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Abstract. The use of model checkers to solve discrete optimisation
problems is appealing. A model checker can first be used to verify that
the model of the problem is correct. Subsequently, the same model can
be used to find an optimal solution for the problem. This paper describes
how the new Promela primitives of Spin 4.0 can be applied to search
effectively for the optimal solution. We show how Branch-and-Bound
techniques can be added to the LTL property that is used to find the
solution. The LTL property is dynamically changed during the verifica-
tion. We also show how the syntactical reordering of statements and/or
processes in the Promela model can improve the search even further.
The techniques are illustrated using two running examples: the Travelling
Salesman Problem and a job-shop scheduling problem.

1 Introduction

Spin [10,11,12] is a model checker for the verification of distributed systems soft-
ware. Spin is freely distributed, and often described as one of the most widely
used verification systems. During the last decade, Spin has been successfully
applied to trace logical design errors in distributed systems, such as operating
systems, data communications protocols, switching systems, concurrent algo-
rithms, railway signaling protocols, etc. [13]. This paper discusses how Spin can
be applied effectively to solve discrete optimisation problems.

Discrete optimisation problems are problems in which the decision variables
assume discrete values from a specified set; when this set is set of integers, we
have an integer programming problem. The combinatorial optimisation prob-
lems, on the other hand, are problems of choosing the best combination out of
all possible combinations. Most combinatorial problems can be formulated as
integer programs.

In recent years, model checkers have been used to solve a number of non-
trivial optimisation problems (esp. scheduling problems), reformulated in terms
of reachability, i.e. as the (im)possibility to reach a state that improves on a
given optimality criterion [2,5,7,8,15,20]. Techniques from the field of operations
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research [22] – e.g. Branch-and-Bound [3] techniques – are being applied to prune
parts of the search tree that are guaranteed not to contain optimal solutions.
Model checking algorithms have been extended with optimality criteria which
provided a basis for the guided exploration of state spaces [2,15].

Though Spin has been used to solve optimisation problems (i.e. scheduling
problems [5,20]), the procedures used were not very efficient and the state spaces
were not pruned in any way.

This paper shows how the new version of Spin can be used to effectively solve
discrete optimisation problems, especially integer program problems. We show
how Branch-and-Bound techniques can be added to both the Promela model
and – even more effectively – to the property φ that is being verified with Spin.
To improve efficiency we let the property φ dynamically change during the veri-
fication. We also show how the Promela model can be reordered syntactically
to guide the exploration of the state space.

The paper tries to retain the tutorial style of presentation of [18,19] to make
the techniques easy to adopt by intermediate Spin users. The techniques are
explained by means of running examples of two classes of optimisation problems.
The effectiveness of the techniques are illustrated by some experiments.

The paper is structured is as follows. In Section 2 we introduce the Travelling
Salesman Problem and show how Spin can be used to find the optimal solution
for this problem. Section 3 briefly describes the new primitives of Spin 4.0. In
section 4 we show how the new primitives can be used to solve a TSP more
effectively. In section 5 we apply the same techniques to a job-shop scheduling
problems and show how Branch-and-Bound techniques can elegantly be isolated
in the property which is being verified. The paper is concluded in Section 6.

Experiments All verification experiments for this paper were run on a Dell Inspiron
4100 Laptop computer driven by a Pentium III Mobile/1Ghz with 384Mb of main
memory. For all pan verification runs we limited the memory to 256Mb though. The
experiments were carried out under Windows 2000 Professional and Cygwin 1.3.6; the
pan verifiers were compiled using gcc version 2.95.3-5. For our experiments we used
Spin version 4.0 (experimental, version: 8 Dec 2002). To compile the pan verifiers, we
used the following options for gcc:

GCC_SAFETY="-w -D_POSIX_SOURCE -DMEMLIM=256 -DSAFETY -DNOCLAIM -DXUSAFE -DNOFAIR"
GCC_CLAIM="-w -D_POSIX_SOURCE -DMEMLIM=256 -DXUSAFE -DNOFAIR"

We executed the pan verifiers with the following directives:

PAN_SAFETY="-m1000 -w20 -c1"
PAN_CLAIM="-m1000 -w20 -a -c1"

The SAFETY-options relate to verifying safety properties and the CLAIM-options relate

to verifying liveness properties (e.g. involving a LTL property).

2 TSP with plain Spin

The Traveling Salesman Problem (TSP) [16,17] is a well known optimisation
problem from the area of operations research [22]. In a TSP, n points (cities)
are given, and every pair of cities i and j is separated by a distance (or cost)
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Fig. 1. Graph and matrix representation of the 4× 4 example TSP.

cij . The problem is to connect the cities with the shortest closed tour, passing
through each city exactly once. The TSP is NP-complete. A specific TSP can
be specified by a distance (or cost) matrix. An entry cij in row i and column
j specifies the cost of travelling from city i to city j. The entries could be the
Euclidean distances between cities in a plane, or simply costs – making the
problem non-Euclidean. Extensive research has been devoted to heuristics for
the Euclidean TSP (see e.g. [17]). Construction heuristics for the non-Euclidean
TSP are much less investigated. This paper considers non-Euclidean TSPs only.

Modelling a TSP in Promela is straightforward. To illustrate the idea we
develop a Promela model for the sample TSP of Fig. 1. Fig. 1 shows both a
graph- and matrix-representation of a 4 × 4 TSP. The salesman itself is then
modelled by a single process TSP. For each place i that the man has to visit,
there is a label Pi in the process TSP. The salesman starts at label P0. From each
label Pi the salesman can (non-deterministically) go to any label Pj that has not
been visited yet. A bit-array visited is used to keep track of the places that
have already been visited.1 If, after reaching place Pi, it turns out that all places
have been visited, the salesman has to go back to place P0. To keep track of the
travelling costs, a variable cost is used. This variable is initialised on 0. When
we move from place Pi to Pj, this variable is updated with the cost cij from the
cost-matrix of Fig. 1. Fig. 2 shows the Promela model of the TSP of Fig. 1.

Now that we have a Promela model of the TSP, we want to use Spin to
find the optimal route of the TSP. Fig. 3 shows a general procedure for finding
an optimal solution for an optimisation problem using a model checker. The
algorithm has been used in [5,20]. The algorithm iteratively verifies whether ‘the
cost will eventually be greater than min’.2 Each time this property is violated,
Spin has found a path leading to a final state for which the cost is less than min.
For each error Spin generates an error trail which corresponds with the better
route. As the number of possible routes is finite, at a certain point Spin will not
find a route for which the cost is less than the min found so far. Consequently,

1 In this example we use Promela’s built-in support for bit-arrays. In our experi-
ments, however, we used the bit-vector library as discussed in [18], as these bit-
vectors do not only occupy less space in the state vector, the manipulation of the
vectors is also slightly faster.

2 Note that the LTL property itself is translated to a never-claim in the Promela

model.
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bit visited[3];
int cost;

active proctype TSP()
{
P0: atomic {

if
:: !visited[1] -> cost = cost + 7 ; goto P1
:: !visited[2] -> cost = cost + 9 ; goto P2
:: !visited[3] -> cost = cost + 2 ; goto P3
fi ;

}

P1: atomic {
visited[1] = 1;
if
:: !visited[2] -> cost = cost + 3 ; goto P2
:: !visited[3] -> cost = cost + 7 ; goto P3
:: else -> cost = cost + 4 ; goto end
fi ;

}

P2: atomic {
visited[2] = 1;
if
:: !visited[1] -> cost = cost + 7 ; goto P1
:: !visited[3] -> cost = cost + 8 ; goto P3
:: else -> cost = cost + 6 ; goto end
fi ;

}

P3: atomic {
visited[3] = 1;
if
:: !visited[1] -> cost = cost + 3 ; goto P1
:: !visited[2] -> cost = cost + 8 ; goto P2
:: else -> cost = cost + 2 ; goto end
fi ;

}
end:
}

Fig. 2. Promela model of a sample TSP with dimension 4.

the error trace which was generated last (corresponding with this optimal min)
is the optimal route.

This approach works, but is (highly) inefficient: the complete state space
already contains the most optimal solution. After a single run over the state space
one should be able to report on the optimal solution. The problem, however,
is that we cannot compare information (e.g. the cost) obtained via different
execution paths in standard Spin. This is inherent to the application of model
checkers as a black box for solving optimisation problems.

3 Spin version 4.0

Spin version 4.0 [10] – available from [11] – supports the inclusion of embedded
C code into Promela models through five new primitives:

� c decl: to introduce C types that can be used in the Promela model;
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input: Promela model M with cost added to the states.
output: the optimal solution min for the optimisation problem of M .

1 min ← (worst case) maximum cost
2 do

3 use Spin to check M � 3(cost > min)
4 if (error found)
5 then min ← cost

6 while (error found)

Fig. 3. Algorithm to find the optimal solution for an optimisation problem using Spin.

� c state: to add new C variables to the Promela model. Such new variables
can have three possible scopes:

– global to the Promela model;
– local to one of the processes in the model; or
– hidden, which means that the variable will not end up in the state

vector, but can be accessed in c expr or c code fragments.

� c expr: to evaluate a C expression whose return value can be used in the
Promela model (e.g. as a guard);

� c code: to add arbitrary C code fragments as an atomic statement to the
Promela model. For example, the c code primitive enables to include
useful printf-statements in the verifier for debugging purposes.

� c track: to include (external) memory into the state vector.

The purpose of the new primitives is to provide support for automatic model
extraction from C code. And although “it is not the intent of these extensions
to be used in manually constructed models” [10], the extensions are helpful for
storing and accessing global information of the verification process.

Within c expr of c code fragments one can access the global and local vari-
ables of the currrent state through the global C variable now of type State. The
global variables of the Promela model are fields in a State. For example, if
the Promela model has a global variable cost, the value of this variable in the
current state can be accessed using now.cost.

As of version 4.0, the pan-verifier generated by Spin also contains a guided
simulation mode. It is no longer needed to replay error trails with Spin.

For more details on the new features of Spin 4.0 the reader is deferred to
[10]. In the rest of this paper we will only use the primitives c state, c expr

and c code.

4 TSP with Branch-and-Bound

In this section, we will discuss how the new C primitives of Spin 4.0 can be used
to compute the optimal solution of a TSP more efficiently. We show how Spin
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can be used to obtain the optimal solution in a single verification run. Branch-
and-Bound techniques can be used to prune the search tree. We also show how
heuristics can be used to further improve the search.3

Spin 4.0 allows us to add hidden c state variables to the pan verifier within
the Promela model. Consequently, while exploring the state space, each time
Spin finds a better solution it can save this solution in such a hidden variable.
To get the best route for our TSP problem with Spin 4.0, the TSP model has
to be altered in the following ways:

1. Add a hidden, global variable best cost to the Promela model and con-
sequently to the pan verifier.
c_state "int best_cost" "Hidden"

Due to the scope "Hidden", the variable best cost will not be stored in the
state vector and will be global to all execution runs.

2. Initialise the variable best cost at the start of the verification – using a
c code fragment – on MAX COST, where MAX COST is a worst-case estimate
of the cost of a schedule: for all schedules the total cost will be lower than
MAX COST.

#define MAX_COST 1000

init {

c_code { best_cost = MAX_COST; };

...

}

3. Whenever a new solution is found (i.e. when the label end is reached), the
cost for that new route is compared with the best cost sofar. If cost
is smaller, we have found a better solution, so the variable best cost is
updated and the trace is saved:

...

end:

c_code {

if (now.cost < best_cost) {

best_cost = now.cost;

printf("\n> best cost sofar: %d ", best_cost);

putrail();

Nr_Trails--;

}

}

The function putrail saves the trace to the current state (i.e. it writes the
states in the current DFS stack to a trail-file). The statement Nr Trails--

makes sure that a subsequent call of putrail will overwrite a previous (less
optimal) trail.

3 In this paper we only apply heuristics on the Promela level. Edelkamp et. al. [6] use
a more powerful approach in HSF-Spin, where heuristics are applied in the internals
of Spin.
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Branch-and-Bound in the model. Branch-and-Bound [3,22] is an approach devel-
oped for solving discrete and combinatorial optimisation problems. The essence
of the Branch-and-Bound approach is the following:

– Enumerate all possible solutions and represent these solutions in an enumer-

ation tree. The leaves are end-points of possible solutions and a path from
the start node to a leaf represents a solution.

– While building the tree (i.e. the state space), we can stop considering de-
scendents of an interior node, if it is certain that all paths via this node will
(i) either lead to an invalid solution or (ii) will have higher costs than the
best path found so far.

The Branch-and-Bound approach is not a heuristic or approximating procedure,
but it is an exact, optimising procedure that finds an optimal solution.

In our Promela model of the TSP problem, the Branch-and-Bound ap-
proach can be applied to ‘prune’ the state space. If in a place Pi the current
cost is already higher than the best cost so far (i.e best cost), it is not useful
to continue searching. So at the beginning of every place Pi of our model we add
the following c expr:

IF c_expr { now.cost > best_cost } -> goto end FI ;

Branch-and-Bound in the property. Recall the original idea of the algorithm
of Fig. 3 which iteratively checks 3(cost > min) to find an optimal solution.
Although inefficient, due to Spins on-the-fly model checking algorithm, for each
subsequent iteration, less of the state space will be checked. For each execution
path, Spin will stop searching as soon as it finds a state for which cost > min

holds. Furthermore, Spin will exit with an error as soon as it finds an execution
path for which the final cost is lower than min. So, in a way, Spin’s on-the-fly
verification algorithm already performs some Branch-and-Bound functionality
by default.

Using the possibilities of Spin 4.0, we can improve the verification of the 3-
property by replacing min with the hidden global variable best cost. We define
the following macro using a c expr statement:

#define higher_cost (c_expr { now.cost >= best_cost })

and we check 3higher cost. In doing so – as the variable best cost is changed
during the verification – the property that is being checked is dynamically
changed during the verification!

Nearest Neighbour Heuristic. When using Branch-and-Bound methods to solve
TSPs with many cities, large amounts of computer time may be required. For
this reason, heuristics, which quickly lead to a good (but not necessarily optimal)
solution to a TSP, are often used. One of such heuristics is the “Nearest Neigh-
bour Heuristic” (NN-heuristic) [22]. To apply the NN-heuristic, the salesman
begins at any city and then visits the nearest city. Then the salesman goes to
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1 procedure dfs(s: state)
2 if error(s) then report error fi

3 add s to Statespace
4 foreach successor t of s do

5 if t not in Statespace then dfs(t) fi

6 od

7 end dfs

Fig. 4. Basic depth-first search algorithm [14].

the unvisited city closest to the city it has most recently visited. The salesman
continues in this fashion until a tour is obtained.

In order to apply the NN-heuristic to Spin we must control the order in
which neighbour places are selected. In order words, we must control the order of
successor states in the state space exploration algorithm of Spin. The algorithm
of Fig. 4 from [14] shows a basic depth-first search algorithm which generates
and examines every global state that is reachable from a given initial state.
Although Spin uses a slightly different (nested) depth-first search algorithm, for
the discussion here, Fig 4 suffices.

There is only one place in the algorithm where we can influence Spin’s depth-
first search: line 4, where the algorithm iterates over the successor states of state
s. Spin always uses the same well-defined routine to order the list of successors.
This list is ordered as follows:

– Processes. Spin arranges the processes in reverse order of creation (i.e. stack
order). That is, the process with the highest process id (pid) will be selected
first.

– Statements. Within each process, Spin considers all possible executable state-
ments. For a statement without guards, there is at most one successor. For
an if or a do statement, the list of possible successors is the (possible empty)
list of executable guards in the same order as they appear in the Promela

model.

As the Promela processes can be created in any order and we are also free to
order the guards within if and do clauses, we now have limited control over
Spin’s search algorithm from within the Promela model.

Fortunately, the control over the order of the guards within if-clauses is
enough to apply the NN-heuristic to Spin. To make sure that in every place
Pi, Spin will first consider the place Pj for which the cost cij is the lowest, the
guards of all if-clauses are sorted on the cost cij , such that the guard with the
lowest cost cij is at the top and the highest cost is at the bottom.

Experimental results. To compare the different approaches w.r.t. the TSP, we
have carried out some experiments with some randomly generated TSPs. The
original approach which lets Spin iteratively check M � 3(cost > min) was
left out of the experiments for obvious reasons. Table 1 lists the results of the
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dim = 11 dim = 12 dim = 13 dim = 14 dim = 15

no B&B 572732 1878490 5459480 o.o.m. o.o.m.

unsorted, B&B in model 278756 212987 514335 2478450 2820890

unsorted, B&B in property 111922 72024 173311 1050580 1010080

sorted, B&B in model 132520 54927 140078 1748130 1388110

sorted, B&B in property 49803 16664 43242 737109 480574

Table 1. Verification results (number of states) of verifying Promela

models of five randomly generated TSP cost matrices using different
types of optimisation schemes.

experiments for randomly generated TSPs of dimension 11–15. We used a script
to generate the cost-matrix for these TSPs where each cij was randomly chosen
from the interval 1-100.4 We used another script to generate the Promela

models for the particular TSP as described in this section. The entry ‘o.o.m’
stands for ‘out of memory’.

For the Promela model without Branch-and-Bound functionality, not sur-
prisingly, there is no difference between the cases where the guards of the if-
clauses are either unsorted or sorted. Therefore we have only included one of
them. From the experiments we can learn that the Branch-and-Bound in the
property is more advantageous than the Branch-and-Bound in the model. This
does not come as a suprise as due to the addition of Branch-and-Bound function-
ality in the Promela model, the number of states of the TSP process increases.
It is also interesting to see that the NN-heuristic really pays of. As the cost ma-
trices are randomly generated, we cannot compare the results for the different
dimensions.

5 Personalisation Machine

In this section, we discuss the application of the Branch-and-Bound approach
to a job-shop scheduling problem. We will extend the ‘Branch-and-Bound in
the property’ technique as discussed in Section 4 by adding more bounding
conditions to the property.

Problem description. The problem itself is a simplified version of a case study
proposed by Cybernetix (France) within the Advanced Methods for Timed Sys-
tems (AMETIST, IST-2001-35304) project [1]. Cybernetix is manufacturing ma-
chines for smart card personalisation. These machines take piles of blank smart
cards as raw material, program them with personalised data, print them and
test them.

Fig. 5 shows a schematic overview of the personalisation machine that we
discuss in this paper. Cards are transported by a Conveyer belt. There are
NPERS Personalisation Stations where cards can be personalised. The conveyer

4 If the interval from which the different costs cij is (much) smaller, e.g. 1–10, the
number of states will drop significantly due to Spin’s state matching.
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Fig. 5. Schematic overview of the personalisation machine.

is NPERS+2 positions long. The Unloader puts empty cards on the belt. The
Loader removes personalised cards from the belt. The order in which the cards
are loaded from the belt should be same as the order in which they were unloaded
onto the belt.

The conveyer can only move a step to the right which takes tRIGHT time units.
If cards are unloaded onto the belt or loaded from the belt, the conveyer cannot
move. Unloading and loading can be done in parallel. Unloading and loading
takes tUNLOAD resp. tLOAD time units. If after a conveyer move, an empty card
is under a personalisation station, the card might be taken of the belt by the
personalistion station and the personalisation of the card will start immediately.
The personalisation of a card takes tPERSONALISE time units. In the original
case study description, tRIGHT is equal to 1, tUNLOAD and LOAD are 2, whereas
tPERSONALISE lies between 10 and 50.

Goal. Given NPERS personalisation stations, the goal is to find an optimal
schedule to personalise NCARDS cards.

Promela model. Modelling the personalisation machine in Promela is straight-
forward. The conveyer belt is modelled by an array of NCELLS=NPERS+2 cells. A
cell is represented by a short. If a cell has the value 0 it is empty. If a cell
contains a value n>0 the cell contains an unpersonalised card with number n. If
n<0, the card has been personalised by one of the stations. There is one global
variable time which is updated by the processes that ‘consume time’. So the
Promela model contains the following global variables:

short belt[NCELLS];
short time;

Apart from the global variables of the model, we also define a hidden c state

variable best time which holds the time of the best schedule found so far.
The behaviour of the model is specified by several parallel processes. The process
Conveyer just moves the conveyer belt one step to the right. After updating the
belt, the process increases the variable time with tRIGHT steps. The Conveyer

process is modelled as follows.

proctype Conveyer() {
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byte i = 0;
do
:: d_step {(belt[NCELLS-1] == EMPTY) && CARD_ON_BELT ->

i=NCELLS-1;
do
:: (i > 0) -> belt[i] = belt[i-1]; i=i-1
:: else -> break
od;
belt[0] = EMPTY;
time = time + tRIGHT;

}
od

}

The macro CARD ON BELT returns 1 if there is a card on the belt.
The other two logical processes that ‘consume time’ are the Unloading and

Loading process. Because unloading and loading might happen concurrently, the
behaviour of both processes is modelled by a single process UnloaderLoader.
The unloading part just puts cards on the belt. The loading part will remove
cards from the belt and will check that the order of the cards is still correct. If
not, it sets the time to -1.

Below we only include fragments of the loading part of the UnloaderLoader

process. If the last card has been taken from of the belt, we check whether the
schedule found is faster than the best schedule so far. If this is the case, we
update the hidden c state-variable best time.

:: atomic { (belt[LAST] == expectedCard) ->
belt[LAST] = EMPTY;
expectedCard = expectedCard-1;
time = time + tLOAD;

if
:: expectedCard < -(NCARDS+1) -> assert(false)
:: expectedCard == -(NCARDS+1) ->

atomic {
c_code { if (now.time < best_time) {

best_time = now.time;
Nr_Trails=0;
putrail();

}
};

break;
}

:: else
fi

}

:: atomic { (belt[LAST] !=0 && belt[LAST] != expectedCard) ->
time = -1;
break;

}

Each personalisation station is modelled by a process PersStation(i). When
an unpersonalised card n is in belt[i], a personalisation station might start
personalising this card n. Unlike the other processes, the process PersStation

waits for time to pass. After it has taken an card from the belt it sets its
finish time[i] to the time that it will have finished the personalisation of
n (i.e. time + tPERSONALISE). Then the process starts waiting till the time has
reached finish time[i].
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Variable time advance. Because either the conveyer or unloader might have to
wait for a personalisation station to finish, we also need a process which consumes
‘idle’ time. In our initial, naive model we used a process Tick which just increases
the time by 1 time unit. The total number of ticks was bounded by a constant.
The obvious disadvantage of this method is that the process Tick can always do
a time tick; even when there are no personalisation stations currently ‘waiting’
for the time to reach their finishing time.

Therefore, in our current model we follow Brinksma and Mader [5], who
use the well-known variable time advance procedure [21]. With a variable time
advance procedure, simulated time goes forward to the next moment in time at
which some event triggers a state transition, and all intervening time is skipped.
With respect to the personalisation machine this means that we let time jump
to the finish time[i] > 0 which is the earliest.

Heuristics. In the discussion on the algorithm of Fig. 4 we noted that we can
guide Spin’s depth-first search by changing the order in which Spin considers
successor states of a state s. Spin arranges the processes in reverse order of cre-
ation. That is, the process that is created last, will be selected first in considering
the next successor state.

For optimal schedules for the ‘personalisation machine’ it is clear that the
number of idle time steps by the TimeAdvance process should be minimized.
So a step of the TimeAdvance process should be the last step to be considered
by Spin. Furthermore, as personalisation takes the longest time, starting the
personalisation card should be considered first by Spin.

Branch-and-Bound. Following the conclusions on the TSP, we want to apply the
Branch-and-Bound approach using a dynamic bound in the property. We will
check 3too late or wrong schedule, where the macro is defined as

#define too_late_or_wrong_schedule \

(c_expr { (now.time >= best_time) || \

(now.time < 0) || \

(will_not_be_faster()) || \

(wrong_schedule()) \

})

The macro expands to a c expr expression which apart from the now familiar
bound on the time and the test on negative time due to an incorrect schedule,
containts two additional function calls: will not be faster and wrong schedule.
These two functions try to decide at an early stage whether the current schedule
leads to an inferior or incorrect schedule. Both C functions only use the current
state (i.e. now) and the best time found so far.

– The function will not be faster checks whether the minimum time to fin-
ish the cards that are still in the machine already exceeds the best time

so far. The function only looks at the last card (i.e. the card with sequence
number NCARDS) in the machine and computes the minimal time left for this
card to reach the Loader.
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– To signal incorrect schedules, the UnloaderLoader sets the time to -1 when-
ever a card is to be loaded from the belt which is out of order. It will be more
advantageous, however, to discover such incorrect schedules (much) earlier.
The function wrong schedule returns 1 if either one of the two conditions
hold:

� Two personalised cards on the belt are out-of-order :
∃ 1 ≤ i, j ≤ NPERS + 1 :
(i < j) ∧ (belt[i] < 0) ∧ (belt[j] < 0) ∧ (belt[i] < belt[j])

� An personalised card is under a personalisation station containing a

card with a lower original sequence number :
∃ 1 ≤ i ≤ NPERS : (belt[i] < 0) ∧ (−belt[i] > card in pers[i])

Both functions together are coded in less than 70 lines of C code.

Get all optimal schedules. Due to the structure of the problem, Spin will always
find just a single (optimal) schedule for a given time. The reason for this is that
for all schedules with the same end-time, in the last-but-one state, the last card
will be under the Loader. Due to state matching of Spin all these states will
be regarded to be the same. To obtain all optimal schedules, an extra ‘magic
number’ can be added to each state. The magic number ensures that each state
will be unique. It is obvious that making the states unique will have a negative
impact on the number of states.

Experimental results. To compare the various optimisations on the model of
the ‘personalisation machine’, we have carried out some experiments with sev-
eral combinations of the Branch-and-Bound optimisations discussed. For these
experiments we used the following values for the time-constants: tRIGHT=1,
tUNLOAD=tLOAD=2 and tPERSONALISE=10. We have verified six different versions
of the model. The models can be characterised as follows:

v1 Model with a naive ordering of the creation of processes:
UnloaderLoader, personalisation stations, Conveyer and finally
TimeAdvance. The Branch-and-Bound functionality is isolated in
the property, but we only bound on: “now.time >= best time ||

now.time < 0”
v2 Model with an improved ordering of the processes: TimeAdvance,

UnloaderLoader, Conveyer and finally the personalisation stations.
Version v2 uses the same Branch-and-Bound approach as v1.

v3 = v2, but adding “|| wrong schedule()” to the B&B property
v4 = v2, but adding “|| will not be faster()” to the B&B property
v5 = v2, but adding “|| wrong schedule() || will not be faster()”

to the B&B property (so v5 = v3 + v4)
v6 = v5, but adding a ‘magic number’ to each state (and thus obtaining

all optimal schedules)

Table 2 shows the results of verifying the different versions of the Promela

model for different values of NPERS and NCARDS. It is clear that the optimisations
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NPERS=3 NCARDS=4 NPERS=4 NCARDS=4 NPERS=4 NCARDS=5

states mem time states mem time states mem time

v1 213760 23.1 4.5 1182600 127.4 29.5 o.o.m o.o.m o.o.m

v2 161140 18.5 3.2 869594 94.8 20.6 o.o.m o.o.m o.o.m

v3 125501 12.1 2.4 677040 74.9 15.3 o.o.m o.o.m o.o.m

v4 9709 <5.0 0.2 46600 9.2 1.1 457395 52.0 9.7

v5 6463 <5.0 0.1 33000 7.8 0.8 304731 36.0 6.2

v6 59715 6.0 1.0 477057 56.0 8.4 o.o.m o.o.m o.o.m

Table 2. Verification results (number of states, memory consumption in
Mb and verification time in seconds) of finding the optimal schedule for
Promela models of the ‘personalisation machine’ using several different
optimisations.

discussed can be quite effective. The difference between the version with no
optimisations at all (v1) and all optimisations enabled (v5) is nearly two orders
of magnitude. Note that from Table 2 alone we cannot conclude much on the
relative effectiveness of the different optimisations. Only the results between
v1 and v2 and between v4 and v5 can be compared directly as apart from the
different optimisations nothing has changed in the models. Looking at the results
for v4 and v5, it is clear that discarding the schedules that will be too late (v5)
is more effective than discarding incorrect schedules beforehand (v4). Also note
that changing the creation order of the processes (v1 vs. v2) has a considerable
impact on the number of states. As predicted, adding a magic number of states
to obtain all optimal schedules (v6) is expensive.

6 Conclusions

The use of model checkers for optimisation problems is appealing. A model
checker can first be used to verify that the model of the problem is correct.
Subsequently, the same model can be used to find an optimal solution for the
problem. Iteratively checking 3(cost > best so far) will eventually deliver the
optimal solution, but the approach is highly inefficient. We have shown that with
the new C primitives of Spin 4.0, the optimal solution can be found in a single
verification run with some minor modifications to the Promela model.

The search for an optimal solution can be greatly improved using Branch-
and-Bound techniques in the Promela model and/or property. A clear advan-
tage is that the alterations can be done on the level of the Promela model.
One does not have to alter the source code of Spin or the verifier pan. We have
seen that specifying the Branch-and-Bound optimisations in the property has
several advantages. First of all, all optimising code can nicely be isolated within
the property: the Promela model does not have to be altered. But more im-
portantly, specifying the Branch-and-Bound behaviour in the property is more
effective (w.r.t. the number of states) than adding it to the Promela model.
Note that the LTL property that is used is dynamically changed during the
verification.
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The Branch-and-Bound approach is most effective if Spin can be guided
into finding a good solution as soon as possible. Therefore it is advantageous
to apply heuristics to the Promela model such that promising successor states
are selected first in Spin’s depth-first-search algorithm. On the Promela level,
the user can reorder the guards in if- and do statements and/or can change the
order of process creation (and thus the scheduling of the processes).

Earlier approaches (cite: [2,7,15]) have extended existing model checking al-
gorithms with optimality criteria to guide the exploration of states. Behrmann
et. al. [2], for example, annotate each state with the estimated minimum cost
to reach the goal state and explore the state space by always selecting the state
with the smallest minimum cost. Compared to such local approaches, this pa-
per applies a more global approach in the sense the pruning is isolated in the
property that is being checked.

The work might be extended in several ways:

� It would be interesting to see how the global approach with Spin compares
to the local approaches of [15,2].

� The exploration of the state space is guided by the syntactical ordering of
guards and processes within the Promela model. It will be more flexible
to use a more local and dynamic guiding criterium in the style of [2].

� The use of model checkers to solve optimisation problems is limited to the
number of states that is needed to find an (optimal) solution. For most
classes of discrete optimisation problems, however, there is need to store
the complete state space as the state space is just a tree without loops. It
does not come as surprise as in the area of operation research, time is a
more scarce resource than space. The exploration algorithm of Spin might
be changed in such a way that not all states are stored. One might turn off
Spin’s state matching functionality or apply a garbage collection algorithm
to remove states that are not longer needed.

� In this paper we have used Promela to prune the search space of opti-
misation problems. SymmSpin [4] is a symmetry reduction package on top
of standard Spin. The idea is to prune parts of the state space for which
there is no need to visit them due to the symmetric nature of the Promela

model. A drawback of extensions of Spin like SymmSpin is that they are
implemented by changing the original source of Spin or – as in this case –
by modifying the source code for pan as generated by Spin. Consequently,
with each new version of Spin, the extension might cease to work. Now that
extensions can be implemented on the Promela model this opens doors
to packages on top of Spin which are easier to maintain.
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