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Abstract. Model checking as an approach to the automatic verification
of finite state systems has focussed predominantly on system specifica-
tions expressed in temporal logic. In the distributed systems community,
logics of knowledge (epistemic logics) have been advocated for expressing
desirable properties of protocols and systems. A range of logics combin-
ing temporal and epistemic components have been developed for this
purpose. However, the model checking problem for temporal logics of
knowledge has received (comparatively) little attention. In this paper,
we address ourselves to this problem. Following a brief survey of the
relevant issues and literature, we introduce a temporal logic of knowl-
edge (Halpern and Vardi’s logic KL, ). We then develop an approach to
KL, model checking that combines ideas from the interpreted systems
semantics for knowledge with the logic of local propositions developed
by Engelhardt et al. With our approach, KL, model checking can be
reduced to linear temporal logic model checking. After introducing and
exploring the ideas underpinning our approach, we present a case study
(the bit transmission problem) in which SPIN was used to establish tem-
poral epistemic properties of a system implemented in PROMELA.

1 Introduction

Since the mid 1980s, modal logics of knowledge have been increasingly deployed
in the formal specification of distributed systems, where they are used to make
precise the concept of what a process knows [5, 17]. Temporal logics of knowledge
— temporal logics enriched by modal knowledge operators — have also been
widely used for reasoning about distributed systems [8, 23].

Model checking as an approach to the automatic verification of finite state
systems has focussed predominantly on system specifications expressed in tem-
poral logic — linear temporal logic in the case of SPIN [12, 13] and FORMSPEC [22],
branching temporal logic in the case of SMv [16] and its relatives. However, the
model checking problem for temporal logics of knowledge has received compar-
atively little attention. While Halpern and Vardi proposed the use of model



checking as an alternative to deduction for logics of knowledge as long ago as
1991, their proposal focussed on logics with no temporal component [9]. Ron van
der Meyden studied the complexity of the model checking problem for a particu-
lar class of (essentially infinite state) systems of knowledge and time, and showed
that the problem was complex (PSPACE-complete in the best case, undecidable
in the worst) for this class [21].

In this paper, we address ourselves to the problem of model checking as an
approach to showing that finite state systems satisfy specifications expressed in
logics that combine temporal and knowledge components.

The remainder of this paper is organised as follows. In section 1.1, we shortly
elaborate on modal logics of knowledge — readers familiar with the epistemic
logic literature may wish to skip this section. In Section 2, we introduce a tem-
poral logic of knowledge (Halpern and Vardi’s logic KL, [8]). We then develop
an approach to KL, model checking that combines ideas from the interpreted
systems semantics for knowledge [5] with the logic of local propositions devel-
oped by Engelhardt et al [4]. In our approach, KL, model checking can be
reduced to linear temporal logic model checking. After introducing and explor-
ing the ideas underpinning the approach, we present a case study — the bit
transmission problem — in which SPIN was used to establish temporal epistemic
properties of a PROMELA system: the alternating bit protocol. We conclude with
some comments on issues for future research.

1.1 Background

Model checking techniques originated — and are most widely understood — as
a technique for automatically verifying that finite state systems satisfy formal
specifications [2]. These formal specifications are most commonly expressed ei-
ther as formulae of the branching time temporal logic CTL (in the case of the
sMVv model checker and its relatives [16,2]) or as formulae of Linear Tempo-
ral Logic (in the case of SPIN [12,13] and FORMSPEC [22]). Comparatively little
attention has been given in the model checking community to epistemic logic:
the modal logic of knowledge. Epistemic modal logics are widely recognised as
having originated in the work of Jaakko Hintikka, a philosopher who in the
early 1960s showed how certain modal logics could be used to formally cap-
ture some intuitions about the nature of knowledge [11]. In the 1980s, it was
recognised that epistemic logics have an important role to play in the theory
of distributed systems. In particular, it was demonstrated that epistemic logics
can be used to formally express the desired behaviour of protocols. For example,
when specifying a communication protocol, it is quite natural to wish to repre-
sent requirements such as “if process i knows that process j has received packet
m, then ¢ should send packet m + 1”. Using epistemic logic, such requirements
can be expressed both formally and naturally.

One of the key reasons why modal logics of knowledge have achieved such
prominence was the discovery by Halpern and colleagues in the mid 1980s that S5
epistemic logics could be given a natural interpretation in terms of the states of
processes — commonly called agents — in a distributed system. The model that



has received the most widespread interest is known as the interpreted systems
model [5].

In addition to interest in the use of epistemic logics in the specification of
communicating systems, there has recently been interest in the use of knowledge
logics for directly programming systems [5,6]. A knowledge-based program has
the general form:

case of
if Kz(ﬂl do a1

if Kz‘Pn do (120}
end case

The intuitive interpretation of such a program is that of a collection of rules; the
left-hand side of each rule represents a condition, expressed in epistemic logic, of
what an agent knows. If the condition is satisfied, then the corresponding action
(program statement) is executed. Along with other researchers, (e.g., [4]), we take
the view that such programs are best understood as specifications for systems
— knowledge-based programs are not in a form that can be directly executed.
There have been some studies on the computational complexity of automatically
synthesising executable programs from knowledge-based programs [19,20].

Despite the level of interest in using logics of knowledge for specifying com-
municating systems, there has been comparatively little work on model checking
for such logics. In 1991 — somewhat prior to the current growth in interest in
model checking — Halpern and Vardi proposed the use of model checking as an
alternative to deduction for modal logics of knowledge [9]. They showed that the
model checking problem for multi-agent S5 logics of knowledge was tractable,
and speculated that the approach might have wider applications in this commu-
nity; but to the best of our knowledge (no pun intended), no further work on this
topic was reported. While the computational complexity of the satisfiability and
validity problems for temporal logics of knowledge has been studied exhaustively
by Halpern and Vardi [8], no such similar studies appear to have been carried
out with respect to model checking. The closest work with which we are familiar
is that of van der Meyden, who was concerned with the model checking problem
for a small class of temporal knowledge logics: those in which agents are assumed
to have perfect recall [21]. He established that the model checking problem for
this class varies from PSPACE-complete in the “best” case to undecidable in the
worst. However, van der Meyden did not investigate “practical” model check-
ing for knowledge and time. Rao and Georgeff investigated the model checking
problem for a range of logics combining temporal (CTL) and modal components,
although their study was rather abstract — they did not implement any of the
techniques they developed, and did not consider S5 logics of knowledge [18].
Finally, Benerecetti and Giunchiglia developed techniques for similar temporal
modal logics, but these logics had an unusual (non-Kripke) semantics [1].



2 A Temporal Logic of Knowledge

We are concerned with modelling systems composed of multiple agents, each of
which is an independently operating process. Let Ag = {1,...,n} denote the
set of agents. We assume each agent i € Ag can be in any of a set L; of local
states. An agent’s local state contains all the information required to completely
characterise the state of the agent: the value of each of its local variables, together
with the value of its program counter. In particular, the information available to
an agent is determined by its local state. The state of a system at any moment
can thus be characterised by a tuple (l,...,[,), where I; € L; is the local state
of agent i at this moment. We let G C Ly x --- x L, denote the reachable global
states of the system (i.e., the set of states that a system may possibly enter during
a legal computation sequence). (Notice that we have not explicitly introduced
environments, although it is quite common to do so in the literature [5]: for
simplicity, we assume that an environment can be modelled as an agent in the
system.)
A run is a function

r:IN - G

which associates with every natural number uw € IN a global state r(u). The
idea is that a run represents one possible computation of a system: in general, a
system may have a number of possible runs, and so we say a system is a set of
runs; we use R to denote a system. A run together with a time point is a point:
a point (r,u) defines a global state r(u). We denote the i’th component of the
tuple r(u) by r;(u). Thus r;(u) is the local state of agent 7 in run r at “time” wu.

Following conventional practice, we associate with every agent i € Ag an
equivalence relation ~; over the set of points [5, p.111]:

(r,u) ~; (r',v) iff ri(u) = rl(v).

If (r,u) ~; (r',v), then we say that (r,u) is indistinguishable from (7', v) from
the point of view of i, or, alternatively, that ¢ carries exactly the same informa-
tion in (r, ) as in (', v).

We use the relation ~; to give a semantics to the knowledge modalities in
KL, . To give a semantics to the “common knowledge” modality Cr, we introduce
two further relations, ~% and ~&. Given a set I' C Ag of agents, we define the
relation ~F as ~% =|J;.; ~; and we define the relation ~{ as the transitive
closure of ~£.

A model or interpreted system for KL, is a pair Z = (R, w), where R is a
system and

7R X IN — 22

is a valuation function, which gives the set of primitive propositions true at each
point in R [5, pp.110-111].



(T, (r, W)} Exzy brue
(Z,(r,u)) ExL, P iff p € w(r,u) (where p € @)
(Z,(r,u)) Exr, = (L, (r,u)) FExL, ¢
(Z,(r,u)) Exr, o VY i (Z,(r,u)) Exr, ¢ or (Z,(r,v)) ExL, ¥
(Z,(r,w)) Ekr, Kip iff for all (r',v) in Z, if (r,u) ~; (r',v) then (Z, (v',v)) Exz, ¢
(Z,(r,u)) Exz, Cry iff for all (+',v) in Z, if (r,u) ~% (+', v) then (Z, (', v)) Exr, @
(I’ (7" u)) ':KLn Op iff (Z,(r,u+1)) ':KLn P
(Z,(r,u)) ErL, pUY iff v € IN s.t. (v < v) and (Z,(r,v)) ExL, ¥
and Vw € {u,...,v — 1}, we have (Z, (r,w)) ExL, ¢

Fig. 1. Semantics of KL,

Syntactically, KL, is propositional temporal logic augmented by an indexed
set of modal operators K;, one for each agent i € Ag, and common knowledge
operators Cr, where I' C Ag. The formula K;yp is read as “agent i knows ¢”;
the formula Cr¢ means “it is common knowledge in I" that ¢”.

Formulae are constructed from a set & = {p, q,r,...} of primitive proposi-
tions. The language contains the standard propositional connectives = (not), V
(or), A (and), — (implies) and <> (if, and only if). For the temporal dimen-
sion we take the usual set of future-time connectives O (next),{> (sometime or
eventually), [1 (always), U (until) and W (unless or weak until).

The set wff (KL,,) of well-formed formulae of KL, is defined by the following
grammar:

(wff) ::= true /* logical constant for truth */
| any element of ¢ /* primitive propositions */
| —(wff) /* negation */
| (wff) Vv (wff) /* disjunction */
| Ouff) /* next */
| (wff)U uff) /% until */
| K {(wff) /* (i € Ag) agent i knows */
| Cr{wff) /* (I' C Ag) it is common knowledge in I" that */

The semantics of KL, are given via the satisfaction relation “Egy,,”, which
holds between pairs of the form (Z, (r,u)), (where Z is an interpreted system
and (r,u) is a point in 7), and formulae of KL,. We read (I, (r,u)) ExL, ¢
as “yp is satisfied (equivalently, is true) at point (r,u) in Z”. The rules defining
k1, are given in Figure 1.

Semantic rules are only given for the temporal connectives O and U : the
remaining temporal connectives are introduced as abbreviations, as follows.

O = truell ¢
e = =0
oWy =pUypV e

The remaining propositional connectives (A, —, <+) are also assumed to be de-
fined in terms of V and —.



Notice that KL, is an expressive language. In particular, using the language
it is possible to express the fact that a statement is true in all states of an
interpreted system that can play a part in the interpretation of a formula. To
see how this is done, we define a wniversal modality [1* operator, which is
defined as the maximal solution to the following fixed point formula:

D*QO ~ D((p/\ CAg D*go).

To illustrate the properties of [ 1*, we define a reachability relation. First, we
say point (r',v) is directly reachable from (r, ) (written (r, u) ~ (r',v)) iff:

—r=r"and v>wuor
— (r,u) ~; (r',v) for some agent i € Ag.

We then define the reachability relation ~»* as the transitive closure of ~». Now:

Proposition 1 ([3]). Let 7 be an interpreted system and (r,u) and (r',v)
be points in T such that (Z,(r,u)) Exr, [1*¢ and (r,u) ~* (r',v). Then
<Ia (rlv U)> |:KLW, p-

Linear Temporal Logic and Propositional Logic

Now consider the language and logic obtained from KL, by omitting knowledge
and common knowledge modalities: we get Linear Temporal Logic (LTL) (see,
e.g., [14,15]). Formula of LTL are interpreted with respect to points in interpreted
systems, as with KL, , but note that the interpretation of an LTL formula will
depend only on the run within which it is interpreted. The truth or falsity of an
LTL formula ¢ when interpreted on a point (r,«) in Z will depend only on the
run r, and will not be dependent on other runs in Z. This is not the case for
knowledge modalities, as these can express properties of other runs. We write
(Z, (r,u)) Err1, @ to indicate that LTL formula ¢ is satisfied at point (r,u) in
Z: thus “EprL” serves as the LTL satisfaction relation. We refer to the subset
of LTL obtained by not permitting temporal logic connectives as propositional
logic.

Knowledge, Common Knowledge, and Local Propositions

We now introduce the notion of a local proposition [4]. Local propositions play an
important role in our reduction of KL, model checking to LTL model checking.
If 7 is an agent, then an i-local proposition is a formula of propositional logic
whose interpretation is the same in each of the points in each equivalence class
induced by the ~; relation. Formally, a propositional logic formula ¢ is said to
be i-local iff:

for all points (7, u), (r',v) in Z,
if (r,u) ~; (r',v), then (Z, (r,v)) Eki, ¢ iff (Z,(r',v)) Exz, ¢



To further understand the idea of an i-local proposition, assume — without loss
of too much generality — that the local state of any agent ¢ is a tuple of local
variables (b, ..., b; ) each of which has the value 0 or 1 at any given time.
(Of course, this is ezactly what the state of any conventional computer process
actually is.) The indexed set &; = {b;,,..., b;.} C & of primitive propositions is
assumed to form part of the vocabulary of the K, language: & = J, 4 , Pi- Note
that the @;’s need not be mutually disjoint — it is possible that variables are
shared between agents, if the same variable appears in the state of more than one
agent (although this requires an addition semantic constraint, described below).

We assume the obvious interpretation of local variables: b;, € m(r, u) iff the
bit b;, has the value 1 in the state r;(u). If a variable b is shared between agents
i and j, then we require that the variable has the same value inside both agents
in any given system state: this requirement ensures that the valuation function
m can give a unique, well-defined value to shared variables. It is straightforward
to show the following:

Proposition 2. If ¢ is a formula of propositional logic containing only variables
over ®@;, then ¢ is i-local.

Proof. Immediate from the fact that (r,u) ~; (r',v) iff ri(u) = ri(v).

We can extend the notion of a local proposition to sets of agents. Given a set
I' C Ag of agents and a propositional formula ¢, we say that ¢ is I'-local iff
is i-local for all ¢+ € I'. We can prove an immediate analogue of Proposition 2:

Proposition 3. If ¢ is a formula of propositional logic containing only variables
that are shared by the agents in I, then ¢ is I'-local.

Proof. We need to show that if ¢ depends only on I['-shared variables, then
if (r,u) ~% (r',v) then (T,(r,u)) Exrn, ¢ iff (Z,(r',v)) ExL, ©. Assume
(r,u) ~& (r',v). Then there is a sequence of points (r1,u1), (r2, u2), ..., (Tk, ug)
such that (r,u) = (r1,u1), (r',v) = (ri,u), and for all 1 < I < k, we have
(11, ur) ~; (141, wig1) for some agent i € I'. Now if (17, up) ~; (7141, ur+1) then
by definition the local state of i in must the same in (r;, w) and (1131, w+1), and
in particular, any I'-shared variables must have the same values in (ry, w;) as
(T141, wig1). So any formula depending on these values will have the same inter-
pretation in (r;, w;) and (1141, wit1). Thus (Z,(r,w)) ExL, ¢ iff (Z,(r',v)) EkL,
®.

In addition, we can show:

Proposition 4. Let T be an interpreted system, let (r,u) and (1, v) be points in
Z, and let ¢ be a I"-local proposition. Then if (r,u) ~& (r',v) then (Z,(r,v)) EkL,
¢ iff (Z,(r',v)) EkL, ¢

Proof. Assume (r,u) ~& (r',v). Then as before, there exists a sequence of points
(ri,w), (ra, u2)y ..., (1, ug) such that (ryu) = (r,uw), (r',v) = (rg,u), and

for all 1 < 1 < k, we have (r;,w) ~i (ri41,u+1) for some agent i € I.
As ¢ is I'-local, it is i-local for all i € I'. Hence by the definition of i-local,
(Z, (r, w)) Exr, ¢ iff (Z,(ri1, wer)) Exe, - Hence (Z,(r,u)) Exi, ¢ iff
<Ia (T", U)> |:KLW, P-



3 KL, Model Checking through LTL Model Checking

The model checking problem for KL, is as follows. Given an interpreted system
T = (R, ), together with a formula ¢ of KL,, return the set of points at which
(p is satisfied in Z, i.e., the set

{(r,u) | r € R,u € IN, and (Z, (r,u)) Exr, ¢}

This problem is too abstract for most practical model checking problems (in-
variant properties will be true in every state of the system — there is clearly no
way a practical model checker would be able to enumerate this set!). For this
reason, we are generally concerned with a slightly simpler version of this prob-
lem. Hereafter, when we refer to the model checking problem for KL, , we mean
the problem of determining whether, given an interpreted system 7 = (R, )
and a formula ¢, the formula ¢ is true in the initial state of every run in R, i.e.,
whether or not

Vr € R we have (Z,(r,0)) ExL, ¢.

We say that ¢ is valid in Z if it satisfies this property. Given an interpreted
system Z and KL, formula ¢, we write mcky, (Z, ) to stand for the fact that
 is valid in the Z, i.e.,

mekr, ((R,m),¢) iff  Vr € R we have ((R,7),(r,0)) Exr, ¢-

The Main Idea

At present, we do not have a model checker for KL, (although there is no reason
in principle why one should not be implemented). What we do have available,
however, is a model checker for Linear Temporal Logic (LTL), for example in
the form of SPIN [12,13]. SPIN takes as input a system, (described using the
PROMELA language), and a formula of propositional LTL: it then checks whether
or not this formula is satisfied in the first state of every run of the system. If
it is not — if there is a run that fails to satisfy the formula — then it reports
this run as a counter example. The model checking problem that SPIN solves is
thus as follows. For any system 7 = (R, 7) and formula ¢ of LTL, it determines
whether or not:

Vr € R we have (Z, (r,0)) ELTL -

If ¢ is an LTL formula and Z is a system, then we write meprr(Z, @) to indicate
that ¢ is valid in Z:

mertL((R,7m), ) iff  Vr € R we have ((R,7), (r,0)) ErTL ¢-

We now turn to one of the main ideas underpinning this article: we show how
KL, model checking can be reduced to LTL model checking. Our approach takes



inspiration from work on the Logic of Local Propositions (LLP) [4]. LLP is a modal
logic with a single universal modality, O, and which allows quantification over
propositions. In particular, there are a collection of quantifiers V;, 3;, (where i is
an agent), which allow quantification over propositions that are local to an agent.
The intuition is that a proposition is local to an agent i if i is able to determine
its truth using only locally available information — information available in its
state. The key insight of [4] is that by using these quantifiers, one can define
knowledge modalities. For example:

Kip = Jiqlg AB(g = )] (1)
Thus an agent ¢ knows ¢ iff there is a proposition ¢ local to ¢ such that ¢
is true, and whenever ¢ is true, ¢ is also true. In [4], it is proved that this
definition of knowledge corresponds to the conventional one, given in terms of
Kripke structures and accessible worlds [5].

We now show how we can make use of these ideas when considering the model
checking problem for KL,. Suppose we want to determine whether or not the
property > K;p is true of some system Z. That is, we want to determine whether
or not

mekr, (Z, O Kip)

Now (1) suggests the following approach to this problem. In order to show this,
all we have to do is find some proposition # that is local to i (i.e., ¢ is a predicate
over i’s state), such that

meprL(Z, Qv A (¥ — p))

Notice that the formula to be model checked has two components. The first ({>1))
corresponds in structure to the original input formula (with knowledge modalities
replaced by propositions). The second component ([](¢» — p)) represents a
constraint (an invariant) that must hold.

Thus we have reduced a KL, model checking problem to an LTL model check-
ing problem — and since we have LTL model checking tools available — SPIN —

this suggests that we can — at least partially — automate the process of model
checking KL,,.

The Formal Details

We now present the formal details of our reduction approach. To begin with,
we will consider just how model checking a statement of the form K;p can be
reduced to LTL model checking. We define a function lp;, which takes as argument
an interpreted system, and an LTL formula ¢, and returns a local proposition
that globally implies (:

P 1 is an i-local proposition such that
merrL(Z, D@ — )
and (I, (7", u)) ':LTL ’QZJ

false if no such formula exists.

lpi (Z) (T‘, U), (P) =



If Ip;(Z,(r,u),p) = 1, then we say that ¢ serves as an i-local proposition for ¢
in (r,u). (As an aside, note that the Ip; function is very similar in spirit to the
“sound local predicate” function S; of Engelhardt et al [4].) We can now show
the following.

Proposition 5. Let T be an interpreted system, let (r,u) be a point in Z, and
let v be an LTL formula such that Ip;(Z,(r,u),p) = 1. Then:

(Z,(r,v)) FkL, Kip if (L, (r,u) FrrL ¢

Proof. (Left to right.) Immediate from the definition of lp;. (Right to left.)
We need to show that (Z,(r,u)) EvTL ¢ implies (Z,(r,w)) Exr, Kip. From
the definition of Ilp;, we know that (Z,(r,u)) FErTL ¥ and in addition, that
meprL(Z, [J(Y — ¢)). Since meprL(Z, L1y — ), then for all points (', v) in
T, we have (Z,(r',v)) =¥ — ¢, and in particular, (Z,(r",w)) ErTL ¥ — ¢ for
all (r", w) such that (r,u) ~; (r'",w). Since ¢ is i-local, then if (Z,(r,uw)) ErTL
Y then (Z,(r",w)) =L ¥ for all (r'",w) such that (r,u) ~; (r",w), and
thus (Z,(r",w)) Evrrr @ for all (r'",w) such that (r,u) ~; (r",w) and so
(Z,(r,u)) |:KLW, Kip.

In the same way, we can extend the function Ip; to sets of agents. If I' C Ag,
then we can define Ipr as:

¥ 1 is an I'-local proposition such that
. merrL(Z, L1 — )
pr(Z, ) = and (Z, (r, u)) fvrr, ¥
false if no such formula exists.

The following result can now be proved.

Proposition 6. Let T be an interpreted system, let (r,u) be a point in Z, and
let v be an LTL formula such that lpp(Z, (r,u), ) = . Then:

(Iv (T, U)) ':KL,, CF@ Zﬁ <Z) (T‘, U)> |:LTL 1;[]
Proof. As Proposition 5, making use of Proposition 4.

Finally, suppose we have some LTL formula ¢ such that meprr,(Z, (). In
this case ¢ is an invariant of system Z — it is true in all the states of Z that are
reachable through some possible computation. From this we can immediately
conclude the following.

Proposition 7. Let T be an interpreted system, and let @ be an LTL formula
such that mepry (Z, O¢). Then for any point (r,u) inZ, we have (Z, (r, v)) Eki,
L™ .

We now have a route to model checking (a subset of) KL,, formulae by using
only LTL model checking: When faced with the problem of determining whether
(Z,(r,u)) EkL, Kip, we can attempt to find a ¢ such that Ip;(Z, (r, u), ) = 9,
and check that (Z, (r, u)) ErTL ¥. Notice that finding the i-local proposition ¢
will itself require solving the LTL model checking problem meprr,(Z, (¢ — ¢)).

Notice that the approach can deal with nested knowledge operators. We will
see an example of this in the following section.



4 A Case Study: The Bit Transmission Problem

We now present a case study, in the form of the bit transmission problem. We
adapt our discussion of this problem from [17, pp.39—44]. The bit transmis-
sion protocol was first studied in the context of epistemic logic by Halpern and
Zuck [10]. The basic idea is that there are two agents, a sender and a receiver,
who can communicate with one another through an unreliable communication
medium. This medium may delete messages, but if a message does arrive at the
recipient, then the message is correct. (It is also assumed that the environment
satisfies a kind of fairness property, namely that if a message is sent infinitely
often, then it eventually arrives.) The sender has a sequence of bits g, z1, - - - , T
that it desires to communicate to the receiver; when the receiver receives the
bits, it prints them out. The goal is to derive a protocol that satisfies the safety
requirement that the receiver never prints incorrect bits, and the liveness re-
quirement that every bit will eventually be printed by the receiver.

The obvious solution to this problem involves sending acknowledgment mes-
sages, to indicate when a message was received. Halpern and Zuck’s key insight
was to recognise that an acknowledgment message in fact carries information
about the knowledge state of the sender of the message. This motivated the de-
velopment of the following knowledge-based protocol. After obtaining the first
bit, the sender transmits it to the receiver. However, it cannot stop at this point,
because for all it knows, the message may have been deleted by the environment.
It thus continues to transmit the bit until it knows the bit has been received. At
this point, the receiver knows the value of the bit that was transmitted, and the
sender knows that the receiver knows the value of the bit — but the receiver
does not know whether or not its acknowledgment was received. So the sender
repeatedly sends a second acknowledgment, until it receives back a third ac-
knowledgment from the receiver; when it receives this acknowledgment, it starts
to transmit the next bit. When the receiver receives this bit, this indicates that
its final (third) acknowledgment was received.

A pseudo-code version of the protocol is presented in Figure 2 (from [17,
pp-39-44]). Note that we write z; as a shorthand for “the value of bit z;”. Thus
Kg(z;) means that the receiver (R) knows the value of bit ;.

To demonstrate our ideas in a concrete setting, consider the PROMELA code
given in Figure 3, where, for simplicity, we assume that message delivery is
guaranteed. In a more complicated version, we may add deletion errors by having
a process that can “steal” messages, but the knowledge properties at the specific
points in the program — the labels, see below — would be the same.

Code is given for the sender and receiver agents and main variable dec-
larations. The initialisation code is unremarkable, with one subtle exception.
Suppose we were to initialise the Send[] array with the bits to be transmitted
using a straightforward assignment statement. Then this array would remain
fixed throughout every execution of the program — and the values of the bits in
this array would therefore be common knowledge to all agents in the system. To
get around this problem, we exploit SPIN’s non-deterministic execution mecha-



scount is a shared natural number variable
rcount is a shared natural number variable

Sender
scount := 0
while true do
read Zscount
send Zscount until Ks Kr(Zscount )
send “KSKR(zscount)" until KsKRKsKR(stuM)
scount := scount + 1
end-while
end-Sender

Receiver
when Kg(z) set rcount := 0
while true do
Wt Treount
send “KR(IKrcuunt)" until KRKSKR(ITCOunt)
send “KRKSKR(Z'rcount)” until KR(xrcoumH»l)
rcount := rcount + 1
end-while
end-Receiver

Fig. 2. The bit transmission protocol.

nism. We have a macro INITIAL(V), where V is a variable name, which assigns
a “random” (sic) bit to V.

#define INITIAL(V) \
if \
01 >V =0; \

1 >V =1, \
fi

This macro is used to initialise both the Send[] and Recv[] arrays in the init

process, ensuring that the values in these arrays may initially have different

values in different computations. The goal of the protocol is that eventually, the
values in the Recv[] array will have the same values that were initially in the

Send[] array.

The general form of properties we prove is as follows:

at;(0) — Kip (2)

where ¢ is a program label, and the unary predicate at;(¢) means that the pro-
gram counter of agent 7 is at the instruction labelled by ¢. The use of the at;(...)
predicate in this way is common practice when reasoning about programs us-
ing temporal logic (see, e.g., [7]). We use SPIN’s remote reference mechanism
(P[x]eL) to define at;(...) predicates.



#define ACK 10 /* Kgr(z:i) */

#define ACK2 11 /* KsKg(z:) */

#define ACK3 12 /* KrKsKr(zi) */

chan S = [10] of {int}; /* outward from sender */
chan R = [10] of {int}; /* outward from receiver */

int Send[11]; /* message sent */
int Recv[11]; /* message received */
int s_count = 0; /* sender bit count */
int r_count = 0; /* receiver bit count */
proctype SENDER() {

S0: do

(s_count < 10) —>
S1: printf("sender sends bit %d", s_count);
S2: S!Send[s_count];

S3: R7ACK;
S4: S!ACK2;
S5: R7ACK3;
S6: s_count++;
:: (s_count == 10) ->
S7: break
od

}

proctype RECEIVER() {

RO: do
(r_count < 10) ->

R1: S?Recv[r_count];
R2: printf("receiver receives bit %d", r_count);
R3: R!ACK;
R4: S7ACK2;
R5: R!ACK3;
R6: r_count++;
:: (r_count == 10) ->
R7: break
od

}

Fig. 3. The bit transmission protocol in PROMELA (message delivery is guaranteed).

The first property we prove is that whenever the receiver is at state Rs, (and
so is about to send the acknowledgment), that it knows the value of the bit it
has received.

O (atr(Rs) — Kgr(Recv[r_count] = Send[s_count]) (3)

To deal with this, we must first find an R-local proposition for

Recv[r_count] = Send[s_count] (4)



to serve as the output of the function Ipg. But notice that (4) is itself R-local, and
so this statement will itself do. We proceed to generate a SPIN LTL claim for (3)
as follows. We define propositions p0 and p1 to represent the KL, propositions
atr(Rs3) and (4) respectively.

#define pO (RECEIVER[2]@R3)
#define pl (Recv[r_count] == Send[s_count])

Finally, the property to be checked is written as the SPIN LTL formula:
1<>(p0 && 'p1)

(We negate the claim to be verified, so that it can be used in a never claim, in
the conventional manner for SPIN LTL claims.)

Next, we show the corresponding property for SENDER: when SENDER is at
label S3, (i.e., about to send an ACK2 message), then it knows that the receiver
knows the value of the bit that was most recently sent.

[1(ats(Ss) = KsKr(Recv[r_count] = Send[s_count])) (5)

Notice that this is a nested knowledge formula. To deal with it, we must first
find an R-local proposition for Recv[r_count] = Send[s_count], as before. But,
again, this proposition is itself R-local. This reduces the problem of checking (5)
to that of checking:

O(ats(Ss) — Ks(Recv[r_count] = Send[s_count]))

So we must find an S-local proposition for (4) — but as this statement is S-local
as well as R-local, then we can further reduce (5) to the following.

[1(ats(Ss) — Recv[r_count] = Send[s_count])
Given the following macro
#define p2 (SENDER[1]@S4)
this property is easily represented and checked as the following SPIN LTL formula:
1<>(p2&&!pl)

In exactly the same way, we can check the following property:

O(atr(Rs) - KrKsKgr(Recv[r_count] = Send[s_count])) (6)

Finally, we give an example of proving the absence of knowledge. Let’s suppose
that agent R is at label Ry. Then in this case, the bits in the Recv[] array
will have their initially assigned (essentially random) values. It may be that the



bits are “correct”, in the sense that they match those in Send[] but this is not
necessarily the case:

O (atr(Ro) — ~Kr(Recv[r_count] = Send[s_count]))

Now this formula will be invalid in a system if there is a single run of the system
that satisfies the following property

& (atr(Ro) A Recu[r_count] # Send|s_count])

This property can be directly encoded and checked using SPIN.

5 Concluding Remarks

Model checking as an approach to automatic verification has focussed almost
exclusively on specifications expressed in temporal logic. Little attention has
been given to temporal epistemic logics, although such logics have proven to be
very useful and widely advocated in the specification of protocols [5]. In this
paper, we have considered the model checking problem for such logics. We have
introduced Halpern and Vardi’s well-known temporal epistemic logic KL, , and
demonstrated how, using ideas from the interpreted systems paradigm and the
logic of local propositions, it is possible to reduce KL, model checking to LTL
model checking. We then gave a case study — the bit transmission problem —
which was implemented in PROMELA, and showed how desirable temporal epis-
temic properties of this system could be proved using SPIN. Engelhardt et al
suggested that local propositions might be used in a similar manner for imple-
menting knowledge-based programs [4].

The main limitation of our approach is that, while it makes extensive use
of model checking, the verification process still requires input from a human
verifier (to obtain the local propositions used when reducing the KL, specifica-
tion to LTL). A “direct” implementation of KL, model checking — perhaps as
an extension or refinement to SPIN — would thus be desirable. However, there
are some obstacles to building such a system: unlike pure LTL formulae, KL,
formulae can express properties of multiple runs. For the moment, therefore, we
believe our approach has something to offer which is theoretically well-founded
and practically valuable to the verifier who desires to check epistemic temporal
properties of systems. And, given the extent of interest in epistemic logic and its
applications in the specification of communicating systems [5], we believe that
our approach is potentially very valuable indeed.

We plan to extend our ideas here to other knowledge programs, and also
like to determine classes of programs for which the local propositions that are
needed can be easily determined. Using model checking to verify that programs
implement knowledge-based programs is another obvious application. Also, the
role and use of these local propositions, especially in contexts different from
distributed systems, is, to the best of our knowledge, still not explored.
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