1 at program counter (l1, · · · , ln)
is the joining of all variables collected by IA1 for each process Pi at label li.

4.2 Extending the Influence Analysis IA1

In this section, we propose several refinements of IA1 which are able to preserve
more interesting temporal properties and to take global variables into account.
Observe that the construction of IA1 is based on function F1∗, which propagates
the information about the needed variables in a bottom-up manner, and on
the initial vector −−→sinit which is used to start the fixed point computation. The
variants of IA1 presented below are constructed by modifying function F1∗ and
by considering different initial vectors.

Preserving State Properties The first extension IA2 preserves state prop-
erties specified using the assert sentence. For instance, assume that we want
to analyze the assertion x1 == 2 of process p2 in the right-hand column of Fig-
ure 6. It is easy to see that we need to store not only the variables influencing the
boolean expressions in the code in order to completely simulate the reachability
tree, but also those that influence the variables in the assert sentence (vari-
able x1 in the example). Figure 8 shows the intended result of IA2 for process
p2. Observe that variable x1 is attached to some labels of the process, since its
value is needed at label L12. Thus, our purpose is to extend analysis IA1 to take
into account variables appearing in the assertions to be validated in the code
during execution. It is worth noting that at this point, we are still assuming the
model only contains local variables. To extend IA1, it is enough to redefine F1∗

as function F2∗ defined as:

F2∗(x = exp, s) =
{

s if x 6∈ s
s− {x} ∪ var(exp) if x ∈ s

F2∗(bool, s) = s ∪ var(bool), bool being a Boolean expression
F2∗(assert(b), s) = s ∪ var(b), assert(b) being an assertion expression
Now, we construct IA2 using F2∗ as IA1 was defined from function F1∗, and

considering the same initial vector −−→sinit. The resulting analysis is able to preserve
the assertions as desired.

Dealing with Global Variables As mentioned above, the previous description
is only applicable to models without global variables. It is important to distin-
guish between global and local variables. Local variables are easier to analyze
because their use is localized inside a unique process, and the static analysis
follows the control flow of isolated processes. In contrast, the code regarding

13

1

5

68

7

ELSE (x3 < 2)

3 2

4

x2 = 1x2 = 0

x1 = x2

x1 = x1 +1

x3 = x3 +1

9 10

11

x4 = -1x4 = 0

12

(x4 >= 0)

ELSE

END

ASSERT

(x1 = 2)

x3

x2,x3x2,x3

x2,x3

x1,x3

x1,x3

x1,x3

x1

x1,x4x1,x4

x1,x4

x1

Fig. 8. Result of IA2 for process p2

a global variable may be distributed through many different system processes.
Thus, it is possible that some variables used to construct a given global variable
in a process are erroneously hidden by the static local analysis. In order to solve
this problem, we consider the set GM ⊆ V of all global variables appearing in
some boolean expression of some process. Now we modify −−→sinit and use

−−→
sg

init

defined as {sl|l ∈ L} where ∀l ∈ L.sl = GM .
With this definition for the initial vector, static analysis is able to extract

all variables influencing global variables which are critical for the control flow
of the model. In the following, we call IA3 to this extension. Observe that if we
consider assertions as boolean expressions, this analysis is also able to preserve
the state properties described above.

Preserving Trace Properties Analysis IA3 may be extended to IA4 which
is intended to preserve generic temporal properties. Assume that f is a LTL
property. In order to preserve the evaluation of f we have to make all (global)
variables of var(f) always significant for the analysis. Thus, since variables ap-
pearing in the formula are always saved, the formula may always be correctly

14

checked. Then, function F4∗ takes into account variables in the temporal formula
f to be checked as follows:

F4∗(x = exp, s) =





s if x 6∈ s
s− {x} ∪ var(exp) if x ∈ s, x 6∈ var(f)
s ∪ var(exp) if x ∈ s, x ∈ var(f)

F4∗(bool, s) = s ∪ var(bool), bool being a Boolean expression

Now, define
−−→
s′init = {s′l|l ∈ L} where ∀l ∈ L, sl = var(f) ∪ GM . Thus,

analysis IA4 is constructed following the approach presented in Section 4.1, but
using function F3∗ and the initial vector

−−→
s′init.

5 Correctness issues

In this section, we formalize the correctness of the static analysis developed in
Section 4. We start establishing the semantics of a simplified version of Promela.

5.1 A Simplified Semantics for Promela

Assume that M = P1|| · · · ||Pn is a Promela system constituted by the concurrent
execution of processes Pi(1 ≤ i ≤ n). If V alue represents the set of all possible
values for the variables in V, we define the set Env = V → V alue of all possible
functions giving values to the elements of V. In the sequel, we call environments
to the elements of Env. Thus, given e ∈ Env and v ∈ V, e(v) denotes the value
given to v by the environment e. In addition, e[n/v] denotes the environment
that is equal to e for all variables except for v whose value is n.

Given a process P , we define the set of process states S tate = L×Env as the
set of pairs 〈l, e〉 where l ∈ L is the program counter of P and e : V → V alue∪⊥
is an environment restricted to the variables accessed by P . Thus, v ∈ V is given
the special value ⊥ if P cannot access to it (v is local to a different process).

Figure 9 shows a simplified version of the complete semantics for Promela
processes. We have included only the most relevant sentences for the sake of
simplicity. The whole semantics may be found in [4]. The simplified transition
relation for the process level is defined as 7−→P⊆ State × State. In the figure,
we use the function eval : Expr × Env → Value to evaluate expressions, where
Expr represents the set of all Boolean and arithmetical expressions that may be
constructed with the usual operators and the constants and variables of M .

Given a Promela system M = P1|| · · · ||Pn, we define the set Conf = Ln×Env
of all global states of M . Thus, a configuration consists of the current program
counter of each process in M and the global environment giving the current value
to all model variables. Figure 9 also shows the system-level transition relation
7−→S⊆ Conf ×Conf . This rule realizes the interleaving of the system processes
in execution.

15

BoolExp
I(l)∈BoolExp,eval(I(l),e)=true

〈l,e〉7−→P 〈next(l),e〉 Assign
I(l)=x=exp,eval(exp,e)=n
〈l,e〉7−→P 〈next(l),e[n/x]〉

Non-det
I(l)=if ::b1→l1:···::bn→ln:··· ;fi,eval(bi,e)=true

〈l,e〉7−→P 〈li,e〉

IntLeaving
〈li,e〉7−→P 〈l′i,e′〉

〈l1,··· ,li,··· ,ln,e〉7−→S〈l1,··· ,l′i,··· ,ln,e′〉

Fig. 9. Process-Level and System-Level Rules

5.2 Correctness Results for IA1

In this section, we prove the results showing the utility of our proposal. All proofs
of the results of this section are given in Appendix A. We start by giving some
necessary definitions.

Definition 1. We say that variable x ∈ V is redefined at label l ∈ L, and write
it as redef(x, l), iff I(l) = x = expr, that is, if x is given a new value at l.

Definition 2. Given x ∈ V and l1i ∈ L, we say that x is needed at l1i for IA1

and write it as needed1(x, l1i) iff there exists a finite path 〈· · · , l1i, · · · , e1〉 7−→S

· · · 7−→S 〈· · · , lki, · · · , ek〉 such that ∀1 ≤ j ≤ k.¬redef(x, lji) and it holds that

1. I(lki) ∈ BoolExp and x ∈ var(I(lki))
2. I(lki) = y = exp, x ∈ var(exp) and needed1(y, lki)

That is, variable x is needed by the analysis IA1 at a given program counter
if its current value is used in some boolean expression (case 1) or it is used to
calculate some variable further needed by the static analysis (case 2).

Proposition 2 proves that IA1 attaches each label with all the variables needed
at this point.

Proposition 2. Given x ∈ V and l ∈ L, if needed1(x, l) then x ∈ IA1(l).

Once we have defined the notion of variable needed at a program location,
we may formalize the variables that should be stored at program labels.

Definition 3. Consider l ∈ L such that I(l) is a basic instruction (a Boolean
expression or an assignment) or a non-deterministic selection. Then, we define
the set nvar(l) = {x ∈ V|needed1(x, l)}.

The following proposition proves that the Influence Analysis associates each
process label with the variables needed (wrt the previous definition) to execute
the following instruction.

Proposition 3. Let P be a Promela process and consider the static analysis for
the code reachability tree IAP

1 given in Section 4.1. Let l ∈ L be a label of P then
nvar(l) ⊆ IAP

1 (l).

16

We may extend Proposition 3 to Promela systems as follows:

Corollary 1. Let M = P1|| · · · ||Pn be a Promela system and consider the static
analysis for the code reachability tree IA1 given in Section 4.1. Let (l1, · · · , ln) ∈
Ln be a program counter of M then ∪n

i=1nvar(I(li)) ⊆ IA1(l1, · · · , ln).

Given V ⊂ V, we define the equivalence relation ∼V⊆ Env×Env as follows:
e1 ∼V e2 ⇐⇒ ∀v ∈ V.e1(v) = e2(v)

Proposition 4. Consider two environments e1, e
′
1 ∈ Env and two labels l, l′ ∈ L

such 〈l, e1〉 7−→P 〈l′, e′1〉. Then if e1 ∼IA1(l) e2, there exists e′2 ∈ Env such that
〈l, e2〉 7−→P 〈l′, e′2〉 and e′1 ∼IA1(l′) e′2.

We may extend the previous proposition to system configurations as follows.

Corollary 2. Consider two environments e1, e
′
1 ∈ Env and two labels li, l

′
i ∈ L

such 〈l1, · · · , li, · · · , ln, e1〉 7−→S 〈l1, · · · , l′i, · · · , ln, e′1〉. Define
−→
l = (l1, · · · , li, · · · , ln)

and
−→
l′ = (l1, · · · , l′i, · · · , ln). Then if e1 ∼IA1(

−→
l)

e2, there exists e′2 ∈ Env such
that 〈l1, · · · , li, · · · , ln, e2〉 7−→S 〈l1, · · · , l′i, · · · , ln, e′2〉 and e′1 ∼IA1(

−→
l′)

e′2.

The following theorem gives us the desired correctness result for analysis IA1.

Theorem 1. Assume that 〈l11, · · · , ln1, e1〉 7−→S · · · 7−→S 〈l1k, · · · , lnk, ek〉 is a
finite path. For all i ≤ k, denote

−→
li = (l1i, · · · , lni). Then, if e′1 ∈ Env satisfies

that e1 ∼IA1(
−→
l1)

e′1, then there exists a finite path 〈l11, · · · , ln1, e
′
1〉 7−→S · · · 7−→S

〈l1k, · · · , lnk, e′k〉 such that ∀1 < j ≤ k.ej ∼IA1(
−→
lj)

e′j.

5.3 Correctness Results for IA2, IA3 and IA4

In this section, we establish the main results proving the correctness of analysis
IA2, IA3 and IA4. The proofs of the corresponding theorems are similar to the
ones given for IA1 in the previous section. Observe that the correctness result
for IA3 does not appear because it is similar to Theorem 1.

Theorem 2 (Correctness for IA2). Assume that 〈l11, · · · , ln1, e1〉 7−→S · · · 7−→S

〈l1k, · · · , lnk, ek〉 is a finite path. In addition, assume that there exists an index j
such that I(ljk) = assert(b) for some boolean expression b. For all i ≤ k, denote−→
li = (l1i, · · · , lni). Then, if e′1 ∈ Env satisfies that e1 ∼IA2(

−→
l1)

e′1, then there
exists a finite path 〈l11, · · · , ln1, e

′
1〉 7−→S · · · 7−→S 〈l1k, · · · , lnk, e′k〉 such that

∀1 < j ≤ k.ej ∼IA2(
−→
lj)

e′j and eval(b, ek) = eval(b, e′k).

Theorem 3 (Correctness for IA4). Let f be an LTL formula. Assume that
σ = 〈l11, · · · , ln1, e1〉 7−→S 〈l12, · · · , ln2, e2〉 7−→S · · · is an infinite path from
〈l11, · · · , ln1, e1〉. For all i ≥ 1, denote

−→
li = (l1i, · · · , lni). Then, if e′1 ∈ Env

satisfies that e1 ∼IA4(
−→
(l1))

e′1, then there exists a path σ′ = 〈l11, · · · , ln1, e
′
1〉 7−→S

〈l12, · · · , ln2, e
′
2〉 7−→S · · · such that ∀1 < j.ej ∼IA4(

−→
lj)

e′j and σ |= f ⇐⇒ σ′ |=
f , |= being the standard satisfiability relation defined for evaluating LTL formulas
on execution traces.

17

6 Conclusions and future work

State space explosion in explicit model checking can be partially solved with
techniques which change the usual algorithm to identify visited states. Instead of
comparing every new global state with the states in the heap, abstract matching
is able to compare only parts of the new state. In that way, it is possible to
cut some execution paths and reduce the time and memory required to check a
particular property. However, the results are only reliable when the abstraction
method has been proved to be sound.

In this paper, we have presented the theoretical framework to ensure that
static analysis can provide enough information to construct sound abstract func-
tions for a given property. Furthermore, we provide evidence that, in the context
of model extraction for Spin, these functions can be automatically produced and
included in the final model.

We have obtained the experimental results with the tool SocketMC, al-
though static analysis was still done by hand. At the moment, we are imple-
menting these static analysis algorithms as an extension to SocketMC. Future
work is oriented to integrate the new version of SocketMC with our tool for
data abstraction αSpin, in such a way that we can make more efficient model
checking of C programs.

References

1. D. Bosnacki. Enhancing State Space Reduction Techniques for Model Checking. PhD
thesis, Eindhoven Univ. of Technology, 2001.

2. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H.
Zheng. Bandera: Extracting Finite-state Models from Java Source Code. In Proc. of
the 22nd Int. conference on Software engineering, pages 439–448, 2000. ACM Press.

3. P. de la Cámara, M. M. Gallardo, P. Merino, and D. Sanán. Model Checking
Software with Well-Defined APIs: the Socket Case. In FMICS ’05: Proc. of the 10th
int. workshop on Formal methods for industrial critical systems, pages 17–26, 2005.
ACM Press.

4. M.M Gallardo, P. Merino, and E. Pimentel. A Generalized Semantics of Promela
for Abstract Model Checking. Formal Aspects of Computing, 16:166–193, 2004.

5. K. Havelund and T. Pressburger. Model Checking Java Programs using Java
Pathfinder. International Journal of Software Tools for Technology Transfer,
2(4):366–381, 2000.

6. G. J. Holzmann and R. Joshi. Model-Driven Software Verification. In SPIN, pages
76–91, 2004.

7. G. J. Holzmann and M. H. Smith. Software Model Checking: Extracting Verification
Models from Source Code. Software Testing, Verification & Reliability, 11(2):65–79,
2001.

8. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. 1998.
9. C. S. Pasareanu, R. Pelánek, and W. Visser. Concrete Model Checking with Abstract

Matching and Refinement. In CAV, pages 52–66, 2005.

18

A Proofs

Proposition 1 The following assertions regarding succession−−→sinit, F1(−−→sinit), · · ·
hold.

– ∀i ∈ N, F1i(−−→sinit) ⊆ F1i+1(−−→sinit).
– ∃k ≥ 0, F1k(−−→sinit) = F1k+1(−−→sinit).

Proof. Let us see first that ∀k ∈ N,∀l ∈ L.F1k(−−→sinit)(l) ⊆ F1k+1(−−→sinit)(l). In
order to simplify the notation, let −→sk denote F1k(−−→sinit). Thus, we have to prove
that ∀k ∈ N,∀l ∈ L, −→sk(l) ⊆ −−→sk+1(l). We reason by induction over the index k.

1. If k = 0, the result is trivial, because by definition −→s0(l) = ∅.
2. Assume k > 0. We consider the different cases for instruction I(l).

– If I(l) = b ∈ BoolExp, then by definition of F1 we have that −−→sk+1(l) =−→sk(next(l)) ∪ var(b). Applying the induction hypothesis to the term−→sk(next(l)), we easily conclude the expected result.
– If I(l) is an assignment x = exp then we have different definitions for−−→sk+1(l) depending on whether x ∈ −→sk(next(l)). By induction hypothesis,

we have that −−→sk−1(next(l)) ⊆ −→sk(next(l)). We consider three different
cases: (1) If x ∈ −−→sk−1(next(l)), then by definition of F1, we have both
that −→sk(l) = −−→sk−1(next(l))−{x}∪ var(exp) and −−→sk+1(l) = −→sk(next(l))−
{x} ∪ var(exp), from which we easily deduce the conclusion; (2) If x 6∈−−→sk−1(next(l)), but x ∈ −→sk(next(l)). Then, using again the definition of
F1, we have that −→sk(l) = −−→sk−1(next(l)) and −−→sk+1(l) = −→sk(next(l)) −
{x}∪var(exp), from which we deduce the conclusion; (3) The case when
x 6∈ −→sk(next(l)).

– If I(l) = I(l) = if :: b1 → l1 : · · · :: bn → ln : · · · ;fi , then −−→sk+1(l) =
∪n

i=1
−→sk(li). Now, applying the induction hypothesis on sets −→sk(li), we

obtain the conclusion.

Since the set of variables V is finite, we have that ∀l ∈ L the sequence−→s0(l) ⊆ −→s1(l) ⊆ · · · , converges in a finite number of iterations kl. To finish the
proof, it is sufficient to define k as the maximum of all values kl.

To prove Proposition 2, we need the following Lemma.

Lemma 1. If 〈· · · , l, · · · , e〉 7−→S 〈· · · , l′, · · · , e〉 is a computation step and x ∈
IA1(l′) then

1. If ¬redef(x, l) then x ∈ IA1(l)
2. If redef(x, l) and I(l) = x = exp then var(exp) ⊆ IA1(l)

Proof. 1. Since ¬redef(x, l), using the definition of F1, it is easy to prove that
F1(IA1)(l) ⊇ IA1(l′). In addition, as IA1 is a fixed point of F1, we have that
F1(IA1)(l) = IA1(l), from which we deduce that x ∈ IA1(l).

2. Similar to the previous one.

19

Proposition 2 Given x ∈ V and l ∈ L, if needed1(x, l) then x ∈ IA1(l).

Proof. If needed1(x, l), there exists an execution trace 〈· · · , l1i, · · · , e1〉 7−→S

· · · 7−→S 〈· · · , lki, · · · , ek〉 such that l = l1i, ∀1 ≤ j ≤ k.¬redef(x, lji), one of
the two cases of Definition 2 holds. Let us see that both cases imply x ∈ IA1(l).

1. Applying the definition of F1, we have that x ∈ F1(−−→sinit)(lki). In addition,
since F1(−−→sinit)(lki), F12(−−→sinit)(lki), · · · is a monotonic succession (Proposi-
tion 1) and IA1(lki) is its limit, we deduce that x ∈ IA1(lki). Now since by
hypothesis ∀1 ≤ j ≤ k.¬redef(x, lji), we can apply Lemma 1(1) k times and
deduce that x ∈ IA1(l).

2. By definition, there exists a sequence of variables x0, · · · , xn(n ≥ 1) such
that x = x0 and
– ∀i < n,∃li ∈ L such that I(li) = xi+1 = expi, xi ∈ var(expi) and

needed1(xi+1, li), and
– I(ln) ∈ BoolExp and xn ∈ var(I(ln)).

Using Lemma 1(2), we can easily prove that ∀i < n if xi ∈ IA1(li) then
xi−1 ∈ IA1(li−1). Now, applying (1) of this proof to variable xn ∈ IA1(ln).
Therefore, we deduce that x = x0 ∈ IA1(l).

Proposition 3 Let P be a Promela process and consider the static analysis for
the code reachability tree IAP

1 given in Section 4.1. Let l ∈ L be a label of P
then nvar(l) ⊆ IAP

1 (l).

Proof. Trivial, using Proposition 2.

Corollary 1 Let M = P1|| · · · ||Pn be a Promela system and consider the static
analysis for the code reachability tree IA1 given in Section 4.1. Let (l1, · · · , ln) ∈
Ln be a program counter of M then ∪n

i=1nvar(I(li)) ⊆ IA1(l1, · · · , ln).

Proof. Trivial.

Proposition 4 Consider two environments e1, e
′
1 ∈ Env and two labels l, l′ ∈ L

such 〈l, e1〉 7−→P 〈l′, e′1〉. Then if e1 ∼IA1(l) e2, there exists e′2 ∈ Env such that
〈l, e2〉 7−→P 〈l′, e′2〉 and e′1 ∼IA1(l′) e′2.

Proof. We reason on the instruction I(l) executed.

– If I(l) = b ∈ BoolExp, then, by Proposition 3, var(b) ⊆ IA1(l). In addition, if
〈l, e1〉 7−→P 〈l′, e′1〉, by rule BoolExp of Figure 9, we have that eval(b, e1) =
true, and e2 = e1. Since e1 ∼IA1(l) e2, if eval(b, e1) = true then eval(b, e2) =
true which means that we have also the transition 〈l, e2〉 7−→P 〈l′, e′2〉, with
e2 = e′2. Furthermore, using the definition of F1, it is easy to prove that
IA1(l) ⊇ IA1(l′), from which we trivially obtain that e′1 ∼IA1(l′) e′2.

– If I(l) is the assignment x = exp, we consider two cases. Assume that x ∈
IA1(l′). Then by Lemma 1, we have that var(exp) ⊆ IA1(l). Since, by hypoth-
esis e1 ∼IA1(l) e2, then we may deduce that eval(exp, e1) = eval(exp, e2). Let
n = eval(exp, e2). Using rule Assign of Figure 9, we have that e′1 = e1[n/x].
Similarly, we have the transition 〈l, e2〉 7−→P 〈l′, e′2〉, with e′2 = e1[n/x]. Fi-
nally, using the definition of F1, we have that IA1(l) ∪ {x} ⊇ IA1(l′), thus
e′1 ∼IA1(l′) e′2. The case when x ∈ IA1(l′) is proved similarly.

20

– The proof for I(l) = if :: b1 → l1 : · · · :: bn → ln : · · · ;fi is reduced to the
case when I(l) is a boolean expression.

Corollary 2 Consider two environments e1, e
′
1 ∈ Env and two labels li, l

′
i ∈ L

such 〈l1, · · · , li, · · · , ln, e1〉 7−→S 〈l1, · · · , l′i, · · · , ln, e′1〉. Define
−→
l = (l1, · · · , li, · · · , ln)

and
−→
l = (l1, · · · , l′i, · · · , ln). Then if e1 ∼IA1(

−→
l)

e2, there exists e′2 ∈ Env such
that 〈l1, · · · , li, · · · , ln, e2〉 7−→P 〈l1, · · · , l′i, · · · , ln, e′2〉 and e′1 ∼IA1(

−→
l′)

e′2.

Proof. The result is directly derived from Proposition 4 and the extension of IA1

to the model.

Theorem 1 Assume that

〈l11, · · · , ln1, e1〉 7−→S 〈l12, · · · , ln2, e2〉 7−→S · · · 7−→S 〈l1k, · · · , lnk, ek〉

is a finite path from 〈l11, · · · , ln1, e1〉 to 〈l1k, · · · , lnk, ek〉 using 7−→S . For all
i ≤ k, denote

−→
li = (l1i, · · · , lni). Then, if e′1 ∈ Env satisfies that e1 ∼IA1(

−→
l1)

e′1,
then there exists a finite path

〈l11, · · · , ln1, e
′
1〉 7−→S 〈l12, · · · , ln2, e

′
2〉 7−→S · · · 7−→S 〈l1k, · · · , lnk, e′k〉

such that ∀1 < j ≤ k.ej ∼IA1(
−→
lj)

e′j .

Proof. It is derived applying k times Corollary 2.

21

