
Large-Scale Directed Model Checking LTL

Stefan Edelkamp and Shahid Jabbar

University of Dortmund
Otto-Hahn Straße 14

{stefan.edelkamp,shahid.jabbar}@cs.uni-dortmund.de

Abstract. To analyze larger models for explicit-state model checking,
directed model checking applies error-guided search, external model check-
ing uses secondary storage media, and distributed model checking exploits
parallel exploration on multiple processors.
In this paper we propose an external, distributed and directed on-the-fly
model checking algorithm to check general LTL properties in the model
checker SPIN. Previous attempts restricted to checking safety proper-
ties. The worst-case I/O complexity is bounded by O(sort(|F||R|)/p+ l ·
scan(|F||S|)), where S and R are the sets of visited states and transitions
in the synchronized product of the Büchi automata for the model and
the property specification, F is the number of accepting states, l is the
length of the shortest counterexample, and p is the number of processors.
The algorithm we propose returns minimal lasso-shaped counterexam-
ples and includes refinements for property-driven exploration.

1 Introduction

The core limitation to the exploration of systems are bounded main memory
resources. Relying on virtual memory slows down the exploration due to excessive
page faults. External algorithms [31] exploit hard disk space and organize the
access to secondary memory. Originally designed for explicit graphs, external
search algorithms have shown considerably good performances in the large-scale
breadth-first and guided exploration of games [22, 12] and in the analysis of
model checking problems [24].

Directed explicit-state model checking [13] enhances the error-reporting capa-
bilities of model checkers. The application of guided search for checking liveness
properties is restricted to the reduction of trails [14].

Distributed explicit state model checking [9, 25] uses several processors work-
ing in parallel to enhance the exploration of larger models.

In [18] we have given a first report on combining directed, parallel and ex-
ternal explicit-state model checking to enhance the search for minimal coun-
terexamples for safety errors. Under certain assumptions on the distribution of
the applied hash function and the number of file pointers we showed that the
approach uses linear, i.e., O(scan(|S| + |R|)) I/Os. In a sequential setting, for
safety explicit-state model checking state-space graphs with bounded locality we
arrive at O(sort(|R|) + scan(|S|)) I/Os, which is optimal [12].

The goal of this work is to extend this work to the exploration for checking
liveness properties. The main challenge for distributed and external on-the-fly
model checking is that the depth-first traversal of the global state space graph
as used in Nested-DFS (an on-the-fly variant of Tarjan’s algorithm [35]) is not
efficient. All attempts to solve this problem via variants of breadth-first search [7,
4, 9] arrive at a time complexity that is non-linear in the size of the model.
The approach we propose in this paper is based on a translation procedure
of liveness problems into safety problems [32]. The translation approach has the
advantage that the underlying algorithm design to detect safety errors has not to
be changed. More crucially, the approach includes a rich state description which
allows to express lower bounds for cost-optimal guided search. To enhance the
exploration, we additionally exploit the never-claim automaton structure of the
temporal property to be satisfied.

The paper is structured as follows. First we briefly review explicit-state LTL
model checking using Büchi automata. Then we consider distributed model
checking together with its limits and possibilities. Afterwards we introduce to
external model checking safety properties and delayed duplication detection. We
first consider breadth-first implicit graph search. Next we turn to the guided
search, recalling the algorithm External A*. The upcoming section points out
the problems in externalizing standard DFS model checking algorithms. This
leads to the proposed approach for I/O efficient parallel external model check-
ing. We provide monotone heuristics for optimal counterexample search and give
empirical data for checking LTL formulae in an external and parallel variant of
the SPIN model checker. Finally, we draw conclusions and indicate further re-
search avenues.

2 Explicit-State Model Checking

In automata-based model checking, both the model to be analyzed and the spec-
ification to be checked are modeled as non-deterministic Büchi automata. Syn-
tactically, Büchi automata are ordinary automata. For accepting infinite words,
or runs, a different acceptance condition is applied. Let ρ be a run and inf(ρ) be
the set of states reached infinitely often in ρ, then a Büchi automaton accepts,
if the intersection between inf(ρ) and the set of final states F is not empty.

2.1 Automata-based LTL Model Checking

The desired property of the system is specified in some form of temporal logic. We
briefly introduce linear temporal logic (LTL). A path in model M is a sequence
of states π = S0, S1, . . . and πi denotes the suffix of π starting at Si. LTL
formulae have the form “Always f”, where f is a path formula. If p is an atomic
proposition then p is a path formula. If f and g are path formulae so are ¬f, f ∨
g, f ∧ g,X f,F f,G f , and f U g.

Transforming the model and the specification into Büchi automata assumes
that systems can be modeled by automata, and that the LTL formula can be

transformed into an equivalent Büchi automaton. The contrary not always possi-
ble, since Büchi automata are clearly more expressive than LTL expressions [36].
Checking correctness is reduced to checking language emptiness. More formally,
the model checking procedure validates that a model represented by an au-
tomaton M satisfies its specification represented by an automaton S. The task
is to verify if L(M) ⊆ L(S). In words: the language accepted by the model
is included in that of the specification. We have L(M) ⊆ L(S) if and only if
L(M) ∩ L(S) = ∅. In practice, checking language emptiness is more efficient
than checking language inclusion. Büchi automata are closed under intersection
and complementation [8], so that there exists an automaton that accepts L(S)
and an automata that accepts L(M)∩L(S). It is possible to complement Büchi
automaton equivalent to an LTL formula, but the worst-case running time of
such a construction is double-exponential in the size of the formula. Therefore,
in practice one constructs the never-claim automaton for negation of the LTL
formula, avoiding complementation.

The product is synchronous, that is each transition in one automata implies
one in the other. The property automaton is non-deterministic, such that both
the successor generation and the temporal formula representation may introduce
branching to the overall exploration. The construction assumes that all states in
the model are accepting. If arbitrary Büchi automata are intersected, extended
acceptance conditions are required [11].

For checking emptiness we have to check that the automaton accepts no
word. Accepting runs are present in the automaton if the strongly connected
components (SCCs) reachable from initial state and contain at least one accept-
ing state. In this case, a reachable cycle contains at least one accepting state.
Checking language emptiness corresponds to the validation that no such cycle
exists.

2.2 Tarjan’s Algorithm

For finding accepting cycles, we analyze the state space graph structure; more
precisely, the strongly connected components, SCCs for short. An algorithm
to compute all SCCs of a graph in linear time is Tarjan’s algorithm [35]. The
algorithm divides in four stages. In the first stage, a DFS starting at the initial
state computes the discovery and finishing times td(u) and tf (u) for each visited
state u, which corresponds to the time, when node u is entered and left. The
second stage computes the inverse of the graph. In the third stage, a series of
DFS considers the nodes in order of decreasing tf -value. The fourth and last
stage outputs the nodes of each tree in the DFS forest of the third stage as a
strongly connected components.

2.3 Nested DFS

On-the-fly model checking is an efficient way to perform model checking. It com-
putes the global state transition graph during the construction of the intersec-

tion. The advantage it that only that part of the state space is constructed that
is needed in order to check the desired property.

For checking the synchronous product graph of the model and the speci-
fication for accepting cycles on-the-fly, nested-depth-first search has been pro-
posed [17]. It explores the state space in a depth-first manner, stores visited
states in a visited list, marks states which are on the current search stack, and
invokes a secondary DFS starting at accepting states after they have been fully
explored in the primary DFS. The secondary DFS explores states already visited
by the primary search but not by any secondary search; states visited by the
second search are flagged and if a state is found on the stack of first search, an
accepting cycle is found. Typical implementations use 2 bits per state, one for
marking, one for flagging. As with Tarjan’s algorithm its worst-case is linear in
the size of the intersected state transition graph, but it has the capability of
reporting counter-example before the entire state space has been seen.

Property-driven or improved nested-depth-first search [3, 25] exploits the par-
titioning into SCCs of the never-claim for the negated LTL property into account.
The main observation is that cycles in the state transition graph of the intersec-
tion of the system M and the never-claim automaton N is accepting only if the
corresponding cycle in N is accepting. Therefore, the approaches use Tarjan’s
algorithm to analyze never-claim. An SCC in N is called non-accepting if none
of its states is accepting; full-accepting, if each cycle formed by states of the SCC
is accepting, and partial-accepting, otherwise. Improved nested DFS partitions
the never-claim into SCCs and applies secondary search only in case of partially
accepting cycles.

3 Distributed Model Checking LTL

Liveness property validation based on DFS appears to be an inappropriate choice
for distributed model checking. For distributed model checking the core reason
is that in contrast to BFS, DFS appears to be inherently sequential [29]. Differ-
ent attempts have been suggested to allow an efficient parallelization for model
checking liveness. Unfortunately, none of the approaches guarantee a linear time
complexity.

3.1 Breadth-First LTL Model Checking

A line of research tries to avoid nested depth-first search by studying variants of
breadth-first search [5, 4, 7]. The approach presented in [5, 4] invokes a secondary
search for detecting cycles from BFS backward edges, i.e., transitions encountered
in the overall state space that link states in larger, together with (already ex-
plored) states in smaller depth. Those backward edges may potentially spawn
cycles and are searched individually. If no accepting cycle is found the depth
bound is increased. The number of backward edges is reduced by similar obser-
vations as in improved nested depth-first search. The worst case time complexity

is O(|R|·(|S|+ |R|)). The approach allows on-the-fly model checking and is com-
patible with a limited form of partial order reduction. In [7], instead of backward
edges, predecessor acceptance is chosen for an O(|R|2 + |S|) algorithm.

3.2 Explicit Fair Cycle Detection

In [9], the symbolic OWCTY1 algorithm [15] is converted into an explicit one.
Similar to Tarjan’s algorithm, the approach computes the entire reachability
set before extracting the cycle. Unlike Tarjan’s algorithm, the order of the ex-
ploration does not matter. Next, a loop alternates between a reachability and
elimination phase unless a fixpoint is reached. In the first phase, fair states are
checked if they can be reached again. In the second phase, states with a de-
termined fair status are eliminated from the search. The worst case number of
iterations is bounded by the diameter d of the search space. The explicit state
conversion of the approach runs in O(d · (|R|+ |S|)) time and has been exploited
to perform distributed model checking. Cycle extraction for counter-example
generation runs in linear time.

4 External Model Checking Safety

I/O-efficient model checking algorithms explicitly manage the memory hierar-
chy and can lead to substantial speedups compared to caching and pre-fetching
heuristics of the underlying operating system, since they are more informed to
predict and adjust future memory access.

The standard model for comparing the performance of external algorithms
consists of a single processor, a small internal memory that can hold up to M
data items, and an unlimited secondary memory. The size of the input problem
(in terms of the number of records) is abbreviated by N . Moreover, the block
size B governs the bandwidth of memory transfers. It is often convenient to refer
to these parameters in terms of blocks, so we define m = M/B and n = N/B.
It is usually assumed that at the beginning of the algorithm, the input data is
stored in contiguous blocks on external memory, and the same must hold for the
output. Only the number of block reads and writes are counted, computations
in internal memory do not incur any cost. The single disk model for external
algorithms has been invented by [2]. An extension of the model considers D disks
that can be accessed simultaneously. When using multiple disks in parallel, the
technique of disk striping can be employed to essentially increase the block size
by a factor of D. Successive blocks are distributed across different disks.

It is convenient to express the complexity of external-memory algorithms us-
ing a number of frequently occurring primitive operations. The simplest opera-
tion is scanning, which means reading a stream of records stored consecutively on
secondary memory. In this case, it is trivial to exploit disk- and block-parallelism.
The number of I/Os is scan(N) = Θ(N

DB) = Θ(n
D). Another important operation

1 Acronym for One Way to Catch them Young

is external sorting. The proposed algorithms fall into two categories: those based
on the merging paradigm, and those based on the distribution paradigm. The
algorithms’ complexity is sort(N) = Θ(N

DB logM/B
N
B) = Θ(n

D logm n).

4.1 External BFS

Recall the standard internal-memory BFS algorithm: it visits each node v ∈ V of
the input problem graph G in a one-by-one fashion, as stored in a FIFO queue.
After a node v is extracted, its adjacency list (the sets of neighbors in G) is
examined, and those of them that haven’t been visited so far are inserted into
the queue in turn. In external search the internal queue is substituted with a file.
Naively running the standard internal-BFS algorithm in the same way in external
memory will result in Θ(|S|) I/Os for unstructured accesses to the adjacency
lists, and Θ(|R|) I/Os for finding out whether neighboring nodes have already
been visited. The explicit external graph algorithm of [27] improves on the latter
complexity for the case of undirected graphs, in which duplicates are constrained
to be located in adjacent levels. After the preprocessing step the graph is stored
in adjacency-list representation, it generating the multi-set of neighbors for each
BFS-level followed by a duplicate elimination phase. Duplicate elimination is
realized via external sorting followed by an external scan. External BFS requires
O(|S|+sort(|R|)) time, where O(|S|) is due to the external representation of the
graph and the initial reconfiguration time to enable efficient successor generation.

An implicit variant of the above algorithm algorithm [27] for explicit BFS-
search in implicit graphs has been coined to the term delayed duplicate detection
for frontier search [21]. It assumes an undirected search graph. The algorithm
maintains BFS layers on disk. Layer L(i−1) is scanned and the set of successors
are put into a buffer of size close to the main memory capacity. If the buffer
becomes full, internal sorting followed by a duplicate elimination scanning phase
generates a sorted duplicate-free state sequence in the buffer that is flushed to
disk. The outcome of this phase are k sorted files. In the next step, external
merging is applied to unify the files into L(i) by a simultaneous scan. The size
of the output files is chosen such that a single pass suffices. Duplicates are elim-
inated. Since the files were sorted, the complexity is given by the scanning time
of all files. One also has to eliminate L(i − 1) and L(i − 2) from L(i) to avoid
re-computations; that is, nodes extracted from the external queue are not imme-
diately deleted, but kept until after the layer has been completely generated and
sorted, at which point duplicates can be eliminated using a parallel scan. The
process is repeated until L(i − 1) becomes empty, or the goal has been found.
The total execution time is O(sort(|R|) + scan(|S|)) I/Os. The I/O optimality
of External BFS is based on the work of [1], who gave a matching lower bound
for external sorting.

External BFS has been successfully applied to fully explore the 15-Puzzle
using 1.4 terabytes of hard disk in about three weeks [22]. The algorithm shares
similarities with the internal frontier search algorithms [23] that were used
for solving multiple sequence alignment problem, an idea that goes back to
Hirschberg [16].

4.2 External A*

External A* [12] maintains the search space on disk. The priority queue data
structure is represented as a list of buckets. In the course of the algorithm, each
bucket L(i, j) will contain all states u with path length g(u) = i and heuristic
estimate h(u) = j. We will later discuss, how such estimates can be derived in
real-time minimum-cost reachability analysis. As same states have same heuristic
estimates, it is easy to restrict duplicate detection to buckets of the same h-value.
By an assumed undirected, unweighted state space problem graph structure, we
can restrict aspirants for duplicate detection furthermore. If all duplicates of a
state with g-value i are removed with respect to the levels i, i−1 and i−2, then
there no duplicate state will remain for the entire search process. For breadth-
first-search in explicit graphs, this is in fact the algorithm of [27]. We consider
each bucket as a different file that has an individual internal buffer. A bucket
is active if some of its states are currently expanded or generated. If a buffer
becomes full, then it is flushed to disk.

Since External A* simulates A* and changes only the order of elements to
be expanded that have the same f -value, completeness and optimality are in-
herited from the properties of A*. The I/O complexity for External A* in an
implicit unweighted and undirected graph with monotone estimates is bounded
by O(sort(|R|)+scan(|S|)), where |S| and |R| are the number of nodes and edges
in the explored subgraph of the state space problem graph. It has been shown [12]
that the lower bound for the delayed duplicate detection is Ω(sort(|S|)) I/Os.

Parallel External A* [18] is a parallel variant of External A* based on queues
of working requests. In the exploration stage, each processor flushes the succes-
sors with a particular g and h value to an individual file. It has its own hash
table and eliminates some duplicates already in main memory. If the output
buffer exceeds memory capacity the processor writes the hash table to disk. In
a first sorting stage, its sorts its own files. The number of file pointers needed
is restricted by the number of flushed buffers. In the distribution stage, a single
processor distributes all states in the pre-sorted files into different files accord-
ing to the hash value’s range. As all input files are sorted this is a mere scan.
In the second sorting stage, processors externally sort the partially sorted files
to find further duplicates. The output of this phase are sorted and partitioned
buffers. Using the hash index as the sorting key the concatenation of files is
totally sorted.

5 Problems with Externalizing DFS

External depth-first search relies on an external stack data structure. The search
stack is small compared to the overall search but in the worst-case it can become
large. For an external stack, the buffer is just an internal memory array of 2B
elements that at any time contains the k < 2B elements most recently inserted.
We assume that the stack content is bounded by at most N elements. A pop
operation incurs no I/O, except for the case the buffer has run empty, where
O(1) I/O to retrieve a block of B elements is sufficient. A push operation incurs

no I/O, except for the case the buffer has run full, where O(1) I/O is to retrieve
a block of B elements is needed. Insertion and deletion take 1/B I/Os in the
amortized sense.

The I/O complexity for external DFS for explicit (possible directed) graphs
has been shown to be O(|S| + |S|/M · scan(|R|)) [10]. There are |S|/M stages
where the internal buffer for the visited state set becomes full, in which case
it is flushed and duplicates are eliminated from the external adjacency list rep-
resentation by a file scan. Visited successors in the unexplored adjacency lists
are marked not to be generated again, such that all states in the internal vis-
ited list can be eliminated for good. As with External BFS in explicit graphs,
value O(|S|) I/O is due to the unstructured access to the external adjacency
list. Computing SCCs in explicit graphs has the same I/O complexity as DFS,
i.e. O(|S|+ |S|/M · scan(|R|)) I/Os. For implicit graphs as generated for model
checking liveness, no access to an external adjacency list is needed, so that the
world should look better. Dropping the term of O(|S|) I/O as with External
BFS, however, is a challenge. The major problem for external DFS exploration
in implicit graphs is that unseen adjacencies cannot been modeled and there is
no time for performing delayed duplicate detection. For implicit graphs this is
not available, as we cannot access the search graph that we have not seen so far.

6 Large-Scale Model Checking Liveness

We decided to build our external model checker on top of the liveness as safety
model checking approach [32]. It proposes to convert a liveness model checking
problem into a safety model checking problem by roughly doubling the state vec-
tor size and guessing the seed of a fairness cycle. More precisely, the proposed
extension stores with the current state s a previously seen state s′ together with
two flags start-cycle and closed-cycle. The first flag is set to prevent future over-
writing of the stored state. The second flag indicates that a second occurrence
of s′ has been found. Unless the seed of the cycle has not been guessed s equals
s′. The initial state is spawned to two states, one attached to (false,false) and
the other attached to true,false). If S and R are the set of states and the set
of transitions of the synchronous product of the model and the (never-claim)
specification, then S is searched at most |S| times, yielding a time complexity
of O(|S| · (|S|+ |R|)).

The most important observation is that based on this extension the explo-
ration algorithms themselves have not (or only minorly) to be changed. For
example, in [32] the authors show how to extend models using so-called ob-
servers and applying the same model checker. In [33] the authors showed that
for fairness constraints of the form Fp we have that

ρ = (S1 . . . Sl−1)(Sl . . . Sk−1)ω

is a run in the state space S if and only if

ρ′ = (S0, S0, 0, 0) . . . (Sl−1, Sl−1, 0, 0)((Sl, Sl, 1, 0) . . . (Sk−1, Sl, 1, 0))ω(Sl, Sl, 1, 1)

is a run in the extended state space S ′.
As this construction does not yet record Büchi automaton acceptance con-

ditions for explicit-state model checking, as suggested by [32], we work with a
slightly different state description. State pairs in the first phase are called pri-
mary states, states pairs in the secondary phase are called sencondary states.
We drop Boolean variables completely as we distinguish primary from secondary
states by comparing the state vectors of the state pair. Moreover, we spawn sec-
ondary children only at accepting primary states.

Without any heuristic the algorithm executes external breadth-first search,
which in iteration be casted as a snapshot in bounded automata-based model
checking. Bounded model checking [6] uses a propositional SAT solver for the
symbolic exploration of model checking problems. It exploits the SATPLAN
exploration idea of [20] using a rising search horizon k to generate Boolean for-
mulae encoding the overall exploration problem up the BFS-level k. In bounded
automata-based model checking we use a similar approach, but without using
BDDs nor SAT-formulae. To avoid traversing the full state space in Tarjan’s
algorithm, we analyze the cross product graph up to some threshold depth value
k. If we find a counter-example already in depth k we terminate, otherwise we
increase k. The bounded semantics for this strategy are the same as in BMC [6]:
π |=i

k p if and only if p ∈ L(p(i)), π |=i
k ¬p if and only if p /∈ L(p(i)), π |=i

k f ∧ g
if and only if π |=i

k f and π |=i
k g, π |=i

k f ∨ g if and only if π |=i
k f or π |=i

k g,
π |=i

k Gf is always false, π |=i
k Ff if and only if ∃j, i ≤ j ≤ k : π |=j

k f ,
π |=i

k Xf if and only if i < k and π |=i+1
k f , and π |=i

k fUg if and only if
∃j, i ≤ j ≤ k : π |=j

k g and ∀n, i ≤ n < j : π |=n
k f .

Theorem 1. For problem graphs the external BFS LTL model checking algo-
rithm finds the shortest counterexample with an accepting seed state. Its I/O
complexity is O(sort(|F||R|)+ l · scan(|F||S|)), where l is the length of the short-
est counterexample.

Proof. Since each state is expanded at most once, all sortings can be done in
time O(sort(|F||R|)) I/Os. Filtering, evaluating, and merging are all available
in scanning time of the buckets in consideration. The I/O complexity for pre-
decessor elimination depends on the number of buckets that are referred to
during file subtraction/reduction. The number of buckets is bounded by the
number of layers and thus the length of the shortest counterexample. Conse-
quently, the I/O complexity for large-scale LTL model checking is bounded by
O(sort(|F||R|) + l · scan(|F||S|)) I/Os.

6.1 Heuristics for Safety Model Checking

For defining heuristics for safety model checking, we assume that the global state
space is generated based on the asynchronous compositions of local state spaces
Pi, i ∈ {1, . . . , n}, called processes. In other words, each global system state
is partitioned into n local states. The state of a local process Pi is called its
program counter, i ∈ {1, . . . , n}, pci for short.

The FSM distance heuristic is defined as the sum for each Pi of the distance
between the local state of Pi in s and the local state of Pi in s′, i.e.,

Hm(s, s′) =
n∑

i=1

Di(pci(s), pci(s
′)),

where Di(pci(s), pci(s′)) denotes the shortest path from pci(s) to pci(s′) in the
automaton representation of Pi. The values for Di are computed prior to the
search.

6.2 Trail-directed Heuristics

The FSM distance heuristic assumes that both states s and s′ are known to the
exploration module. It has mainly been used in trail-directed search, where a
counter-example to an existing error state is to be shortened. It has also been
applied to the verification of liveness properties where the prefix path to the
start of the cycle and the accepting cycle itself are shortened in sequence. For
this case the distance in the never-claim automaton N is included as follows

H ′
m(s, s′) = max {HM (s, s′), DN (pcN (s), pcN (s′))} .

As the product of different processes is asynchronous, it is not difficult to see [26]
that the FSM distance is monotone, i.e., Hm(s)−Hm(s′) ≤ 1 for each pair (s, s′)
with s′ being the direct successor of s. Monotone heuristics guarantee the op-
timality of counterexample paths in heuristic search exploration algorithms like
A* [28]. It is also not difficult to see that the maximum of two monotone heuris-
tics is monotone. Hence, H ′

m(s, s′) is also a monotone heuristic for shortening
liveness trails.

6.3 Heuristic for LTL Properties

In the extended search space S ′ we search for shortest lasso-shaped counterexam-
ples, without knowing the start of the cycle beforehand. We used the monotone
heuristic

Ha(s) = min
s′∈FN

{DN (pcN (s), pcN (s′))}

for finding accepting states in the original search space.
States in the extended search are abbreviated by tuples (s, s′), with s record-

ing the start state of the cycle s′ being the current search state. If we reach
an accepting state, we immediately switch to secondary search. Therefore, we
observe two distinct cases: primary search, accepting state not yet reached, sec-
ondary search, accepting state once found. The state s = s′ reached in secondary
search is the goal. As it is a successor of a secondary state, we can distinguish
the situation from reaching such a state for the first time.

For all e = (s, s′) in the extended search space S ′, let Ha(e) = Ha(s) and
HM (e) = HM (s, s′). Now we are ready to define a heuristic for liveness

H(e) =
{

Ha(s) if s = s′

H ′
M (s, s′) if s 6= s′

(1)

Lemma 1. Let h∗(e) be the shortest lasso-shaped counterexample with an ac-
cepting seed state starting at e. Then H(e) is a lower bound on h∗(e).

Proof. As each counterexample has to contain at least one accepting state in the
never-claim, for primary states e we have that H = Ha(e) is a lower bound. For
secondary states e = (s, s′), we have

H(e) = H ′
M (s, s′) = max{HM (s, s′), DN (pcN (s), pcN (s′))},

a lower bound to close the cycle and the lasso in total.

Lemma 2. The estimator H is monotone, i.e., H(e) − H(e′) ≤ 1 for all suc-
cessor states e′ of e.

Proof. Consistency is a local property. As both Ha and H ′
M are monotone [26]

and only one of them is true at a time, the only thing we have to show that H is
monotone are the transitions between the different cases. The only problematic
situation is the transition in case of reaching an accepting state. Here we have
that a predecessor e with an evaluation of H(e) = Ha(e) = 0 spawns successors
e′ with evaluation values of HM (e′) > 0. However, this incurs no problem as
H(e)−H(e′) ≤ 1 still preserves monotonicity.

The gap between HM and Ha at accepting states may indicate that there is
some option for applying an improved search estimate.

The next results shows that given a monotone heuristic estimate our ap-
proach terminates with an minimal-length counterexample where the lasso seed
is accepting. If one allows seed states also to be non-accepting, there are poten-
tially shorter counterexamples. This is possible if the accepting state is reachable
only via a non-accepting seed. In this case the path from the seed to the accept-
ing state would appear twice in the corresponding counterexample found in our
algorithm starting the secondary search from an accepting seed state. Note that
this subtlety does not effect completeness, a lasso with accepting seed exists if
and only if an lasso with an accepting cycle exists.

7 External Guided Exploration

The model checking algorithm for directed external LTL search is an extension
External A* and traverse the bucket file list along growing f = g + h diagonals.
In each external state we store (packed) original state vector pairs (s, s′) with
s = s′.

Figure 1 (left) depicts a prototypical execution of the guided exploration. For
primary nodes (illustrated using two white half circles), we apply the heuristic
Ha, while for secondary nodes (illustrated using cycles half white/half black) we
apply the estimate Hm. Once a terminal state with s = s′ (illustrated using two
black half circles) is reached we have found an accepting cycle.

h−value

g−value

h−value

g−value

Fig. 1. Directed model checking LTL (left), distribution among several processors
(right).

Figure 1 (right) illustrates how to perform parallel exploration2. The internal
work for exploration a bucket is uniformly distributed among the set of available
processors, that individually expand and sort individual files as described above.

Theorem 2. For problem graphs the external, parallel and guided LTL model
checking algorithm finds the shortest counterexample with an accepting seed state.
Its I/O complexity is O(sort(|F||R|)/p + l · scan(|F||S|)), where l is the length
of the shortest counterexample.

Proof. The proof is analogous to Theorem 1. Additionally, the parallelism divides
the sorting efforts.

The main advantages of directed search is that the set of expanded states S
(and subsequently S) is smaller than with blind search.

The solution path is reconstructed by backward chaining starting with the
final state. There are two main options. Either for a state in depth g we intersect
the set of possible predecessors with the buckets of depth g − 1. Any state that
is in the intersection is reachable on an optimal solution path, so that we can
recur. As generating the predecessor state can be problematic in software model
checking domains, we may store with each state its predecessor on a shortest
path, doubling the required disk space. The time complexity is bounded by the
scanning time of at most l buckets in consideration and surely in O(scan(|F||S|)).
2 For a full treatment of the parallel execution of External A* we refer the reader

to [19]. As the paper is not printed yet, the reviewers can obtain a copy of the work
at http://ls5-www.cs.uni-dortmund.de/∼jabbar/vmcai06.pdf

8 Experiments

We implemented external LTL property validation on top of our experimental
model checker IO-HSF-SPIN [18], the recent extension the directed model check-
ing SPIN-derivate HSF-SPIN. The inputs are Promela-files and the output is a
trail file in SPIN’s format. The Promela language scope of IO-HSF-SPIN is not
as large as in SPIN3 as it lacks some features like fully dynamic process creation
and embedded c-code, but sufficiently strong even for larger models that we have
in our benchmark set.

As with its ancestors, in IO-HSF-SPIN Promela models are compiled into
self-contained model checking units. The experiments for single-processor were
conducted on a Pentium-4 PC, 3 GHz with 2 gigabytes of main memory and 180
gigabytes of hard disk. We exploit disk parallelism by RAID 0 using two hard
disk. For multi-processor experiments we chose a Sun Enterprise System with
four 750 MHz processors working with 8 gigabyte RAM and 30 gigabyte shared
hard disk space. In this case, we worked with a single hard disk, so that no form
of disk parallelism was exploited.

We choose a small internal buffer size for buffered reading and writing con-
sisting of only 1,997 states. We applied internal (hash table based) and external
(delayed) duplicate detection within the next bucket to expand. Duplicate elimi-
nation with respect to visited states in previous buckets is not done. This reduces
the number of scans to linear-time complexity by the cost of some redundant
states. The heuristic we applied takes a combination of Ha (for primary search)
and HM (for secondary search).

When comparing to SPIN it should be noted that this model checker was
invoked with partial order reduction. Actually, as indicated by [26], partial order
reduction preserves completeness but not optimality. It may lead to non-optimal
counterexamples.

In our first set of experiments we use an elevator simulation protocol4. Table 1
shows the exploration results. We denote the number of expanded states, the
number of states inserted to the hash table, the CPU time consumed and the
length of the counterexample obtained. The sizes of the counterexamples are
divided into the prefix and cycle length.

We compare the results of the exploration of External BFS and External
A* as implemented in IO-HSF-SPIN with Nested-DFS as implemented in SPIN,
Distribution 4.2. Due to the statistic information provided by SPIN instead of
the number of expanded and inserted states, we give the number of stored states
and explored transitions5. SPIN and IO-HSF-SPIN return counterexamples that

3 The SPIN code we started with was SPIN 3.4
4 Derived from www.inf.ethz.ch/personal/biere/teaching/mctools/elsim.html
5 The counterexamples are produced with the options -t -p

I/O-HSF-SPIN Expanded Inserted Time Length

External A* 2,090,933 2,275,778 1m18s 67 + 34
External BFS 2,642,575 2,827,073 2m3.96s 67 + 34

SPIN 4.2 Transition Stored Time Length

Nested DFS 33,900 11,149 0m0.064s 109 + 100
Table 1. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for 2-Elevator protocol

I/O-HSF-SPIN Expanded Inserted Time Length

External A* 178 369 0m1.318s 15 + 5
External BFS 1,343 1,427 0m0.787s 15 + 5

SPIN 4.2 Transition Stored Time Length

Nested DFS 155,963 8,500 1m47s 18 + 5
Table 2. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for SGC protocol

start at accepting states6. We observe that SPIN’s counterexamples are in gen-
eral longer than the ones in IO-HSF-SPIN7.

From the results of our first experiments we do not see a large gain of External
A* compared to External BFS in the number of expanded and inserted states.
The established counterexample lengths match. In the time, however, we see that
External A* is considerably faster. There a different reason for the difference
in ratios for the number of expansions and CPU time. First, as there are less
buckets in External BFS (one for every layer) compared to External A*, there
are more I/Os needed for external sorting. The other reason is that the number of
generated nodes that fall into the buckets that are not considered for expansion
(with counterexample length larger than the optimum) are larger for External
BFS.

SPIN’s exploration is remarkably good, as it requires only 6 milliseconds
for generating an optimized trail. The number of stored nodes for Nested-DFS
is much smaller as compared to blind BFS and A* LTL property search. The
established counterexample is longer.

In the second experiment we take a larger protocol, as used in [37], a Promela
model of a procedure with related processes. In Table 2 we see an opposite
behavior as compared to the previous experiment. External search performed
6 Without the predefined bound on the search depth, SPIN tends to find very long

counterexamples, e.g. with 9998 steps. We therefore chose an iterative depth-first
search strategy -i for SPIN. As this option may be caught in a depth anomaly [26]
we also checked option -DREACH, which should return optimal traces. However, the
results we obtained with this setting were not better than with -i.

7 This is not neccessarily due to their non-optimality, but probably relying on a dif-
ferent measurement for steps, as SPIN is likely to put some additional increment on
synchronized never-claim transitions.

I/O-HSF-SPIN Expanded Inserted Time Length

External A* 2,298 127,813 0m6.108s 196 + 2
External BFS 2,298 47,118 0m13.549s 196 + 2

SPIN 4.2 Transition Stored Time Length

Nested DFS -out-of-mem- -out-of-mem- – –
Table 3. LTL Model Checking with External A*, External BFS and Internal Nested
DFS for 64-Dining Philosopher

a much smaller number of expansions than internal iterated Nested DFS. The
reason is that iterative improvement strategy takes a long time to decrease the
counterexample length to a feasible low number. The behavior of External BFS
compared to External A* is also opposite to the above. Now the number of
expansion is smaller in External A* is much smaller due to its good guidance, but
External BFS CPU time is superior. The reason for this is that the distribution
of the heuristic estimate is fine-grained such that many internal buckets have to
be allocated but never used.

In the third set of experiments we choose the scalable Dining Philosophers
protocol with 64 philosophers. The LTL property we checked for was

[] (philosopher[1]@eat -> <> philosopher[2]@eat)

realizing the response property that always if the first philosopher eats, so does
the second. Table 4 shows our results. Coincidently, the number of expanded
nodes for guided and unguided external search match. The number of inserted
nodes is, however, smaller for External BFS. We explain this behavior by ab-
sence of external duplicate removal for unexplored buckets. In agreement to this
argument, External BFS took more time to perform external delayed duplicate
detection. SPIN, unfortunately, ran out of memory. It found counterexample
in very large depth, but was unable to shorten the trail. Even provided with a
depth bound of 300 it was unable to terminate its iterated improvement strategy,
due to the limits of main memory, which in our case was 2 gigabytes. Manually
adapting the search depth to the optimum of 212 allowed SPIN to complete its
exploration finding a counterexample with a acceptance cycle seed at depth 207.

For distributed execution on the multi-processor machine we again choose
the Dining Philosopher example, now scaled to 128 philosophers. First, we note
that disk space consumption is considerably large. The single processor version
could not finish its exploration. One file for the set generated states became
larger than 2 gigabytes and was killed by the operating system. The reason that
the multi-processor versions could finalize their implementation, is early dupli-
cate detection in intermediate files. The length of the produced counterexamples
match and the observed speed-up is noticeable.

I/O-HSF-SPIN Time Secondary Memory Length

1 processor – – –
2 processors 5m53.96s 4.7 gigabytes 388 + 2
3 processors 4m7.13s 5.28 gigabytes 388 + 2

Table 4. LTL Model Checking with External A* for 128-Dining Philosopher

9 Conclusion

In this work we have combined directed, external and parallel to compute optimal
counterexamples for LTL properties in explicit-state model checking. The I/O
complexity of O(sort(|F||R|)/p + l · scan(|F||S|)) is a drastic improvement to
simulating DFS as done for computing strongly connected components in explicit
graphs with Tarjan’s algorithm, as it avoids unstructured access to the adjacency
lists. Different to NestedDFS the approach provides an optimality guarantee on
the length of the counterexample.

The search space is generated using state pairs of active and cycle seed state,
which supports the design of monotone LTL heuristics for directed model check-
ing. Primary and secondary search states are examined together in one common
file. The underlying exploration algorithm extends External A* to allow accept-
ing cycles to be found. As with External A*, the approach can be effectively
be parallelized. Duplicate detection is delayed. Up to synchronization mecha-
nism for work distribution, no communication between the individual processes
is needed, which in large problems allows almost linear speed-ups in a distributed
environment.

With this research, we hope to have pushed the limits of practical model
checking where the internal memory does not limit the number of realistic mod-
els that can be verified. With our support of pause-and-resume the size of the
secondary storage can be resized without harming the correctness of the model
checking process. Combining this with our approach presented in ?? on parallel
external guided safety model checking, we now put our focus on larger industrial-
sized models, which means targeting towards state spaces requiring terrabytes
of storage.

A challenge for future research will be to reduce the (sequential) time com-
plexity to O(sort(|R|) + scan(|S|)) as for safety model checking.

References

1. A. Aggarwal and J. S. Vitter. Complexity of sorting and related problems. In Inter-
national Colloquim on Automata, Languages and Programming (ICALP), number
267 in LNCS, pages 467–478, 1987.

2. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Journal of the ACM, 31(9):1116–1127, 1988.

3. J. Barnat, L. Brim, and I. Cerna. Property driven distribution of nested DFS.
In International Workshop on Verification and Computational Logic (VCL), pages
1–10, 2002.

4. J. Barnat, L. Brim, and J. Chaloupka. Parallel breadth-first search LTL model
checking. In International Conference on Automated Software Engineering (ASE),
pages 106–115, 2003.

5. J. Barnat, L. Brim, and J. Chaloupka. From distribution memory cycle detection
to parallel model checking. Electronic Notes in Theoretical Computer Science,
133:21–39, 2005.

6. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. In Advances in Computers (volume 58). Academic Press, 2003.

7. L. Brim and I. Cerna. Accepting predecessors are better than back edges in dis-
tributed LTL model-checking. In Formal methods in Computer-Aided Design (FM-
CAD), pages 352–366, 2004.

8. J. R. Buchi. On a decision method in restricted second order arithmetic. In
Conference on Logic, Methodology, and Philosophy of Science, pages 1–11, 1962.

9. I. Cerna and R. Palanek. Distributed explicit fair cycle detection. In Model Check-
ing Software (SPIN), pages 49–73, 2003.

10. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamasia, D. E. Vengroff, and J. S.
Vitter. External memory graph algorithms. In Symposium on Discrete Algorithms
(SODA), pages 139–149, 1995.

11. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
12. S. Edelkamp, S. Jabbar, and S. Schroedl. External A*. In German Conference on

Artificial Intelligence (KI), pages 226–240, 2004.
13. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model check-

ing in the validation of communication protocols. International Journal on Soft-
ware Tools for Technology, 5(2-3):247–267, 2004.

14. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Partial order reduction and trail
improvement in directed model checking. International Journal on Software Tools
for Technology, 6(4):277–301, 2004.

15. K. Fisler, R. Fraer, G. Kamhi, Y. Vardi, and Y. Ynag. Is there a best symbolic
cycle detection algorithm. In TACAS, pages 420–434, 2001.

16. D. S. Hirschberg. A linear space algorithm for computing common subsequences.
Communications of the ACM, 18(6):341–343, 1975.

17. G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. The
SPIN Verification System, pages 23–32, 1972.

18. S. Jabbar and S. Edelkamp. I/O efficient directed model checking. In Conference
on Verification, Model Checking and Abstract Interpretation (VMCAI), pages 313–
329, 2005.

19. S. Jabbar and S. Edelkamp. Parallel external directed model checking with linear
I/O. In Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI), 2006. To appear.

20. H. Kautz and B. Selman. Pushing the envelope: Planning propositional logic, and
stochastic search. In AAAI, pages 1194–1201, 1996.

21. R. E. Korf. Best-first frontier search with delayed duplicate detection. In AAAI,
pages 650–657, 2004.

22. R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In AAAI,
2005.

23. R. E. Korf and W. Zhang. Divide-and-conquer frontier search applied to optimal
sequence allignment. In AAAI, pages 910–916, 2000.

24. L. Kristensen and T. Mailund. Path finding with the sweep-line method using
external storage. In International Conference on Formal Engineering Methods
(ICFEM), pages 319–337, 2003.

25. A. Lluch-Lafuente. Simplified distributed ltl model checking by localizing cycles.
Technical report, Institute of Computer Science, University of Freiburg, 2002.

26. A. Lluch-Lafuente. Directed Search for the Verification of Communication Proto-
cols. PhD thesis, Institute of Computer Science, University of Freiburg, 2003.

27. K. Munagala and A. Ranade. I/O-complexity of graph algorithms. In Symposium
on Discrete Algorithms (SODA), pages 87–88, 2001.

28. J. Pearl. Heuristics. Addison-Wesley, 1985.
29. J. H. Reif. Depth-first search is inherently sequential. Information Processing

Letters, 20:229–234, 1985.
30. S. Safra. On the complexity of omega-automata. In Annual Symposium on Foun-

dations of Computer Science, pages 319–237. IEEE Computer Society, 1998.
31. P. Sanders, U. Meyer, and J. F. Sibeyn. Algorithms for Memory Hierarchies.

Springer, 2002.
32. V. Schuppan and A. Biere. From distribution memory cycle detection to parallel

model checking. International Journal on Software Tools for Technology Transfer,
5(2–3).

33. V. Schuppan and A. Biere. Liveness checking as safety checking for infinite state
spaces. page To Appear, 2005.

34. A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Buchi
automata with applications to temporal logic. Theoretical Computer Science, 49(2–
3):217–237, 1983.

35. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, (1):146–160, 1972.

36. P. Wolper. Temporal logic can be more expressive. Information and Control,
56:72–99, 1983.

37. W. Zhang. Model checking operator procedures. In Workshop on Model Checking
Software (SPIN), pages 200–215, 1999.

