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Abstract. We present a technique and a tool for model-checking opera-
tional UML models based on a mapping of object oriented UML models
into a framework of communicating extended timed automata - in the IF
format - and the use of the existing model-checking and simulation tools for
this format.
We take into account most of the structural and behavioral characteristics
of classes and their interplay and tackle issues like the combination of op-
erations, state machines, inheritance and polymorphism, with a particular
semantic profile for communication and concurrency. The UML dialect con-
sidered here, also includes a set of extensions for expressing timing.
Our approach is implemented by a tool importing UML models via an XMI
repository, and thus supporting several commercial and non-commercial
UML editors. For user friendly interactive simulation, an interface has been
built, presenting feedback to the user in terms of the original UML model.
Model-checking and model exploration can be done by reusing the existing
IF state-of-the-art validation environment.

1 Introduction

The Unified Modeling Language (UML) provides a means for describing opera-
tional models of a system at various levels of abstraction, corresponding to different
development phases. UML based model driven development has become rapidly a
standard in recent years and supported by several case tools for editing UML models
and generating code. In the context of real-time and safety critical systems, model
based formal validation is essential, but is today very little supported by UML case
tools.

This work is part of the OMEGA IST project, whose aim is building a basis
for a UML based development environment for real-time and embedded systems,
including a set of notations for different aspects with common semantic foundations,
tool supported verification methods for large systems, including real-time related
aspects [32]. We present a technique and a tool for model-checking operational
UML models based on a mapping from object oriented UML models to a system of
communicating extended timed automata, as defined by the IF format and on the
use of existing model-checking and simulation tools for this format [7].

? This work is supported by the OMEGA European Project (IST-33522). See also
http://www-omega.imag.fr



The definition of a verification framework for UML models involves a number
of design choices. They concern notably the set of covered UML language elements,
possible language extensions (such as a formalism for specifying properties to be
verified), and the operational semantics of a model.

In terms of language coverage, we focus on the operational part of UML: classes
with structural and behavioral features, relationships (associations, inheritance),
behavior descriptions through state machines and actions. The issues we tackle, like
the combination of operations and state machines, inheritance and polymorphism,
run-to-completion and concurrency, go beyond the previous work done in this area
(see section 1.1), which has mainly focused on verification of statecharts. Our choices
are outlined in section 2.

The formalisation of the operational semantics of UML models is based on a
mapping from UML into an intermediate formal representation IF[6] based on com-
municating extended timed automata (CETA). This choice is motivated by the ex-
istence a verification toolset based on this semantic model [7, 9] which has been
productively used in a number of research projects and case studies, e.g. in [8, 16].
The main features of the CETA model are presented in section 1.2, and in section 3
we discuss the mapping from UML into this model.

An important issue in designing real-time systems is the ability to capture quan-
titative timing requirements and assumptions, as well as time dependent behavior.
We rely on the extensions defined in the context of the Omega project [17, 15]. We
summarize these extensions and their mapping into IF in section 4.

Another important issue is the formalism in which properties are expressed,
which may range from temporal logics to automata-based specifications. In section 5
we introduce a simple property description language that reuses some concepts from
UML (like objects, state machines) while remaining sufficiently expressive for a large
class of properties (equivalent to the linear temporal logic LTL). The language of
observer objects makes use of concepts that are familiar to any UML user, and
has the potential to alleviate the cultural shock of introducing formal dynamic
verification to UML models.

Finally, section 6 presents the UML validation toolset. By using the IF tools
as underlying simulation and verification engine, the UML tools presented here
benefit from a large spectrum of model reduction and analysis techniques already
implemented therein, such as static analysis and optimizations for state-space re-
duction, partial order reductions, some forms of symbolic exploration, model min-
imization and comparison, etc [7, 9]. These techniques improve the scalability of
model-checking, which is essential when analyzing UML models.

The techniques and the tool presented in this paper are subject to experimental
validation on several larger case studies within the OMEGA project [1].

1.1 Related work

The application of formal analysis techniques (and particularly model checking) to
UML is a very active field of study in recent years, as witnessed by the number of
papers on this subject ([26, 27, 25, 24, 23, 31, 13, 14, 34, 4] are most often cited).

Like ourselves, most of these authors base their work on an existing model
checker (SPIN[20] in the case of [26, 27, 25, 31], COSPAN[19] in the case of [34],
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Kronos[35] for [4] and UPPAAL[22] for [23]), and on the mapping of UML to the
input language of the respective tool.

For specifying properties, some authors opt for the property language of the
model checker itself (e.g. [25, 26, 27]). Others use UML collaboration diagrams (e.g.
[23, 31]) which are too weak to express all relevant properties. We propose to use a
variant of UML state machines to express properties in terms of observers.

Concerning language coverage, all previous approaches are restricted to flat class
structures (no inheritance) and to behaviors, specified exclusively by statecharts. In
this respect, many important features which make UML an object-oriented formal-
ism (inheritance, polymorphism and dynamic binding of operations) are missed.
Our approach is, to our knowledge, the first to try to fill this gap.

Our starting point for handling of UML state machines (not described in detail in
this paper) was the material cited above together with previous work on Statecharts
([18, 12, 28] to mention only a few). In the definition of our concurrency model we
have taken inspiration from our previous assessment of the UML concurrency model
[29], and from other positions on this topic (see for example [33]) and we respected
the operational semantics defined in the OMEGA project [11].

1.2 The back-end model, techniques and tools

The validation approach proposed in this work is based on the formal model of
communicating extended timed automata (CETA) and on the IF environment built
around this model [7, 9, 10]. We summarize the elements of this model in the
following.

Modeling with communicating extended automata

The CETA model and IF were developed at VERIMAG in order to provide an
instrument for modeling and validating distributed systems that can manipulate
complex data, may involve dynamic aspects and real time constraints. Additionally,
the model allows to describe the semantics of higher level formalisms (e.g. UML or
SDL) and has been used as a format for inter-connecting validation tools.



In this model, a system is composed of a set of communicating processes that
run in parallel (see figure 1). Processes are instances of process types. They have
their own identity (PID), they may own complex data variables (defined through
ADA-like data type definitions), and their behavior is defined by a state machine.
The state machine of a process type may use composite states and the effect of
transitions is described using common (structured) imperative statements.

Processes may inter-communicate via asynchronous signals, via shared variables
or via rendez-vous. Parallel processes are composed asynchronously (i.e. by inter-
leaving). The model also allows dynamic creation of processes, which is an essential
feature for modeling object systems that are by definition dynamic.

The CETA model allows to describe the link between system execution and
time progress in a precise manner, and thus offers support for modeling real time
constraints. The concepts used by CETA are those of timed automata with urgency
[3, 5]: there are special variables called clocks which measure time progress and
which can be used in transition guards. A special attribute of each transition, called
urgency, specifies how time may progress when the transition is enabled.

A framework for modeling priority

On top of the above model, we use a framework for specifying dynamic pri-
orities via partial orders between processes. The framework was formalized in [2].
Basically, a CETA model is associated with a set of priority directives of the form:
(state condition) ⇒ p1 ≺ p2. They are interpreted as follows: given a system state
and a directive, if the condition of the directive holds in that state, then process
with ID p1 has priority over p2 for the next move (meaning that if p1 has an enabled
transition, then p2 is not allowed to move).

Property specification with observers

Dynamic properties of CETA/IF models may be expressed using observer au-
tomata. These are special processes that may monitor1 the changes in the state of
a model (variable values, contents of queues, etc.) and the events occurring in it
(inputs/outputs, creation/destruction of processes, etc.).

For expressing properties, the states of an observer may be classified (syntacti-
cally) as ordinary, error or success. Observers may be used to express safety proper-
ties. A re-interpretation of success states as accepting states of a Büchi automaton
could also allow observers to express liveness properties.

CETA/IF observers are rooted in the observer concept introduced by Jard, Groz
et Monin in the VEDA tool [21]. This intuitive and powerful property specification
formalism has been adapted over the past 15 years to other languages (LOTOS,
SDL) and implemented by industrial case tools like Telelogic’s ObjectGEODE.

Analysis techniques and the IF-2 toolbox

The IF-2 toolbox [7, 9] is the validation environment built around the model
presented before. It is composed of three categories of tools:

1. behavioral tools for simulation, verification of properties, automatic test gen-
eration, model manipulation (minimization, comparison). The tools implement

1 The semantics is that observer transitions synchronize with the transitions of the CETA
model.



techniques such as partial order reductions and symbolic simulation of time, and
thus present a good level of scalability.

2. static analysis tools which provide source-level optimizations that help re-
ducing furthermore the state space of the models, and thus improve the chance
of obtaining results from the behavioral tools. Among the state of the art tech-
niques that are implemented we mention data flow analysis (e.g. dead variable
reduction), slicing and simple forms of abstraction.

3. front-ends and exporting tools which provide source-level coupling to higher-
level languages (UML, SDL) and to other verification tools (Spin, Agatha, etc.).

The toolbox has already been used in a series of industrial-size case studies [7, 9].

2 Ingredients of UML models

This section outlines our design choices with respect to the UML concepts covered
and the computation and to the execution model adopted.

2.1 UML concepts covered

In this work we consider an operational subset of UML, which includes the fol-
lowing UML concepts: active and passive classes - with their operations and at-
tributes, associations, generalizations - including polymorphism and dynamic bind-
ing of operations, basic data types, signals, and state machines. State machines are
not discussed in this paper as they are already tackled in many previous works like
[26, 27, 25, 24, 23, 31, 14, 34, 4].

Additionally to the elements mentioned above, a number of UML extensions for
describing timing constraints and assumptions are supported. They were introduced
in [15, 17] and are discussed in section 4.

2.2 The execution model

We describe in this section some of the design choices made with respect to the
computation and the concurrency model implemented by our method and tools.
The purpose is to illustrate some of the particularities of the model and not to give
a complete/formal semantics for UML. Actually, a precise semantics is given by our
proposed mapping to CETA/IF, outlined in the next section and implemented by
our tools.

The execution model presented in the following is the one established by the
OMEGA project [11]. Nevertheless, other execution models can be accommodated
to our framework by adapting the mapping to CETA/IF accordingly.
Activity groups and concurrency. There are two kinds of classes: active and
passive, both being described by attributes, relationships, operations and state ma-
chines.

At execution, each instance of an active class defines a concurrency unit called
activity group. Each instance of a passive class belongs to exactly one activity group.

Different activity groups execute concurrently, and objects inside the same an
activity group execute sequentially. This means that requests (signals or operations)



are sequentialized at the border of the activity group, and handled one by one when
the whole group is stable.

The notion of stability is defined as follows: an object is stable if it has nothing
to execute spontaneously and no pending operation call from inside its group. An
activity group is stable when all its objects are stable.

The above notion of stability defines a notion of run-to-completion step for
activity groups: a step is the sequence of actions executed by the objects of the
group from the moment an external request is taken by one of the group objects,
and until the group becomes stable. During a step, other requests coming from
outside the activity group are not handled and are enqueued.
Operations and state machines. We assume two kinds of operations (distin-
guished syntactically), allowed in any class: primitive operations and triggered op-
erations. Primitive operations have the body described by a method (with an as-
sociated action), while triggered operations are handled in the state machine of a
class, and their effect is described on transitions. Triggered operations differ from
signals in that they may have a return value.

With respect to concurrency, the two kinds of operations are handled differently.
At any moment an object having the control may call a primitive operation on an
object from the same activity group, and the call is stacked and handled immedi-
ately. On the contrary, triggered operations and signals go to the boundary of the
active group and are queued for handling in a later run-to-completion step. Primi-
tive operation calls that transgress the boundary of an active group are also queued
and handled like signals and triggered operations.

3 Mapping UML models to CETA/IF

In this section we give the main lines of the mapping of a UML model to a a CETA
model. The idea is to obtain a CETA model whose operational semantics is identical
to the desired semantics of the UML model. This additional layer helps us tackle
with the complexity of UML, and provides a semantic basis for re-using our existing
model checking tools (see section 6).

The mapping is done in a way that all runtime UML entities (objects, call stacks,
pending messages, etc.) are identifiable as a part of the CETA model’s state. In
simulation and verification, this allows tracing back to the UML specification.

3.1 Mapping the object domain to CETA

Mapping of attributes and associations. Every class X is mapped to a process
type PX that will have a local variable of corresponding type for each attribute
or association of X. As inheritance is flattened in the CETA model, all inherited
attributes and associations are replicated in the processes corresponding to each
heir class.
Activity group management. Each activity group is managed at runtime by a
special process of a type called GM . This process sequentializes the calls coming
from outside the activity group, and helps to ensure the run-to-completion policy. In
each PX there is a local variable leader, which points to the GM process managing
its activity group.



Mapping of operations and call polymorphism. For each operation m(p1 :
t1, p2 : t2, ...) in class X, the following components are defined in the CETA model:

– a signal callX::m(waiting : pid, caller : pid, callee : pid, p1 : t1, p2 : t2, ...) used
to indicate an operation call. If the call is made in the same activity group,
waiting indicates the process that waits for the completion of the call in order
to continue execution. caller designates the process that is waiting for a return
value, while callee designates the process corresponding to the object receiving
the call (a PX instance).

– a signal returnX::m(r1 : tr1, r2 : tr2, ...) used to indicate the return of an oper-
ation call (sent to the caller). Several return values may be sent with it.

– a signal completeX::m() used to indicate completion of computation in the oper-
ation (may differ from return, as an operation is allowed to return a result and
continue computation). This signal is sent to the waiting process (see callX::m).

– if the operation is primitive (see 2.2), a process type
PX::m(waiting : pid, caller : pid, callee : pid, p1 : t1, p2 : t2, ...)
which will describe the behavior of the operation using a CETA automaton. The
parameters have the same meaning as in the callX::m signal. The callee PID
is used to access local attributes of the called object, via the shared variable
mechanism of CETA.

– if the operation is triggered (see 2.2), its implementation will be modeled in the
state machine of PX (see the respective section below). Transitions triggered by
a X :: m call event in the UML state machine will be triggered by callX::m in
the CETA automaton.

The action of invoking an operation X :: m is modeled in CETA by the sending
of a signal callX::m. The signal is sent either directly to the concerned object (if the
caller is in the same group) or to the object’s active group manager (if the caller is
in a different group). The group manager will enqueue the call and will forward it
to the destination when the group becomes stable.

The handling of incoming calls is simply modeled by transition loops (in every
state2 of the process PX) which, upon reception of a callX::m will create a new
instance of the automaton PX::m and wait for it to finish execution (see sequence
diagram in figure 2).

The above mapping provides a simple solution for handling polymorphic calls in
an inheritance hierarchy: if A and B are a class and its heir, both implementing the
method m, then PA will respond to callA::m by creating a handler process PA::m,
while PB will respond to both callA::m and callB::m, in each case creating a handler
process PB::m (figure 3).

This solution is similar to the one used in most object oriented programming
language compilers, where a ”method lookup table” is used for dynamic binding
of calls to operations; here, the object’s state machine plays the role of the lookup
table.
Mapping of constructors. Constructors (take X :: m in the following) differ
from primitive operations in one respect: their binding is static. As such, they do
not need the definition of the callX::m signal and the call (creation) action is directly
the creation of the handler process PX::m. The handler process begins by creating

2 This is eased by the fact that CETA/IF support hierarchical automata.
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a PX object and its strong aggregates, after which it continues execution like a
normal operation.
Mapping of signals and state machines. UML signals are mapped to signals of
the CETA model. UML state machines are mapped almost directly in CETA state
machines. Certain transformations are necessary in order to support features that
are not directly in the CETA model, such as entry/exit actions, fork/join nodes,
history, etc.

Several prior research results tackle the problem of mapping UML statecharts
to (hierarchical) automata (e.g. [28]). The method we apply is similar to such ap-
proaches.
Actions. The action types supported in the original UML model are assignments,
signal output, control structure actions, object creation, method call and return.
Some are directly mapped to their CETA/IF counterparts, while the others are
mapped as mentioned above to special signal emissions (call, return) or process
creations.

3.2 Modeling run to completion and the activity group concept with
dynamic priorities

We discuss here how the concurrency model introduced in section 2.2 is realized in
CETA using the dynamic partial priority order mechanism presented in 1.2.

As mentioned, the calls or signals coming from outside an activity group are
queued at the border of the group and handled one by one in run-to-completion



steps. In the CETA model, the group management objects (GM) handle the simple
enqueuing and forwarding behavior.

In order to obtain the desired run-to-completion (RTC), the following prior-
ity protocol is applied (the rules concern processes representing instances of UML
classes, and not the processes representing operation handlers, etc.):

– All objects of a group have higher priorities than their group manager:
∀x, y. (x.leader = y)⇒ x ≺ y
This ensures that as long as an object inside the group may move, the group
manager will not initiate the next RTC step.

– Each GM object has an attribute running which points to the presently or most
recently running object in the group. This attribute behaves like a token that
is taken or released by the objects having something to execute. The following
priority rule:
∀x, y. (x = y.leader.running) ∧ (x 6= y)⇒ x ≺ y
ensures that as long as an object has something to execute (the continuation of
an action, or the initiation of a new spontaneous transition), no other object in
the group may run.

– Every object x with the behavior described by a statechart in UML will execute
x.leader.running := x at the beginning of each transition. In regard of the
previous rule, such a transition is executed only when the previously running
object of the group has reached a stable state, which means that the current
object may take the running token safely.

4 UML extensions for capturing timing

In order to build a faithful model of a real-time system in UML, one needs to
represent two types of timing information:
Time-triggered behavior (prescriptive modeling): this corresponds, for example,
to the common practice in real-time programming environments to link the execu-
tion of an action to the expiration of a delay (represented sometimes by a timer
object).
Knowledge about the timing of events (descriptive modeling): information
taken as a hypothesis under which the system works. Examples are the worst case
execution times of system actions, scheduler latency, etc.

In addition to that, a high-level UML model may also contain timing require-
ments to be imposed upon the system.

Different UML tools targeting real-time systems adopt different UML extensions
for expressing such timing information. A standard UML Real-Time Profile, defined
by the OMG [30], provides a common set of concepts for modeling timing, but their
definition remains mostly syntactic.

We base our work on the framework defined in [17] for modeling timed systems.
The framework reuses some of the concepts of the standard real-time profile [30] (e.g.
timers, certain data types), and additionally allows expressing duration constraints
between various events occurring in the system.



4.1 Validation of timed specifications

In this section we present the main concepts taken from [17], that we use in our
framework, and we give the principles of their mapping to CETA.

For modeling time-triggered behavior, we are using timer and clock objects com-
patible with those of [30]. Clocks exist natively in the CETA model, and timers
may be simulated using a clock and a manager process.

The modeling of the descriptive timing information makes intensive use of the
events occurring in a UML system execution. An event has an occurrence time,
a type and a set of related information depending on its type. The event types
that can be identified are listed in section 5.2, as they also constitute an essential
part of our property specification language (presented in section 5). All these UML
events, and their associated parameters, can be identified in the CETA model. For
example: the UML event of invoking an operation X :: m equates to the CETA
event of sending the callX::m signal, etc.

If several events of the same type and with the same parameters may occur
during a run, there are mechanisms for identifying the particular event occurrence
that is relevant in a certain context.

Between the events identified as above, we may define duration constraints.
The constraints may be either assumptions (hypotheses to be enforced upon the
system runs) or assertions (properties to be tested on system runs).

The class diagram example in figure 4 shows how these events and duration
constraints may be used in a UML model. This model describes a typical client-
server architecture in which worker objects on the server are supposed to expire
after a fixed delay of 10 seconds. A timing assumption attached to the client says
that: ”whenever a client connects to the server, it will make a request before its
worker object expires, that is before 10 seconds”.

In a CETA context, for testing or enforcing a timing constraint from the UML
model, we are presented with two alternatives. The first alternative corresponds
to the case when the constraint is local to a CETA process, in the sense that all
involved events are directly observed by the process. (For example, the outputs and
inputs of a process are directly observed by itself, but they are not visible to other
processes.) This is the case in figure 4. In this case, the constraint may be tested
or enforced by the CETA process itself, using an additional clock for measuring
the duration concerned by the constraint, as well as a CETA transition with an
appropriate guard on that clock.

In the second alternative the constraint is not local to a CETA process (we call
it global). In that case, the constraint will be tested or enforced by a CETA observer
running in parallel with the system.

The tools will ensure that runs not satisfying a constraint are either ignored –
if it is an assumption, or diagnosed as error – if it is an assertion.

5 Dynamic properties written as UML observers

We discuss in this section a technique for specifying and verifying dynamic prop-
erties of UML models, that we call UML observers. Similarly to CETA observer
automata (section 1.2), UML observers are special objects which run in parallel
with a UML system and monitor its state and the events that occur.
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Syntactically, observers are described by special UML classes stereotyped with
�observer�. They may own attributes and methods, and may be created dynam-
ically. An important part of the observer is its state machine, which is triggered
by events occurring in the UML model, as we will see in the following. The main
issue in defining UML observers is the choice of visible event types (which include
specific UML event types like operation invocation, etc.).

For UML users, the advantage of UML observers compared to other property
specification languages is that they use concepts that are known to UML designers
(event driven state machines) while remaining sufficiently formal and expressive.

5.1 An example of property

Let us take a simple example: assume that we have a point-to-point communication
protocol described in UML. Two interfaces TX and RX encapsulate the trans-
mission and reception operations, and, to simplify, at runtime there exists exactly
one object implementing each interface. The interface TX has one blocking opera-
tion put(p : Data) (where Data is the packet type) and the interface RX has one
blocking operation get() that returns a Data.



Assume that we want to express the following reliability property: whenever put
is called with some Data, within at most 5 time units the same Data is received at
the other end. This also supposes that the user at the other end has called get within
this time frame, reception being signified by the return from get. This property is
specified in the observer in figure 5.

5.2 Basic observer ingredients

An important ingredient of the observer in figure 5 are the event specifications
on some transitions. Here, the notion of event and the event types are the ones
introduced in [17]:

– Events related to operation calls: invoke, receive (reception of call), accept
(start of actual processing of call – may be different from receive), invok-
ereturn (sending of a return value), receivereturn (reception of the return
value), acceptreturn (actual consumption of the return value).

– Events related to signal exchange: send, receive, consume.
– Events related to actions or transitions: start, end (of execution).
– Events related to states: entry, exit.
– Events related to timers (this notion is specific to the model considered in

[15, 17] and in this work): set, reset, occur, consume.

The trigger of an observer transition may be a match clause, in which case
the transition will be triggered by certain types of events occurring in the UML
model. The clause specifies the type of event (e.g. receive in figure 5), some related
information (e.g. the operation name TX :: put) and observer variables that may
receive related information (e.g. m which receives the value of the Data parameter
of put in the concerned call).

Besides events, an observer may access any part of the state of the UML model:
object attributes and state, signal queues.

As in CETA/IF observers, properties are expressed by classifying observer states
as error, success or ordinary.
Writing timing properties. Certain timing properties may be expressed di-
rectly in a UML model using the extensions presented in section 4. However, more
complicated properties which involve several events and more arbitrary ordering be-
tween them may be written using observers. In order to express quantitative timing
properties, observers may use the concepts available in our extension of UML, such
as clocks.

6 The simulation and verification toolset

The principles presented in the previous sections are being implemented in the
UML-IF validation toolbox3, the architecture of which is shown in figure 6. With
this tool, a designer may simulate and verify UML models and observers developed
in third-party editors4 and stored in XMI5 format. The functionality offered by the
3 See http://www-verimag.imag.fr/õber/IFx.
4 Rational Rose, I-Logix Rhapsody and Argo UML have been tested for the moment.
5 XMI 1.0 or 1.1 for UML 1.4
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Fig. 6. Architecture of the UML-IF validation toolbox.

tool, is that of an advanced debugger (with step-back, scenario generation, etc.)
doubled by a model checker for properties expressed as observers.

In a first phase, the tool generates an IF specification and a set of IF observers
corresponding to the model. In a second phase, it drives the IF simulation and
verification tools so that the validation results fed back to the user may be mar-
shaled back to level of the original model. Ultimately, the IF back-end tools shall
be invisible to the UML designer.

As mentioned in the introduction, by using the IF tools as underlying engine,
the UML tools have access to several model reduction and analysis techniques al-
ready implemented. Such techniques aim at improving the scalability of the tools,
essential in a UML context. Among them, it is worth mentioning static analysis
and optimizations for state-space reduction, partial order reductions, some forms of
symbolic exploration, model minimization and comparison [7, 9].

A first version of this toolset exists and is currently being used on several case
studies in the context of the OMEGA project.

7 Conclusions and plans for future work

We have presented a method and a tool for validating UML models by simulation
and model checking, based on a mapping to an automata-based model (communi-
cating extended timed automata).



Although this problem has been previously studied [13, 26, 25, 24, 23, 31], our
approach introduces a new dimension by considering the important object-oriented
features present in UML: inheritance, polymorphism and dynamic binding of opera-
tions, and their interplay with statecharts. We give a solution for modeling these con-
cepts with automata: operations are modeled by dynamically created automata, and
thus call stacks are implicitly represented by chains of communicating automata.
Dynamic binding is achieved through the use of signals for operation invocation.
We also give a solution for modeling run-to-completion and a chosen concurrency
semantics using dynamic priorities.

Our experiments on small case studies show that the simulation and model
checking overhead introduced by modeling these object-oriented aspects remains
low, thus not hampering the scalability of the approach.

For writing and verifying dynamic properties, we propose a formalism that re-
mains within the framework of UML: observer objects. We believe this is an impor-
tant issue for the adoption of formal techniques by the UML community. Observers
are a natural way of writing a large class of properties (linear properties with quan-
titative time).

The plans for future work include the following main directions:

– assessment of the applicability of our technique to larger models: the tool is
beginning to be applied to a set of four case studies provided by industrial
partners in the OMEGA project.

– extension of the language scope covered by the tool: we plan to integrate the
component and architecture specification framework defined in OMEGA.

– improvement of the ergonomics and integration of the toolset (e.g. the presen-
tation of validation results in terms of the UML model).
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