
Linking STeP with SPIN

Anca Browne, Henny Sipma, Ting Zhang ?

Computer Science Department

Stanford University

Stanford, CA 94305-9045

sipma@cs.stanford.edu

Abstract. We have connected STeP , the Stanford Temporal Prover,

with SPIN, an LTL model checker. In this paper we describe the trans-

lation of fair transition systems into Promela, in particular how weak

and strong fairness constraints are handled. The paper presents some

preliminary experimental results using this connection.

1 Introduction

The Stanford Temporal Prover, STeP , supports the computer-aided for-

mal veri�cation of concurrent and reactive systems based on tempo-

ral speci�cations [BBC+95]. STeP combines algorithmic with deductive

methods to allow for the veri�cation of a broad class of systems, in-

cluding parameterized (N -process) programs, and programs with in�nite

data domains. Systems are analyzed modularly [FMS98]: components

and subsystems can be analyzed individually and properties proven over

these components are then automatically inherited by systems that in-

clude them. This allows a selective use of tools appropriate for the module

at hand.

In the original version of STeP , STeP1, we provide a full range of veri�ca-

tion tools. Deductive tools include veri�cation rules, which reduce simple

temporal properties to �rst-order veri�cation conditions [MP95], and an

interactive theorem prover. Algorithmic tools include an explicit-state

and a symbolic model checker, an integrated suite of decision procedures

[Bj�98] that automatically check the validity of a large class of �rst-order

formulas, and tools for invariant generation to support the deductive

tools. Veri�cation diagrams [MBSU98], which reduce the proof of ar-

bitrary temporal properties to �rst-order veri�cation conditions and an

algorithmic model check, combine the deductive and algorithmic tools.

In the new version of STeP , STeP2, we are moving towards a more open

architecture. Realizing that it is impossible and also undesirable to single-

handedly support and further develop the full range of tools, we have de-

cided to focus our e�orts on methods for high-level proof construction,

? This research was supported in part by the National Science Foundation under

grant CCR-98-04100 and CCR-99-00984 ARO under grants DAAH04-96-1-0122 and

DAAG55-98-1-0471, ARO under MURI grant DAAH04-96-1-0341, by Army con-

tract DABT63-96-C-0096 (DARPA), by Air Force contract F33615-99-C-3014, and

by ARPA/Air Force contracts F33615-00-C-1693 and F33615-99-C-3014



including abstraction, modularity, diagrams, and hybrid system reduc-

tion, and take advantage of specialized, and highly optimized tools such

as SPIN [Hol91,Hol97] to provide the algorithmic support.

In this abstract we describe the current interface between STeP and

SPIN. As we have only recently started the integration, this work is still

very much in progress; we are convinced that as we get more familiar

with SPIN, many optimizations can be made. We also hope to bene�t

from input from more experienced SPIN users and developers.

2 Computational Model and Speci�cation

Language

In STeP we represent reactive systems as fair transition systems (fts)

[MP95]. A fair transition system hV; �; T ;J ; Ci is given by a �nite set

of system variables V, de�ning a state space �, an initial condition �,

which is a subset of �, a set of transitions T , each of which is a binary

relation over �, describing how the system can move from one state

to the next, and the justice and compassion requirements J � T , and

C � T , respectively.

In our framework, we assume an assertion language based on �rst-order

logic. � is expressed as an assertion over the system variables, and each

transition � is described by its transition relation �� (V;V
0), an assertion

over V and a set of primed variables V 0 indicating their next-state values.

We assume that T includes an idling transition, whose transition relation

is V = V
0.

A run of S is an in�nite sequence of states s0; s1; : : :, where s0 satis�es

� and for every si there is a transition � 2 T such that (si; si+1) satisfy

�� .

The fairness requirements state that just (or weakly fair) transitions

� 2 J cannot be continuously enabled without ever being taken. Com-

passionate (or strongly fair) transitions cannot be enabled in�nitely of-

ten without being taken. Every compassionate transition is also just. A

computation is a run that satis�es these fairness requirements.

Properties of systems are expressed as formulas in linear-time temporal

logic (LTL). Assertions, or state-formulas, are �rst-order formulas with

no temporal operators, and can include quanti�ers. Temporal formulas

are constructed from assertions, boolean connectives, and the usual fu-

ture (0 ; 1 ; 2 ; U ; W ) and past (` ; Q ; � ; B ; S ) temporal opera-

tors [MP95]. A model of a temporal property ' is an in�nite sequence of

states s1; s2; : : : that satis�es '. For a system S, we say that ' is S-valid

if all the computations of S are models of '.

3 Translating FTS into Promela

To enable model checking with SPIN, the fts must be translated into

Promela, the system description language of SPIN. Since the de�nition

of a transition system in STeP is very general, the translation is appli-

cable only to a subset of transition systems, namely those (1) that are



syntactically �nite-state (that is, all datatypes are �nite), and (2) whose

transition relations are all of the form

�� =
_
i

��i

with � i being called a mode of � , and

��i = enabled(�
i
) ^

^
v2V

action(v)

where enabled(� i) is an assertion over unprimed variables, characterizing

the set of states on which � i is enabled, and action(v) : v0 = e, with e

an expression over unprimed variables.

A transition system � = hV; �; T ;J ; Ci is translated into Promela by

creating an initialization process for �, and one process for each tran-

sition � 2 T , as shown in Figure 1. The translation strategy re
ects

the intuition that a transition represents a single atomic process, and

the modes of the transition correspond to the di�erent activities of the

process.

proctype P� () f

do

:: atomic fenabled(�
1
)! action(�

1
); g

...

:: atomic fenabled(�
n
)! action(�

n
); g

od

g

Fig. 1. Translation from � to P�

The translation of the STeP LTL speci�cation to SPIN format is straight-

forward. SPIN automatically generates a stuttering-closed automaton

from any future LTL formula without the 2 (next-state) operator.

3.1 Handling Fairness Constraints

In STeP transitions may be unfair, weakly fair or strongly fair. SPIN sup-

ports weak fairness at the level of the processes, and thus by translating

each transition into a separate proctype, each transition is, by default,

modeled as weakly fair.

Unfair transitions simulate possibly non-terminating statements. They

are modeled in Promela by adding an empty statement to the transition

process, as shown in Figure 2. Note that the idling transition �I is unfair

and is included in every Promela program translated from an FTS.



proctype P� () f

do

:: atomic fenabled(�
1
); g

:: atomic fenabled(�
1
)! action(�

1
); g

...

:: atomic fenabled(�
n
); g

:: atomic fenabled(�
n
)! action(�

n
); g

od

g

Fig. 2. Translation from � to P�

Strong fairness states that if a transition is enabled in�nitely often it

must be taken in�nitely often. This property can be expressed in LTL as

0 1 enabled(� )! 0 1 taken(� )

A convenient way to represent the predicate taken(� ) is by introducing

a new global variable t : [1 : : : N ], with N = jT j, to V and to augment

every transition �i 2 T (assuming an arbitrary order on T ) with the

assignment t0 = i. Now the predicate taken(�i) can be expressed by

taken(�i)() t = i

We now can incorporate the strong fairness requirements in the speci�-

cation as follows:

� =

 ^
�2T

�
0 1 enabled(� )! 0 1 taken(� )

�!
! '

Note that the validity of safety properties is independent of the fair-

ness requirements of the system, so for proofs of safety formulas (cur-

rently identi�ed by a conservative syntactic check) the strong fairness

constraints are omitted from the speci�cation for obvious e�ciency rea-

sons.

4 Implementation and Preliminary Results

Implementation The current interface between STeP and SPIN is

�le-based. Upon clicking the SPIN button on the STeP user interface, the

transition system is translated into Promela and stored in a �le. Then

SPIN is invoked to generate a never claim for the speci�cation in another

�le, and SPIN is run on these two �les, to generate the C-�les. The C-�les

are compiled and the resulting �le pan is executed, currently with search

depth 10,000. The output of all these steps is collected in a log �le, which,

upon completion of pan is examined by STeP to determine the result of

the model checking. There are three types of outcomes: (1) SPIN found a



Peterson's Algorithm (12 proctypes)

Metric Mutual Exclusion Accessibility One Bounded Overtaking

Formula Template ' 0 :(p ^ q) 0 (p! 1 q) 0 (p! q1 W q2 W q3 W q4)

Automaton :' Size (lines) 9 11 163

Automaton :' Generation Time 0m0.01s 0m0.00s 7m25.04s

Veri�cation Time 0m0.19s 0m0.33s 0m0.22s

Veri�cation Result True True True

Semaphores (10 proctypes)

Metric Mutual Exclusion Accessibility One Bounded Overtaking

Formula Template ' 0 :(p ^ q) 0 (p! 1 q) 0 (p! q1 W q2 W q3 W q4)

Automaton :' Size (lines) 9 166 163

Automaton :' Generation Time 0m0.01s 1m11.78s 6m55.91s

Veri�cation Time 0m0.08s 0m0.50s 0m0.10s

Veri�cation Result True True False

Dining Philosophers(6 philosophers, 42 proctypes)

Metric Mutual Exclusion Accessibility One Bounded Overtaking

Formula Template ' 0 :(p ^ q) 0 (p! 1 q) 0 (p! q1 W q2 W q3 W q4)

Automaton :' Size (lines) 9 - 163

Automaton :' Generation Time 0m0.00s - 7m17.63s

Veri�cation Time 3m58.94s - 0m0.66s

Veri�cation Result True - False

*Above results obtained using SPIN 3.3.10 on Sun Ultra 2 with Solaris 2.6

Table 1. Experiment Results

counterexample, in which case it generates a �le step.trail, (2) the search

depth is exceeded, or (3) the property is valid. The current translation

only applies to unparameterized transition systems. We are currently

extending it parameterized transition systems with a �xed number of

processes.

Preliminary Experimental Results We tested our current imple-

mentation on some typical properties (mutual exclusion, accessibility and

1-bounded overtaking) for three classic concurrent programs (Semaphores,

Peterson's algorithm and Dining Philosophers) [MP95]. The results are

shown in Table 1. Note that accessibility is a liveness property while the

other two are safety properties. In the Semaphores case, the increase of

automaton size for accessibility is due to the incorporation of two strong

fairness conditions. For the Dining Philosophers 1 case, with 12 strong

fairness conditions, the automaton could not be constructed, because it

was too large.

References

[BBC+95] N.S. Bj�rner, A. Browne, E.S. Chang, M. Col�on, A. Ka-

pur, Z. Manna, H.B. Sipma, and T.E. Uribe. STeP:

1 There are six philosophers in total, each of which is represented by seven transitions.

Of the seven transitions, two are semaphore requests which are compassionate. See

[MP95] page 199 for details.



The Stanford Temporal Prover, User's Manual. Techni-

cal Report STAN-CS-TR-95-1562, Computer Science Depart-

ment, Stanford University, November 1995. available from

http://www-step.stanford.edu/.

[Bj�98] N.S. Bj�rner. Integrating Decision Procedures for Tempo-

ral Veri�cation. PhD thesis, Computer Science Department,

Stanford University, November 1998.

[FMS98] B. Finkbeiner, Z. Manna, and H.B. Sipma. Deductive veri�ca-

tion of modular systems. In W.P. de Roever, H. Langmaack,

and A. Pnueli, editors, Compositionality: The Signi�cant Dif-

ference, COMPOS'97, vol. 1536 of Lecture Notes in Computer

Science, pages 239{275. Springer-Verlag, December 1998.

[Hol91] G. Holzmann. The Design and Validation of Computer Pro-

tocols. Prentice Hall Software Series. Prentice Hall, 1991.

[Hol97] G. Holzmann. The model checker spin. IEEE Transaction on

Software Engineering, 23(5):279{295, May 1997.

[MBSU98] Z. Manna, A. Browne, H.B. Sipma, and T.E. Uribe. Vi-

sual abstractions for temporal veri�cation. In A. Hae-

berer, editor, Algebraic Methodology and Software Technology

(AMAST'98), vol. 1548 of Lecture Notes in Computer Science,

pages 28{41. Springer-Verlag, December 1998.

[MP95] Z. Manna and A. Pnueli. Temporal Veri�cation of Reactive

Systems: Safety. Springer-Verlag, New York, 1995.


