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Abstract. The limited amount of memory is the major bottleneck in
model checking tools based on an explicit states enumeration. In this
context, techniques allowing an efficient representation of the states are
precious. We present in this paper a novel approach which enables to
store the state space in a compact way. Though it belongs to the family
of explicit storage methods, we qualify it as semi-explicit since all states
are not explicitly represented in the state space. Our experiments report
a memory reduction ratio up to 95% with only a tripling of the computing
time in the worst case.

1 Introduction

Model checking is a powerful and automatic technique for the verification of
finite state systems. It consists of enumerating all the possible configurations
(states) or actions of the system to track the ones which do not match the speci-
fication, usually expressed in a temporal logic, e.g. LTL. To preserve termination
and to improve efficiency, model checking algorithms have to keep track of the
visited states in a state space (or reachability set).
Algorithms based on an explicit state enumeration suffer from the well-known
state explosion problem. Due to the concurrent execution of several components,
the number of possible configurations can be far too large to fit in memory or
even on a disk. In a first family of techniques designed to alleviate this problem,
we can put all those which aim at reducing the number of visited states while still
preserving the property to verify. Examples of such techniques include partial
order reductions and symmetry-based reductions. A second family of techniques
aim at representing the state space in an efficient way in order to limit the mem-
ory allocated to store the state space. State compression techniques and state
caching are examples of such techniques.
Methods which belong to the first family usually achieve better reductions of the
amount of memory required since, in most systems, the number of visited states
is an exponential function of the number of concurrent process. However, a wise
choice for the representation of the state space can still perform a significant
reduction of the memory requirement. Moreover, the use of such techniques is
especially needed when model checking is applied to software specification or



models extracted from source code, since the state descriptor of these models
can grow very large as it may represent complex data such as heap allocated
objects.
This paper presents a compression method which falls into the second family.
We qualify our method as semi-explicit since states may not be explicitly rep-
resented in the state space. The underlying idea of the method is conceptually
simple but reveals to be very useful in practice. Moreover, it is not specific to the
formalism used in this paper (colored Petri nets) and it could easily be adapted
to other formalisms. Thus we formulate our ideas in general terms. Last but not
least, our technique can be further combined with the state collapsing method
[1, 2] to lead to better state representations.

The remainder of this work is organized as follows. Section 2 is a brief
overview of the methods proposed so far to represent the state space in explicit
state model checking. Section 3 recalls some basic concepts of colored Petri nets.
Our storage method is presented in Section 4. The results of some experiments
made with our model checker are presented in Section 5. Section 6 discusses
the compatibility of our method with other techniques used in explicit state
model checking and presents some directions for future research. Lastly, Section
7 presents our conclusions.

2 State space representation in explicit model checking

This section draws up an overview of the methods used to represent the state
space in explicit model checking. These methods can be classified in three cat-
egories: exhaustive storage, partial storage, and lossy storage. The method we
propose in this paper belongs to the first family.

Exhaustive storage methods build the complete state space of the system. Each
state met during the search is encoded by a reversible mapping into a state
vector and then stored in an adequate data structure, e.g., a hash table. In this
way, each state can be retrieved from its encoded form and checking whether
a state has already been visited becomes trivial. Compression techniques are
usually employed to optimize the encoding. Examples of compression techniques
are state collapsing [1], recursive indexing [2] (possibly improved by training runs
[2]), very tight hashing [3], sharing trees [4], difference compression [5], runtime
state compaction [6], or invariant-based compression methods for Petri nets as
it is done in [7] and [8]. Each method tries to provide efficient compression ratios
without introducing an unbearable increase in the running time.

Partial storage methods are based on the idea that it is not necessary to store all
the visited states to preserve the termination of the search algorithm, but rather
a portion of the state space. Perhaps the most famous method that follows this
paradigm is the state space caching method [9]. In state space caching, only the
states which belong to the search stack are stored in the state space in order to



avoid entering cycles which would endanger the termination of the algorithm.
Some other states may also be stored depending on the amount of memory still
available. The main limitation of state caching is the amount of redundant work
performed. Indeed, if only stack states are stored, each state s will be explored
once for every path leading from the initial state to s, causing an unacceptable
blowup in the execution time. It was observed in [9] that the use of partial order
methods greatly reduces this problem by limiting the exploration of redundant
paths. The main drawback of caching techniques is that the best replacement
strategy to adopt and the run time increase heavily depends on the structure of
the state space, and is thus hard to predict as observed in [10].
In [11], the authors proposed to improve reachability analysis via the use of
pseudo-root states. These states are characterized by the fact that all their pre-
decessors have already been visited during the search. This gives the possibility
to forget these states without endangering the termination of the search. Ex-
periments reported result in 2- to 16-fold improvement in space requirements.
This technique has the advantage of introducing little runtime overhead, since
any state is only visited once. Nevertheless, it relies on the ability to compute
predecessors of states which seems to us a strong requirement.
The sweep line method, another technique based on this observation, was re-
cently introduced in [12, 13]. It is inspired from the garbage collection mecha-
nism. It uses the notion of progress present in some systems, e.g., timed protocols,
to safely delete from the state space the states which cannot be reached again
from the set of unprocessed states. Preliminary results on this method are quite
promising. However, it suffers from the fact that a progress measure function
has to be supplied by the user. In [14] Schmidt gave a method to automatically
derive such a function from the incidence matrix of Petri nets, but it seems hard
to construct a “good” function for more complex formalisms.
More recently, Behrmann, Larsen and Pelánek proposed in [15] several strategies
to decide whether or not a state has to be kept in the reachability set while still
preserving termination and efficiency.
Verisoft [16] is a software model checker that illustrates the partial storage strat-
egy to the extreme. Verisoft does not store any states at all. The termination is
guaranteed by limiting the search to a specified depth. It makes use of partial
order methods (sleep sets) to avoid multiple revisits of the same state.

Lossy storage In a lossy storage scheme, each state is mapped to a state vector
in a non-injective way before its insertion into the state space. Two different
states may thus share the same compressed representation. An example of tech-
nique that belongs to this family is the bitstate hashing technique of Holzmann
(or supertrace) [17]. Lossy storage methods greatly cut down the memory re-
quirement since an arbitrary small number of bits can be used to represent each
state, but suffer from an omission probability that a state may be erroneously
declared as already visited whereas it is new, leading to unexplored portions
of the state space. Wolper and Leroy showed in [18] that this probability can
be reduced by storing the whole hash signature in a hash table with conflict
resolution (the hashcompact method), or by using multiple hash functions (the



multihash method). However, this kind of technique cannot be used for verifi-
cation purposes, but rather at a debugging stage since the omission probability
cannot be reduced to 0.

3 Colored Petri nets

We develop our method in the context of colored Petri nets [19]. Colored Petri
nets allow the modeling of complex systems in a compact way and support
numerous analysis techniques. In a colored Petri net, a place contains typed (or
colored) tokens instead of anonymous tokens of Petri nets, and a transition may
be fired in multiple ways, i.e., instantiated. To each place and each transition
is attached a type (or a color domain). Each arc of the net between a place
and a transition is labeled by a color mapping which specifies the type and the
number of tokens produced or consumed by the firing of the transition for a
given instantiation.
The definition of colored Petri nets is based on multi-sets. A multi-set over a set
S is a mapping from S to the set of positive integers. The set of multi-sets over a
set S is noted Bag(S). Addition, subtraction, and comparison of multi-sets are
defined as usual. States of colored Petri nets are also called markings.

Definition 1. A colored Petri net is a tuple N = 〈P, T, Σ, C, W−, W+, m0〉
where P is a finite set of places; T is a finite set of transitions, with P ∩T = ∅;
Σ, the colors set, is a finite set of finite and non empty sets; C, the color

domain application, is a mapping from P∪T to Σ; W− and W+, the backward

and forward incidence matrixes associate to each (p, t) ∈ P × T a color
mapping from C(t) to Bag(C(p)); and m0, an initial marking is an element of
MN , the set of mappings which associate each p ∈ P to an element of Bag(C(p)).

We now define the transition relation and the state space of colored Petri nets.

Definition 2. Let N = 〈P, T, Σ, C, W−, W+, m0〉 be a colored Petri net, t ∈
T, ct ∈ C(t) and m ∈ MN . The transition instance ct of t, noted (t, ct) is firable,
at m (noted m[(t, ct)〉) if and only if ∀p ∈ P, m(p) ≥ W−(p, t)(ct). The firing of
(t, ct) at m leads to a marking m′, (noted m[(t, ct)〉m′) defined by ∀p ∈ P, m′(p) =
m(p)−W−(p, t)(ct)+W+(p, t)(ct). The state space (or reachability set) of N ,
denoted by RN , is defined recursively as the set {m0}∪{m ∈ MN |∃m′ ∈ RN , t ∈
T, ct ∈ C(t)|m′[(t, ct)〉m}.

4 The ∆-markings storage method

This section describes the ∆-markings method and is organized as follows.
Firstly, we present the general idea of the method. In a second step we give
a depth first search (DFS for short) algorithm based on it. Two direct opti-
mizations of the algorithm are then described. It is then shown how our method
can be combined with the state collapsing compression method to obtain very
compact representations. Lastly, we close the section with a short analysis of the
method.



General idea In colored Petri nets, as in many other formalisms, the transi-
tion relation is a deterministic mechanism: the firing of a transition instance at a
marking leads to a single marking. On the basis of this determinism, we propose
to store some markings of the reachability set in a non explicit way: instead of
storing the actual value of a marking m, we only store a reference to one of its
predecessors m′ and a transition instance (t, ct) whose execution leads from m′

to m. Because of the determinism of the transition relation, this representation
of m′ is unambiguous although it is not canonical since a marking may have
several predecessors. Markings stored in this manner are called ∆-markings and
are said to be stored symbolically while markings stored in the usual way are
said to be stored explicitly.
Storing a reference to a marking and a transition instance should obviously lead
to better state representations, especially when the modeled system exhibits
large state vectors. However, this representation presents a drawback: the test
for checking whether or not a marking m is new or not can be significantly slowed.
This test usually entails comparing m to some marking(s) m′ stored in the state
space. In the classical scheme, m′ is stored as a vector of bits and so is encoded m

before its insertion into the state space. The comparison can then be efficiently
implemented by a bits vectors comparison. When the reachability set contains
∆-markings, the operation is more complicated. Let us assume that we have a
sequence of markings m1, m2, . . . , mn = m′ such that m1 is stored explicitly and
each mi 6= m1 is stored as a ∆-marking which points to mi−1 with the binding
(ti−1, ci−1) such that mi−1[(ti−1, ci−1)〉mi. The idea is then to backtrack to m1,
and to apply to it the firing of bindings sequence (t1, c1).(t2, c2) . . . (tn−1, cn−1)
to have an “explicit view” of m′. Once this operation realized, the comparison
of m and m′ becomes straightforward.
We will call a reconstitution the operation which consists in finding the actual
value from a ∆ encoding, and the sequence of transition bindings which enables
to reconstitute a marking will be called a reconstituting sequence. The principle
of the reconstitution mechanism can be illustrated with the help of Figure 1.
Let us suppose, for instance, that we have to reconstitute marking m. To do so,
we will first have to backtrack to m′. Since it is not stored explicitly, we will
then have to backtrack to m0 and finally apply to it the reconstituting sequence
(t′, c′).(t, c). This operation allows us to retrieve the actual value of marking m.

The run time overhead caused by the method directly depends on the lengths
of the reconstituting sequences that are fired when the algorithm has to deter-
mine whether a marking is new or not. In order to place an upper bound on the
length of these sequences we use the underlying idea of the stratified caching
strategy [10]. We use a parameter kδ defined by the user which belongs to set of
positive integers. During the exploration of the state space, each marking met
at a depth d such that d mod kδ = 0 is stored explicitly. All other markings are
stored symbolically and point to one of their predecessors (by a doted arc on
the figure). By this way, we can guarantee that the length of each reconstituting
sequence is bounded by kδ − 1. This idea is illustrated by Figure 1.
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Fig. 1. A state space with ∆-markings

The algorithm We propose a search algorithm based on our method. Let us
point out that we arbitrarily choose to present here a depth first search algorithm
but that our method is not specific to this kind of search. The algorithm is given
in a pseudo code form in Figure 2. For the sake of simplicity, no distinction is
done between a transition and a transition instance.
Markings are stored in a hash table S using a hash function noted hash. To
manage collisions, each slot of the hash table contains a list of markings. When a
marking m is encountered we compare it to each marking m′ of the list contained
in the slot hash(m) to check whether it is new or not. To achieve this, the
function reconstitute is used to reconstitute a marking stored in the hash
table. It recursively backtracks to a marking stored explicitly and apply to it
the correct reconstituting sequence. Finally, if m is not in the hash table, it is
added to the list of slot hash(m). Depending on its depth, it is stored explicitly
or symbolically. If it is stored symbolically, it points to its predecessor in the
search stack. To achieve this, three additional parameters are passed to the dfs

procedure: the depth of the marking to explore, the predecessor of the marking
in the search stack, and the transition which leads from the predecessor to the
marking.
We can easily prove that the reconstitution function reconstitute terminates,
i.e., it cannot enter in a cycle of ∆-markings, since each ∆-marking points to
its predecessor in the search stack and each kth

δ
marking in the search stack is

stored explicitly.

Speeding up the reconstitution process An efficient implementation of the
reconstitution process is crucial for the performances of our method. Moreover,
this makes usable the ∆-markings method with higher values of kδ , leading to
very condensed state spaces. We propose now two optimizations that aim at
reducing the reconstitution times. Several experiments, that are not reported in
this paper for space constraints, showed that the combination of both optimiza-
tions leads to an average reduction of the run time of 60%.



procedure dfs (marking m, int depth, stored marking pred, transition t)
1 h← hash(m)
2 for i ∈ [1..length(S[h])] do
3 if m = reconstitute(ith(S[h], i)) then return end if
4 end for
5 if depth = 0 then
6 new.type← explicit

7 new.m← m

8 else
9 new.type← delta

10 new.pred← pred

11 new.t← t

12 end if
13 add(S[h], new)
14 for t ∈ enabled(m) do
15 let m′ be such that m[t〉m′

16 dfs(m′, (depth + 1) mod kδ, new, t)
17 end for
function reconstitute (stored marking sm)
1 if sm.type = explicit then r← sm.m

2 else
3 m← reconstitute(sm.pred)
4 let r be such that m[sm.t〉r
5 end if
6 return r

procedure explore state space ()
1 init(S)
2 dfs(m0, 0, nil,nil)

Fig. 2. A DFS algorithm based on the ∆-markings method

Updating the predecessors of ∆-markings The idea of this first optimization,
illustrated by Figure 3, is to update the predecessor of a ∆-marking when a
shorter path to an explicit marking is found. Let us suppose that the search
algorithm successively visits a sequence of markings m1[t1〉m2[t2〉 . . . [tn−1〉mn

and that m1 is its only marking stored explicitly by the algorithm. Each mi 6= m1

points to mi−1. When mn has to be reconstituted, we have to backtrack to m1

and apply to it the reconstituting sequence t1.t2 . . . tn−1. Let us suppose that
the algorithm visits later a sequence of markings m[t〉 . . . [t′〉m′[t′′〉mn shorter
than the initial one and such that m is its only marking stored explicitly. We
can update the predecessor of mn and set it to m′. As a consequence, each time
the algorithm will reconstitute mn it will backtrack to m and apply a shorter
reconstituting sequence. Not only the reconstitutions of mn will be sped up, but
also the reconstitutions of all the ∆-markings which point to mn (the set S on
the figure).
Several experiments pointed out that the speed improvement is proportional
to the parameter kδ which is not surprising. Nevertheless, we expect that the



benefits obtained with this optimization decrease if some partial order technique
is used in combination with our storage method. Since the goal of partial order
methods is to reduce the exploration of redundant paths, the possibilities of
updating the predecessor of a ∆-marking should naturally be reduced.

Update

...
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t1

t2

tn−1

mn

t

S

t′
t′′

m1

m2

t1

t2

tn−1

mnm′

m

Fig. 3. Updating the predecessor of mn

Backward firing of the reconstituting sequence This second optimization is more
an implementation trick, but it reveals to be very efficient in terms of reduction
of the execution time.
The reconstitution of a ∆-marking δ involves two costly operations: the decod-
ing of the explicit marking e which enables to reconstitute δ, and the firing of
the reconstituting sequence σ. In comparison, in a “classical” storage scheme,
checking that two markings are equal is simply done by comparing two vectors
of bits. However, this reconstitution can be avoided by performing a backward
firing, i.e. an “unfiring”, of sequence σ. Instead of backtracking to e and firing
σ, the idea is to start from m and to unfire σ on it, i.e., find the marking m′

which is such that m′[σ〉m. Finally, δ and m correspond to the same marking
if and only if m′ = e. If at some step of the unfiring of σ, let us say after the
unfiring of σ2 such that σ = σ1.σ2 we obtain a marking m′′ which is such that
m′′(p) < 0 for some place p of the net, then this means that the unfiring of σ is
not possible at m. We can therefore claim that the reconstitution of δ does not
produce the marking m. The full backtrack to e is thus avoided, as well as the
decoding of e and the unfiring of σ1.
The possibility to reverse the transition relation is a prerequisite for this opti-
mization. This one is met for colored Petri nets but it would be more problematic
to adapt this optimization to formalisms which do not provide such a facility.

The function reconstitute of Figure 2 can thus be replaced by function
unfire and check given below. The if-statement condition at line 3 of the dfs

procedure must naturally replaced by unfire and check(ith(S[h], i), m).



function unfire and check (stored marking sm,marking m)
1 if sm.type = explicit then r← sm.m = m

2 else
3 let m′ be such that m′[sm.t〉m
4 if m′(p) < 0 for some place p then r← false

5 else r← unfire and check(sm.pred,m′)
6 end if
7 end if
8 return r

A state collapsing compression scheme for colored Petri nets The state
collapsing method [1] and its improvement, the recursive indexing method [2]
are two state compression methods. Both are based on an assumption particu-
larly adapted to software model checking. Thus, this technique is implemented
in Bogor [20], JPF [21] and Spin [22]. This hypothesis is the following: even when
the number n of syntactically possible states for a process is huge, the number
m of states effectively reached by this process is usually much smaller. The idea
is then to represent local process states on log2(m) bits instead of log2(n) bits.
These log2(m) bits form an index of a table which is shared by all the global
states and in which the actual local states are stored on log2(n) bits. Such a
strategy allows to save a significant amount of memory when n >> m.

For colored Petri nets, we can adapt this principle on the basis of two obser-
vations:

1. Given a place, some token values within its domain may never be held in it.
2. Given a transition, some of its instances may never be firable.

This is so because the types, i.e., color domains, of the places and transitions of
the net are usually over-approximations made by the user of the possible values
really met during the search.
The first observation can help us to define an efficient compression function for
the markings which are stored explicitly. If we note m the number of bits used
to store a collapsed item of a color domain, each token value of a place p can be
represented with m bits instead of using log2(|C(p)|) bits.
The second observation is useful to compress ∆-markings. By using the same
parameter m, a collapsed ∆-marking will fit in

1 + log2(H) + log2(L) + log2(|T |) + m

bits. The first bit is used to indicate to the decoder the type of marking to decode.
The “pointer” to the predecessor of the ∆-marking in the hash table is a couple
(h, i) where h is the slot of the hash table which contains the predecessor, and i

is its position in the slot list. If we note H the size of the hash table and L the
maximal length of a slot list, log2(H) + log2(L) bits are sufficient to encode this
couple. At last, log2(|T |) + m is the number of bits used to encode a collapsed
transition instance (t, ct). Without collapsing the vector, log2(|T |)+ log2(|C(t)|)



bits are required to encode this couple.
Since m and L cannot be known before the search terminates, they must be fixed
by the user. When the supplied values are not sufficient, an error is reported at
the run time to the user who, in turn, can change these parameters and rerun
the search. On all the experimentations we made, L = 28 and m = 16 were
both sufficient to encode any ∆-marking. With these values each ∆-marking
can be represented with approximatively 64 bits, which is the number of bits
recommended in [18] to store a hash signature of a state descriptor. Thus, by
combining our method with a state collapsing compression scheme we obtain a
reliable storage method that performs a reduction similar to the one obtained
by an unreliable method such as hashcompact.

Analysis of the method We address now the following question: “what can we
expect from the method in terms of memory reduction ?”. If we note Ne the num-
ber of markings stored explicitly, Nδ the number of ∆-markings, N = Ne + Nδ,
Ve the average size of markings stored explicitly, and Vδ the average size of ∆-
markings, the total amount of memory required to store the state space will be
Ne × Ve + Nδ × Vδ .
Now if we suppose that the proportion of markings met at depths 0, kδ, . . . ,
n.kδ is N

kδ
, we can approximate it by ( 1

kδ
× N).Ve + (kδ−1

kδ
× N).Vδ .

By collapsing ∆-markings, we have seen that Vδ becomes a constant value, typ-
ically between 8 and 12 bytes. So, for large values of kδ , e.g., ≥ 50, the memory
allocated weakly depends on the size of the state vector and can be approximated
by N × Vδ.

5 Experimental results

The storage method introduced in this paper, as well as the state collapsing
scheme presented in the previous section have both been implemented in Helena
[23], an explicit model checker for high level Petri nets. This section presents the
results of some experiments that have been made with Helena.
All the experiments described in this section have been made on a Pentium 4,
2.8 Ghz with 2 Gb of RAM. The search method used was a depth first search
and the two optimizations previously presented were both turned on.

Experimentation on academic examples We first consider the six follow-
ing examples frequently used in benchmarks: the distributed database system,
the sieves of Eratosthene, the mutual exclusion algorithm of Peterson, a simple
mutual exclusion protocol, the leader election protocol of Chang and Roberts,
and lastly the dining philosophers. All these models can be found in the Helena
distribution available at http://helena.cnam.fr. The results of our experi-
mentations are reported in table 1. For each model, its name and its param-
eter are given in the first column. Four searches were done with kδ in the set
{5, 10, 20, 50}. For each of these runs, the relative performance in time and in



space with respect to a classical DFS without state compression are reported
respectively in columns T and S. The last row of the table contains the average
values observed. The collapse method was not helpful for these simple models
and therefore disabled.

Table 1. Results obtained for academic examples

kδ = 5 kδ = 10 kδ = 20 kδ = 50
States T S T S T S T S

Dbm, 12 2 125 765 109% 24% 119% 16% 171% 5% 173% 4%

Eratos, 70 3 177 699 123% 40% 148% 33% 198% 29% 340% 27%

Peterson, 4 3 407 946 131% 64% 151% 60% 191% 58% 316% 57%

Mutex, 17 5 701 632 130% 58% 148% 53% 176% 50% 249% 48%

Leader, 16 10 475 430 137% 46% 176% 39% 231% 37% 329% 32%

Dining, 13 14 741 195 137% 54% 155% 48% 181% 45% 218% 44%

128% 56% 150% 42% 191% 37% 271% 35%

We observe that the best compression ratio provided by our method are
obtained for the two models which exhibit the largest state vectors, namely the
distributed database system, and the sieves of Eratosthene. The best reduction
is obtained for the distributed database system with kδ = 50. In this case, the
average size of the state vector can be reduced from 148 bytes to 8 bytes. Let
us note that, for this model, the size of the search stack is bounded by 2 · N .
This explains why the results obtained for kδ = 20 and kδ = 50 are so close.
In the opposite, for models with small state vectors, the gains obtained are
quite smaller. For instance, for the Peterson model, the state vector of markings
stored explicitly hardly reaches 16 bytes. Thus, we cannot expect our method to
perform a reduction ratio better than 40%−60%. It appears that our method is
not quite adapted for the storage of state spaces with small state vectors (< 20
bytes). That is due to the fact that the overhead needed to store a ∆-marking as
well as extraneous data used to store markings, mainly pointers and additional
bits added to vectors to fit in a machine word, are too important to enable a
satisfactory reduction of the state space. Finally, the increase of the execution
time remains acceptable for low values of kδ but tends to grow with kδ .

Experimentation on models extracted from programs In a second step,
we made experiments on two colored Petri nets automatically translated from
concurrent Ada programs by the tool Quasar [24]. Both programs make use of
advanced features of Ada tasking such as dynamic task creation. The first one
is a client / server program with dynamic creation of servers to handle the re-
quests of the clients. The second one is an Ada implementation of the sieves of
Eratosthene to find all the prime numbers between 2 and N .
The results of our experimentations are reported in table 2. For both programs,
we made four series of tests: without any compression technique, i.e., no state
collapsing and no ∆ encoding, (column No comp.), with the state collapsing
method enabled (column Collapse), with the ∆-markings method enabled (col-
umn ∆), and finally, with both methods enabled (column ∆ + Collapse). For



Table 2. Results obtained for programs

No comp. Collapse ∆ ∆ + Collapse

kδ = 10 kδ = 20 kδ = 50 kδ = 10 kδ = 20 kδ = 50

Client / server program

N=4, 10 running tasks, 34 731 states

M 9.45 1.37 1.89 1.42 1.15 0.36 0.30 0.26
T 00:00:02 00:00:03 00:00:03 00:00:03 00:00:06 00:00:03 00:00:04 00:00:07
V 285.17 41.26 56.93 42.71 34.61 11.01 9.10 8.00

N=5, 12 running tasks, 635 463 states

M 205.63 28.37 36.80 21.94 20.96 6.84 4.98 4.85
T 00:00:51 00:01:54 00:01:11 00:01:44 00:02:54 00:01:18 00:01:52 00:03:04
V 339.31 46.82 60.73 36.20 34.59 11.29 8.21 8.00

N=6, 14 running tasks, 13 805 931 states

M - 684.41 1 035.15 962.489 447.73 176.90 167.85 105.33
T - 00:26:04 00:00:00 00:44:20 01:36:33 00:38:43 00:48:59 01:38:17
V - 51.98 78.62 73.10 34.01 13.44 12.75 8.00

Eratosthene program

N=20, 9 running tasks, 3 599 634 states

M 698.74 214.51 130.70 100.72 78.67 46.15 37.28 30.75
T 00:07:10 00:08:05 00:09:37 00:12:05 00:20:25 00:11:07 00:14:11 00:22:34
V 203.54 62.49 38.06 29.34 22.92 13.44 10.86 8.96

N=25, 10 running tasks, 24 884 738 states

M - - 933.75 676.24 539.47 334.79 260.289 220.77
T - - 01:30:13 01:53:50 03:06:11 01:45:05 02:07:02 03:22:54
V - - 39.35 28.49 22.73 14.11 10.97 9.30

N=30, 11 running tasks, 96 566 610 states

M - - - - - 1 331.37 1 026.89 843.32
T - - - - - 10:21:50 12:25:40 17:17:31
V - - - - - 14.46 11.15 9.16

each run, row M reports the size in megabytes of the state space, row T reports
the execution time of the search in the form hh:mm:ss, and row V reports the
average size of the state vector in bytes. Some searches ran out of memory. This
is indicated by a “-” in the table.

The reduction of the size of the state space for these models is much more
impressive than for the simple models previously considered. Even for the lowest
value of kδ the reduction observed is significant. Without any compression tech-
nique enabled, the search is limited to state spaces with a few millions of states.
State collapsing provides good results for both examples for a slight increase of
the run time, but used without our method it is limited to state spaces with
107 states. For the Eratosthene program, our method clearly outperforms its
competitor in terms of memory usage, even for the lowest value of kδ . Finally,
we observe that the best results are naturally obtained when combining both
methods. For the more aggressive compression scheme (∆ + Collapse, kδ = 50),
the search only consumed 2% to 5% of the space required without any state
compression, reducing the average size of the state vector to less than 10 bytes,



whatever the model is. Such a drastic reduction comes without an unbearable
cost: for the compression scheme mentioned, the execution time only tripled on
all the examples.
The results observed confirm the analysis made in the previous section: for high
values of kδ the average size of the state vector is no more related to the model,
and it tends to a limit which is the size of a collapsed vector (8 bytes in these
examples).

6 Discussion and perspectives

The two main techniques that are employed by model checkers to tackle the state
explosion problem are partial order methods, e.g., persistent sets, and symmetry
based reductions.
It is straightforward to see that the ∆-markings method is fully compatible with
the first ones. Indeed, partial order methods are based on a selective search al-
gorithm which only selects at each state a subset of the enabled transitions to
generate the immediate successors of the state. It is therefore fully independent
from the representation of the state space used.
Concerning symmetry reduction, the problem is more difficult. Computing sym-
metries often requires to permute threads or objects in the state vector. This
means that the difference between two states is no more as simple as a single
transition instance. Some other informations may thus also be saved in a ∆-
marking to represent symmetries. Consequently, the algorithm could need more
space, and also more time since the reconstitutions could be slowed. The prob-
lem of an efficient combination of the two methods is therefore an open problem
that we are currently addressing.

When model checking problems of industrial sizes, it is preferable to not keep
in memory all the visited states. Some techniques designed to achieve this have
been presented in section 2. At first glance, it seems hard to combine our method
with a “partial storage” method. This is so because ∆-markings point to some
other states of the state space, disallowing, a priori, the possibility to not store
every state in the reachability set. However, we see a possibility to combine our
method with Geldenhuys’s stratified caching [10]. The underlying idea of this
caching policy is to systematically store and keep in the cache all the states
met at given depths. Strata are thus classified as available and unavailable.
States belonging to available strata may be replaced by new ones during the
search, while the other ones must remain in the cache. The goal is to place an
upper bound on the extra work realized by limiting the lengths of redundant
exploration paths.
A solution to combine both methods is to allow the replacement of markings
for which we are sure that no other ∆-marking points to it. When the first
replacement occurs these markings are those who do not belong to the DFS
stack and which have been met at depths kδ − 1, 2.kδ − 1, . . . , n.kδ − 1. Indeed
all the successors of these markings are stored explicitly in the state space, or



point to another marking. Once all these states of this available strata have been
replaced, the next available strata are those at depths kδ−2, 2.kδ−2, . . . , n.kδ−2
and so on. By this way, we can guarantee that, at each step of the algorithm, each
∆-marking points to a marking which has not been replaced. Figure 4 illustrates
our purpose. Parameter kδ is set to 3. In the configuration depicted, markings at
depth 2 have already been replaced by the algorithm. Markings at depth 1 are
now eligible for replacement. Markings m and m′ will become eligible as soon as
they leave the stack.

m’

m Delta−Marking pointer

Transition

Transition on the stack

Marking stored explicitely

Delta−Marking

Marking eligible for replacement

Delta−Marking previously replaced

Depth = 1

Depth = 2

Depth = 3

Depth = 0

Fig. 4. Combining stratified caching and the ∆-markings method

7 Conclusions

We have presented in this work the ∆-markings method to store the state space
of colored Petri nets. The basic idea of this method is to store a large set of states
of the system in a non explicit way by only storing references on other states.
Some optimizations which considerably reduce the run time penalty caused by
the method have also been presented. In addition, our method can be combined
with a state collapsing compression scheme to push the compression one step
further. This simple idea reveals to be very useful in practice. The results of our
experiments have shown the efficiency of our approach. On all examples, even for
models issued from the translation of concurrent Ada programs, our experiments
show that the average size of the state vector is close to 10 bytes. Furthermore,
our technique does not increase the execution time in an unacceptable way.
Another appreciable property of our method is that it gives to the user the
ability to specify the desired compression ratio, through the parameter kδ .
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