
Formal Analysis of the Remote Agent
Before and After Flight

Klaus Havelund1, Mike Lowry, SeungJoon Park2,
Charles Pecheur2, John Penix, Willem Visser2, Jon L. White3

The Automated Software Engineering Group
NASA Ames Research Center,
Moffett Field, California, USA.

1 Recom Technologies, 2 RIACS, 3 Caelum

Abstract

This paper describes two separate efforts that used the
SPIN model checker to verify deep space autonomy flight
software. The first effort occurred at the beginning of a
spiral development process and found five concurrency
errors early in the design cycle that the developers ac-
knowledge would not have been found through testing.
This effort required a substantial manual modeling effort
involving both abstraction and translation from the pro-
totype LISP code to the PROMELA language used by
SPIN. This experience and others led to research to ad-
dress the gap between formal method tools and the de-
velopment cycle used by software developers. The Java
PathFinder tool which directly translates from Java to
PROMELA was developed as part of this research, as well
as automatic abstraction tools. In 1999 the flight software
flew on a space mission, and a deadlock occurred in a
sibling subsystem to the one which was the focus of the
first verification effort. A second quick-response “clean-
room” verification effort found the concurrency error in a
short amount of time. The error was isomorphic to one
of the concurrency errors found during the first verifica-
tion effort. The paper demonstrates that formal methods
tools can find concurrency errors that indeed lead to loss
of spacecraft functions, even for the complex software
required for autonomy. Second, it describes progress in
automatic translation and abstraction that eventually will
enable formal methods tools to be inserted directly into
the aerospace software development cycle.

1 Introduction

Complex concurrent software is difficult to debug and
even more difficult to test with adequate coverage. With
the increasing power of flight-qualified microprocessors,
NASA space enterprises are experimenting with a new
generation of non-deterministic flight software that pro-
vides enhanced mission capabilities. A prime example is
the Remote Agent (RA) autonomous spacecraft controller
developed at NASA. In May 1999, the RA was success-
fully demonstrated in flight on Deep Space 1 (DS-1), the
first flight of NASA’s experimental New Millennium pro-
gram. The RA is a complex, concurrent software system
employing several automated reasoning engines using ar-
tificial intelligence technology. The verification of such
complex software is critical to its acceptance by science
mission managers.

This paper describes formal methods verification ef-
forts for one of the three subsystems of the RA – specifi-
cally, the RA Executive, which provides operating-system
level capabilities for goal-directed software. Two differ-
ent verification activities were conducted, before and af-
ter flight, using different technologies and in very differ-
ent contexts. As such, this paper provides two succes-
sive snapshots of progress towards making formal meth-
ods verification cost-effective.

In 1997, while the RA was still in the development
stage, we modeled and verified a subset of the core ser-
vices of the RA Executive using the SPIN [10] model
checker. That verification unveiled several concurrency

bugs that were acknowledged by RA Executive develop-
ers [7].

As a result of this effort, it was decided to develop
model checking technology for a main stream program-
ming language in order to reduce the amount of time spent
on modeling the behavior of programs in SPIN. The result
was a translator, called Java PathFinder, from Java to the
modeling language PROMELA of SPIN. In addition, a
tool was developed for abstracting Java programs to re-
duce their state space, making model checking tractable.

Then, during the actual RA experiment in 1999, a dead-
lock occurred within less than 24 hours of operation. Al-
though the problem was promptly identified and circum-
vented by the DS-1 team, we took the challenge of try-
ing to diagnose the error in a fast-response “clean room”
experiment 1. After isolating a suspicious part of the pro-
gram by visual inspection, we modeled it in Java, and then
used Java PathFinder to exhibit a concurrency error that
indeed turned out to be the one that had occurred in flight.

One key observation of these two successive experi-
ments is that the error that caused the deadlock is ex-
actly isomorphic to one of those found using SPIN two
years before in another part of the code. It is a concur-
rency error, whose activation depends on a priori unlikely
scheduling conditions between concurrent tasks. In fact,
this error did not appear in over 300 hours of system-level
testing on JPL’s flight system testbed. The conditions un-
der which it occurred in flight were not anticipated during
testing. A principal benefit of model checking technolo-
gies is to be able to exhaustively cover scheduling alter-
natives. This paper gives a compelling illustration of how
model checking found an error that was a priori unlikely
but did actually occur. It also discusses gaps between pre-
vious formal method tools and requirements for making
them easily accessible to system developers for ‘in the
loop’ verification. Technological advances towards nar-
rowing this gap are described in the context of the RA
verification.

Section 2 describes the RA experiment. Section 3 de-
scribes the verification effort before flight, while Section
4 describes the verification effort after flight. The sec-
tion also presents Java PathFinder. Section 5 describes
the Java abstraction tool, and finally, Section 6 contains a
conclusion.

1By “clean room” we are referring to the fact that, while the verifica-
tion was post-facto, the team had no interaction with the actual debug-
ging team.

2 The Remote Agent Experiment

To prepare for space exploration programs of the next
decades within a reduced budget, NASA has set up the
New Millennium program: a series of technology vali-
dation flights whose objective is to accelerate the quali-
fication for flight of new spacecraft technology. One of
the objectives of the New Millennium program is to in-
crease spacecraft autonomy, moving from the low-level
control sequences currently in use towards mission-level
planning and autonomous health monitoring and recov-
ery.

Deep Space 1 (DS-1), the first New Millennium Mis-
sion, was launched from Cape Canaveral on October 24,
1998 and ended its primary mission in September 1999
(it is still operating and is on its way for a comet en-
counter in 2001). During that mission, it successfully
tested 12 cutting-edge technologies such as ion propul-
sion, on-board optical navigation, and the AI-based Re-
mote Agent, marking the first operational use of artificial
intelligence during space flight.

In its initial design, the RA Experiment (RAX) on DS-
1 consisted of a short, limited 12-hour scenario designed
to gain confidence in the RA, followed by a complete
6-day scenario that was the full RA test. Later, the ex-
periment had to be compressed into a single 2-day sce-
nario, to accommodate external mission constraints. The
original scenarios were designed to cover a formal list
of validation objectives. To protect the main DS-1 mis-
sion from possible misbehaviors of RA, the design in-
cluded a “safety net” that allowed the RA experiment to
be completely disabled with a single command, issued ei-
ther from the ground or by on-board fault protection.

The RA went through a thorough qualification process
before being allowed to run on DS-1. Though some for-
mal verification tasks, such as the one reported here, were
performed as feasibility studies, the formal qualification
process relied on more conventional testing approaches.
However, since the RA was a flight experiment, and not
flight software, it was not subjected to the testing stan-
dards of the latter.

This section is a short summary of the flight qualifica-
tion and experience of the RA [2, 13].

2.1 Remote Agent

The RA is an autonomous spacecraft controller developed
by NASA Ames conjointly with the Jet Propulsion Labo-
ratory (JPL) [12]. It comprises three components:

� The Planner and Scheduler (PS) [11] generates flex-
ible plans, specifying the basic activities that must
take place. Given a mission goal, it produces se-
quences of tasks for achieving this goal using avail-
able system resources.

� The Smart Executive (EXEC) [14] receives the plan
from the Planner/Scheduler and then commands
spacecraft systems to take the necessary actions to
achieve and maintain the specified spacecraft states.

� The Mode Identification and Recovery component
(MIR), called Livingstone [16], monitors the state
of the spacecraft, detects and diagnoses failures and
suggests recovery actions to the Executive.

The Executive subsystem is the focal point of the verifi-
cation work discussed in this article. It combines features
of multi-threaded operating systems with aspects of AI
languages based on sub-goaling, such as Prolog. It is con-
ceptually composed of three layers: a set of core services
that implement a robust operating system for executing
concurrent tasks, a set of engine modules including a plan
runner, and a set of mission-specific task programs. The
Executive schedules the execution of concurrent tasks. It
also monitors a set of properties associated with system
resources, and takes recovery actions on property viola-
tions. The Executive is written in a multi-threaded LISP,
using a set of LISP macros called the Executive Sequenc-
ing Language (ESL) developed at JPL.

2.2 Testing the Remote Agent

Because autonomous systems such as the RA need to re-
spond robustly in a wide range of situations, verifying that
they respond correctly in all situations would require a
huge number of test cases. Furthermore, these tests ide-
ally have to be run on high-fidelity testbeds that are highly
oversubscribed, hard to configure, and, running at real
time speeds, take hours or days for a single run.

To address these problems, the RAX team followed a
“baseline testing” approach, starting from nominal sce-
narios and testing a number of nominal and off-nominal
variations around these scenarios. A wide range of varia-
tions were run on more available and faster low-fidelity
testbeds, leading to the identification and resolution of
100-200 bugs during 18 months. An automated test-
ing tool was designed for this purpose. Some of the

most likely off-nominal variants were run on medium-
fidelity testbeds, while only nominal scenarios and cer-
tain performance and timing related tests were performed
on high-fidelity testbeds. The final stage was a pair of
“dress rehearsal” operational readiness tests (ORTs), in-
volving actual communication with the mission control
center. The bulk of the problems identified during testing
were found with the low-fidelity testbeds. The ORTs only
identified minor shortcomings that were resolved prior to
flight.

2.3 Remote Agent in Flight

On Monday, May 17th, 1999, 11:04 am PDT, a telemetry
packet confirmed that the RA had taken control of DS-
1. The scenario went on smoothly, achieving 70% of the
objectives, until Tuesday 7:00 am, when it became appar-
ent that a command had not been executed as expected
by the RA. The RA Executive was blocked, although the
rest of the RA and the spacecraft were otherwise healthy.
The Executive’s low-level commands were used to gather
a maximum of information, and then the experiment was
interrupted.

By late Tuesday afternoon, the RAX team had found
the source of the problem in the Executive code. They
designed a 6-hour scenario that was run on Friday morn-
ing and went successfully through the remaining 30% of
the objectives. A patch was also generated, but the DS-1
mission decided not to uplink it, considering the insuffi-
cient testing of the patch and the very low probability of
the problem recurring.

The blocking was due to a missing critical section
that had lead to a race condition between two concurrent
threads. Under some very precise and unlikely timing cir-
cumstances, both threads could end up in a deadlock con-
dition in which each one was waiting for an event that
only the other one could provide, which is exactly what
happened in flight.

3 Formal Analysis Before Flight

In April-May 1997 we analyzed part of the RA Executive
using the SPIN model checker [7]. This effort lead to the
discovery of five errors in the LISP code which are de-
scribed below. As discussed in Section 4.3, one of these
errors is isomorphic to the error that actually occurred
during flight, causing a deadlock. First we give a short de-
scription of SPIN and its modeling language PROMELA.

Then we explain how a PROMELA model was extracted
from the LISP code, and how properties were stated and
verified in the model, leading to the discovery of the five
errors. We conclude with a discussion of the methodology
that has been followed.

3.1 The SPIN Model Checker

SPIN [10] is a tool for analyzing the correctness of fi-
nite state concurrent systems with respect to formally
stated properties. A concurrent system is modeled in
the PROMELA modeling language, and properties to be
verified are formalized as assertions in the program or
as formulae in the temporal logic LTL (Linear Temporal
Logic). SPIN provides a model checker, which automat-
ically examines all program behaviors in order to decide
whether the PROMELA program satisfies the stated prop-
erties. In case a property is not satisfied, an error trace
is generated, which illustrates the sequence of executed
statements from the initial state to the state that violates
the property. These error traces can then be executed in
a simulator. The set of states reachable from the initial
state must be finite in case a property needs to be proven
correct for the whole state space.

A PROMELA program consists of a set of sequential
processes that communicate via message passing through
bounded buffered channels and via shared variables. Pro-
cesses can be created dynamically. The behavior of an
individual process is described using the statement lan-
guage which provides many standard constructs such as
variable assignments, channel communications, loops,
conditionals, and sequential composition. Variables are
typed, where a type can either be primitive, such as in-
teger, or composite in the form of arrays and records.
PROMELA provides inline procedures, which is a lim-
ited notion of procedural abstraction that is implemented
via macro expansion.

Each process represents a finite automaton, and the
global behavior of the system is then obtained by comput-
ing on-the-fly an asynchronous interleaving product of all
these automata, creating the global state space. To per-
form model checking, SPIN translates (the negation of)
any LTL formula into a Büchi automaton, and computes
the synchronous product of this and the global state space.
The result is again a Büchi automaton. If the language of
this automaton is empty it means that the formula is sat-
isfied. SPIN searches the state space depth-first, creating
the states on-the-fly. A partial-order reduction technique

is used to prune the set of transitions to be explored.

3.2 Creating a PROMELA Model

The modeling activity focused on the core services of the
plan execution module. The RA Executive core is de-
signed to support execution of software-controlled tasks
on board the spacecraft. A task often requires specific
properties to hold during its execution. When a task is
started, it first tries to achieve the properties on which it
depends, after which it starts performing its main func-
tion. Several tasks may try to achieve conflicting proper-
ties; for example, one task may try to turn on a camera
while another task tries to turn it off. To prevent such
conflicts, a task has to lock in a lock table any property
it wants to achieve. Once, a property is locked, it can be
achieved by the task locking the property.

Properties may, however, be unexpectedly broken
while tasks depending on them are executing. A property
is defined as broken when it is locked in the lock table by
some task, has been achieved (an extra boolean field in
the lock table), but for some reason fails to hold on board
the spacecraft. For the purpose of detecting which prop-
erties hold on board, a database is maintained of all prop-
erties being true at any time. Hence, an inconsistency can
be detected by relating the lock table with the database.
Tasks depending on a broken property must be interrupted
and informed about the anomaly. For this purpose, a dae-
mon monitors the changes on board the spacecraft, and in
particular the consistency between the lock table and the
database. The daemon is normally asleep, but is awak-
ened whenever there is a change in the lock table or the
database, where upon it checks their consistency.

The PROMELA model focuses on operations on the
lock table. Hence, it is an abstraction of the LISP pro-
gram, omitting details irrelevant for the lock table opera-
tions. The LISP program is approximately 3000 lines of
code while the PROMELA model is 500 lines of code.
Furthermore, the model only deals with a limited number
of tasks and properties in order to limit the search space
the SPIN model checker has to explore. Most abstrac-
tions were made in an informal manner without any for-
mal proofs showing that bugs are maintained. Hence, in
the abstraction phase we may have left out errors in the
LISP code. However, all the errors we found in the model
were also errors in the LISP code.

To give an idea of the modeling, we show how the dae-
mon was translated, since it was the daemon that con-

(defun daemon ()
(loop
(if (check-locks)

(do-automatic-recovery))
(unless

(changed?
(+ (event-count *database-event*)

(event-count *lock-event*)))
(wait-for-events
(list *database-event*

lock-event)))))

Figure 1: Daemon in LISP

tained the error pattern which also occurred during flight,
and which was found using the model checker. The actual
LISP code describing the behavior of the daemon is given
in Figure 1.

The daemon goes through a loop, where in each itera-
tion it checks the lock table, comparing it to the database,
and recovers any inconsistencies that may be detected (if
the check-locks function returns true). After that, it
goes to sleep by calling the wait-for-events func-
tion, which as parameters takes a list of events to wait
for. Whenever one of these events is signaled, i.e. the
database or the lock table is modified, the daemon will
wake up and continue.

In order to catch events that occur while the daemon is
executing, each event has an associated event counter that
is increased whenever the event is signaled. The daemon
only calls wait-for-events in case these counters have
not changed, hence, there have been no new events since
it was last restarted from a call of wait-for-events.

The PROMELA model of this LISP code is presented
in Figure 2. The if-construct decides whether the daemon
should stop and wait for a new database event or lock
event to occur (call of wait for events), or whether
it should continue for another iteration. Another itera-
tion is needed if a database event or a lock event has oc-
curred since the daemon was restarted last time; that is, in
case the event counter event count differs from the sum
of the event counters for the database and lock events.
If there is a difference, it means that there has been an
event since the last time event count was updated, and
the daemon must perform another iteration before calling
wait for events, first updating event count to hold
the new event counter sum.

proctype daemon(TaskId this) f
byte event_count = 0;
do
:: check_locks_and_recover;

if
:: (Ev[DATABASE_EVENT].count +

Ev[LOCK_EVENT].count
== event_count)

->
wait_for_events(this,

DATABASE_EVENT,LOCK_EVENT)
:: else ->

event_count =
Ev[DATABASE_EVENT].count +
Ev[LOCK_EVENT].count

fi
od

g;

Figure 2: Daemon in PROMELA

3.3 Stating and Verifying Properties

The model was analyzed with respect to the following
two properties, here expressed informally. The release
property reads: “A task releases all of its locks before it
terminates”. The abort property reads: “If an inconsis-
tency occurs between the database and an entry in the
lock table, then all tasks that rely on the lock will be ter-
minated, either by themselves or by the daemon in terms
of an abort”. The release property was formulated by in-
serting an assertion in the code at the end of each task.
This assertion stated that all locks should be released at
this point. The second property was stated as a linear tem-
poral logic property of the form:

[](property broken -> <>tasks informed)

This property says: whenever a property is broken,
then eventually all tasks depending on this property will
be informed about it (in fact terminated). The names
property broken and tasks informed are macro
names standing for predicates on the state space.

The attempted verification of the two properties led to
the direct discovery of five programming errors – one
breaking the release property, three breaking the abort
property, and one being a non-serious efficiency problem
where code was executed twice instead of once. The first
four of these errors are classical concurrency errors in the
sense that they arise due to processes interleaving in un-
expected ways.

The error we want to focus on in this presentation is the
one isomorphic to the RAX anomaly. The error caused
the abort property to be violated. The error trace gener-
ated by SPIN demonstrated the following situation. The
daemon is prompted to perform a check of the lock table.
It finds everything consistent and checks the event coun-
ters to see whether there have been any new events while
it has been running. This is not the case, and the daemon
therefore decides to call wait-for-events. However,
at this point an inconsistency is introduced, and a signal
is sent by the environment, causing the event counter for
the database event to be increased. This is not detected
by the daemon since it has already made the decision to
wait, which it then does, and the inconsistency now is not
discovered by the daemon. Our suggested solution at the
time was to enclose the test and the wait within a critical
section, which does not allow scheduling interrupts to oc-
cur between the test and the wait. Furthermore, two other
flawed code fragments violated the abort property.

The release property was violated in the sense that
locks did not always get released by a task. The error trace
generated by SPIN demonstrated that during a task’s re-
lease of a lock, but before its actual release, the task may
get interrupted by the daemon if the property gets broken.
This means that the task terminates without releasing the
lock. The error is particularly nasty in the sense that all
code, except the lock releasing itself, had been protected
against this situation: in case of an interrupt the lock re-
leasing would be executed.

The model was verified exhaustively using SPIN’s
partial order reduction algorithm and state compression.
Typically between 3; 000 - 200; 000 states were explored
in the different models, using between 2 - 7 Mb of mem-
ory, and using between 0:5 - 20 seconds.

3.4 Discussion of Methodology

The verification effort has been regarded by all involved
parties as a very successful application of model check-
ing, and of SPIN in particular. According to the RA pro-
gramming team, the effort has had a major impact, lo-
cating errors that would probably not have been located
otherwise, and identifying a major design flaw.

The modeling effort, i.e. obtaining a PROMELA
model from the LISP program, took about 12 man weeks
during 6 calendar weeks, while the verification effort took
about one week. The modeling effort consisted concep-
tually of an abstraction activity combined with a trans-

lation activity. Abstraction was needed to cut down the
program to one with a reasonably small finite state space,
making model checking tractable. Translation, from LISP
to PROMELA, was needed to obtain a PROMELA model
that the SPIN model checker could analyze.

The abstraction was done without any knowledge about
the properties to be verified, since these were stated later.
The abstraction maintained important operations on the
lock table and ignored most other details of the orig-
inal LISP program, hence, a kind of program slicing.
No formal attempt was made to show that the abstrac-
tions preserved errors. It is interesting that such an ad
hoc approach still was extremely effective. The transla-
tion phase was non-trivial and time consuming due to the
relative expressive power of LISP when compared with
PROMELA.

Based on these observations, two research efforts were
initiated that should make application of model checking
within the software development cycle less resource de-
manding. In one effort a translator from the Java pro-
gramming language to PROMELA has been developed;
see Section 4.2. In another effort, an abstraction tool
has been developed, which can perform so-called predi-
cate abstractions on Java programs; see Section 5. Both
tools have been applied in the verification of the RA as
described in the following.

4 Formal Analysis After Flight

Shortly after the anomaly occurred during the Remote
Agent Experiment, on Tuesday May 18, the ASE team
at NASA Ames heard that something had broken down
in the RA while it was in control of the spacecraft and
offered their help to the RAX team. On Friday morning,
after a few email exchanges, the RAX team provided ac-
cess to the source code of the Executive, without identi-
fying where the error was, and offered the ASE group the
challenge of seeing “how long it would take for formal
methods to come up with it”.

On Friday afternoon, we decided to run a “clean room”
experiment to determine whether or not the technology
currently used and under development in the group could
have discovered the bug before it actually happened. At
that time, we knew that debugging information collected
from the spacecraft had enabled the DS-1 team to identify
the bug and continue the experiment, and that the failure
had something to do with a “handshaking” communica-
tion between a Planner process and an Executive process.

Other than these messages we had no further information,
and no one in the ASE group had any contact with RAX
personnel during that week.

This section first describes how the experiment was
conducted. Then the Java PathFinder translator that was
used to model check the flawed code is described. This
is followed by a description of the error and how it was
found using Java PathFinder. We conclude with a discus-
sion of the methodology that has been followed.

4.1 The Clean Room Experiment

To make this clean room experiment credible, we de-
cided that we would need to complete this exercise over
the weekend, prior to the return of the RAX team from
the DS-1 mission control at JPL the following Monday.
This was both to avoid undue influence by people fa-
miliar with the details of the bug, and also to meet the
“short-turnaround” challenge, mimicking what would be
required if we were actually called on to provide “on-line”
assistance.

The experiment was set up as follows. A front-end
group would try to spot the error by human inspection,
or at least identify problematic parts of the code. On the
basis of that, it would extract a more or less self contained
portion of the code containing the problematic code por-
tions, of a tractable size for a model checker. This ex-
tracted code would then be handed over to the back-end
group without any hints as to what could be the error. The
back-end group would then try to locate the error using
model checking. The situation was comparable to some-
one doing visual inspection of code, and finding suspect
sections which he wanted to explore further.

The front-end team began perusing the code on Fri-
day afternoon, and extracted roughly 700 lines containing
questionable code2. The full group met again on Satur-
day afternoon, and the front-end team gave the back-end
team the extracted code. In accordance with the design of
the experiment, they did not tell where the suspected bug
was, but they briefed the back-end team on the control and
data structures of the extracted code. The back-end group
spent most of the time understanding that code in order to
model it, and on Sunday morning came out with a fairly
abstract model of the suspicious code. That model was
written in Java and verified with the Java model checker
Java PathFinder, as described below. It reported a dead-

2Though they were not sure that they had indeed captured the con-
currency error.

lock, which turned out to be the one that had happened in
flight five days before.

4.2 The JPF Translator

Java PathFinder (JPF) [8, 6] is a translator from a non-
trivial subset of Java to PROMELA. Given a Java pro-
gram, JPF translates this into a PROMELA program,
which then can be model checked using SPIN. Java is an
object-oriented programming language with a built-in no-
tion of threads. Objects are instantiated dynamically from
classes, which can be defined using single class inheri-
tance. Threads, which are special objects with an activity,
can communicate by making calls to methods defined in
shared objects. Such methods can be defined as synchro-
nized, thereby turning these shared objects into monitors,
allowing only one thread to operate in the object at a time.

In the default mode, the SPIN model checker will find
any deadlocks present in the Java program. Such dead-
locks can occur when several threads compete for access
to the monitors. Properties can also be formulated explic-
itly by the user, either as assertions in the program, or as
linear temporal logic formulae. That is, a Java program
can be annotated with assertions written as calls to a spe-
cial assert method which takes a boolean argument ex-
pression over the variables in the Java program. Any such
call is translated into a corresponding PROMELA asser-
tion, which will then be checked during the state space
exploration whenever reached. Finally, SPIN’s own lin-
ear temporal logic can be used to formulate properties
over the Java program’s static variables (a static variable
in Java is defined within a class, but is only allocated once,
and hence is shared between all objects of the class).

A significant subset of Java is supported by JPF: dy-
namic creation of objects with data and methods, static
variables and static methods, class inheritance, threads
and synchronization primitives for modeling monitors
(synchronized statements, and the wait and notify

methods), exceptions, thread interrupts, and most of the
standard programming language constructs such as as-
signment statements, conditional statements and loops.

The translator is written in 6000 lines of LISP, and was
developed over a period of 8 months. JPF has been ap-
plied to a number of case studies, amongst them a 1500
line game server [9], a NASA file transfer protocol for
satellites, and a NASA data transmission protocol for the
space shuttle ground control.

A related attempt to provide model checking technol-

ogy for Java is described by Demartini et. al. [5], which
also translates Java programs into PROMELA. However,
their approach does not handle exceptions or polymor-
phism as does Java PathFinder. In another related ap-
proach, Corbett [4] describes a theory of translating Java
to a transition model, making use of static pointer analy-
sis to aid virtual coarsening, which reduces the size of the
model.

4.3 The RAX Error

The suspected and eventually confirmed error was a miss-
ing critical section around a conditional wait on an event.
The relevant piece of code (anonymized for confidential-
ity purposes) is shown in Figure 3.

(loop
(when

(*1*) (or (/= count (esl::event-count event1))
(*2*) (warp-safe (wait-for-event event1)))

(setf count (esl::event-count event1))
; ...

(*3*) (signal-event event2)))

Figure 3: The RAX Error in LISP

This is the body of one of the concurrent tasks and con-
sists of a loop. The loop starts with a when statement
whose condition is a sequential-or statement3 that states:
if the event counter has not been changed (*1*), then
wait (*2*), else proceed. This behavior is supposed to
avoid waiting on the event queue if events were received
while the process was active. However, if the event oc-
curs between (*1*) and (*2*), it is missed and the pro-
cess goes asleep. Because the other process that produces
those events is itself activated by events created by this
one in (*3*), both end up waiting for each other, a dead-
lock situation.

This follows a similar pattern to the code shown in Fig-
ure 1 that had been identified as a source of error during
the verification of the Executive in 1997, as described in
Section 3.3. This similarity was spotted by members of
both the front-end and back-end teams, and contributed
greatly to narrowing down the verification effort to this
particular potential problem.

3(or X Y) is evaluated like if X then true else Y.

4.4 Demonstrating the Error with JPF

The modeling focused on the code under suspicion for
containing the error. The major two components to be
modeled were events and tasks, as illustrated in Figure 4.
The figure shows a Java class Event from which event
objects can be instantiated. The class has a local counter
variable and two synchronized methods, one for waiting
on the event and one for signaling the event, releasing all
threads having called wait for event. Note how the
counter is incremented by signal event in order to al-
low the tasks to check whether new events have arrived.
The increment is modulo 3 in order to reduce the state
space to be searched by the model checker. This is an in-
formal abstraction in the sense that it has not been proven
to preserve errors. Section 5 explains how an alternative
counter abstraction for this program can be made and au-
tomatically proved correct.

class Eventf
int count = 0;

public synchronized void wait_for_event()f
tryfwait();gcatch(InterruptedException e)fg;

g

public synchronized void signal_event()f
count = (count + 1) % 3;
notifyAll();

g
g

class FirstTask extends Threadf
Event event1,event2;
int count = 0;

public void run()f
count = event1.count;
while(true)f

if (count == event1.count)
event1.wait_for_event();

count = event1.count;
event2.signal_event();

g
g

g

Figure 4: The RAX Error in Java

Figure 4 also shows the definition of one of the tasks.
This is an abstraction (in Java) of the LISP code pre-
sented in Figure 3. The task’s activity is defined in the
run method of the class FirstTask, which itself ex-

tends the Thread class, a built-in Java class that sup-
ports thread primitives. The body of the run method
contains an infinite loop, where in each iteration a con-
ditional call of wait for event is executed. The con-
dition is that no new events have arrived, hence the event
counter is unchanged. After having applied JPF, the SPIN
model checker revealed the deadlock situation described
in Section 4.3. In the Java context a new event arrived af-
ter the test (count == event1.count), but before the
call event1.wait for event().

4.5 Discussion of Methodology

The formal analysis of the Executive after the occurrence
of the anomaly was preceded by a code inspection, which
identified the possible source of the error. Some of us
spotted the potential error situation because it resembled
the similar error we had found using SPIN in 1997, as de-
scribed in Section 3.3. Due to the focus on the particular
code fragment, it was relatively easy to perform the ab-
straction needed to extract a Java program with a small
finite state space. This took about two hours. However,
the suspicion was only a suspicion, and a demonstration
that the code was flawed was provided using JPF. This
showed the usefulness of using a model checker to an-
swer focused queries.

Since the original source code was in LISP, we still
had to translate it by hand in Java, which goes against
JPF’s intended purpose. To avoid that, one would need
an abstraction tool and a translator for LISP. Since LISP’s
future within NASA is questionable we have focused on
providing these technologies for Java. Java is a very con-
venient modeling language, providing most of the high
level features of the powerful Common LISP Object Sys-
tem (CLOS), such as dynamically created objects with
methods and data. The major experience with all ex-
periments done with JPF are obviously that a non-trivial
amount of abstraction is needed in order to reduce the size
of a program’s state space. This problem is addressed in
Section 5.

5 An Abstraction Tool for Java

As a part of the JPF project, we have been developing
an automated abstraction tool which converts a Java pro-
gram to an abstract program with respect to user-specified
abstraction criteria. The user can specify abstractions by
removing variables in the concrete program and/or adding

new variables (currently the tool supports adding boolean
types only) to the abstract program. Given a Java pro-
gram and such abstraction criteria, the tool generates an
abstract Java program in terms of the new abstract vari-
ables and unremoved concrete variables. To compute the
conversion automatically, we use a decision procedure,
SVC (Stanford Validity Checker), which checks the va-
lidity of logical expressions [1].

The abstraction tool is designed to deal with object-
oriented programs. The user can specify abstraction cri-
teria for each class by removing field variables in the class
and/or adding new abstract variables to the class. There-
fore, it can be used to abstract subcomponents in a pro-
gram when the whole program is too complicated to ap-
ply abstraction globally. In addition, the user can specify
new abstract variables which depend on variables from
two different classes (inter-class abstraction).

There has been similar work by others [3, 15], all of
which require use of only global variables to describe
a system in simple languages similar to guarded com-
mands. However, our tool targets a real programming lan-
guage Java and is able to deal with many problems caused
by its object-orientation.

5.1 Application of the Tool to the RA

As we do not have enough space in this paper for a de-
tailed explanation of the abstraction algorithm, let us il-
lustrate the abstraction performed by the abstraction tool
on a part of the RA Java code shown in Figure 4. As
stated before, state explosion occurs because of the un-
bounded increase of the count variable in the Event class
(in the original LISP code) and the assignment of the
count variable in the FirstTask class (as well as in
the SecondTask class which is not shown). Therefore,
we use abstraction to remove those count variables by
specifying Abstract.remove(count) in the classes of
Event and FirstTask. In place of these variables, we
add new abstraction predicates which appear in the pro-
gram with the count variables. For instance, we put
Abstract.addBoolean("FcntEqEcnt",

count==event1.count) in the definition of the
FirstTask class to specify an abstraction predicate:
FirstTask.count is equal to Event.count (For im-
plementation convenience, object names are used to re-
fer to class types.). We also used more inter-class ab-
stractions such as FcntGeEcnt (FirstTask.count is
greater than or equal to Event.count), ScntEqEcnt

(SecondTask.count is equal to Event.count), etc.

This is an example of an inter-class abstraction.
Dealing with such inter-class abstractions is more in-
volved than dealing with the abstractions inside one
class. For each inter-class abstraction, the tool gener-
ates an additional class definition in the abstract pro-
gram, which contains new boolean variables correspond-
ing to the specified predicate. The boolean variables
in the new class are defined as a two-dimensional ar-
ray where each index refers to an object in either of
the two classes. In Figure 5, the new abstract variable
FcntEqEcnt.pred[Fobj][Eobj] corresponds to the
user-defined predicate FcntEqEcnt for an object Fobj
of FirstTask class and an object Eobj of Event class,
i.e., Fobj.count = Eobj.count.

Given the abstraction criteria, we now need to compute
the value of the abstract variables in the abstract program
so that they are consistent with the values of concrete vari-
ables in the program. Figure 5 shows how the abstraction
tool converts the assignment statement, count = count

+ 1 (without the modulo operation) in Figure 4. First,
the concrete assignment statement is omitted in the ab-
stract program because the variable to be assigned has
been removed. Instead, the tool checks which of the new
abstract variables are possibly affected by this assign-
ment and generates corresponding assignments to those
abstract variables. For the example statement, a set of
boolean variables that refers to ‘this’ Event object will
be affected: FcntEqEcnt.pred[i][this] in Figure 5
(Actually, we use functions that return the corresponding
index of a given object). To update those abstract vari-
ables, a for-statement is used. For each of the abstract
variables, the pre-images that leads the abstract variable
to be true (or false) by the assignment are computed.
Then the pre-images are mapped into the abstract domain
by checking validity of the corresponding logical expres-
sions. Finally, the results are used as a guard condition
to set the abstract variables to true (or false). In the ex-
ample, the variable FcntEqEcnt.pred[i][this] will
be set to false if it was true (or if some condition with
another abstract variable holds). Otherwise, the variable
is set to a non-deterministic boolean value. Because the
concrete assignment statement is regarded as atomic, a set
of these abstract assignments are declared as atomic for
the JPF model checker. The additional statements for up-
dating other abstract variables such as FcntGeEcnt are
not shown in the figure.

Verify.beginAtomic();
// count = count + 1;
for(int i = 0; i < FcntEqEcnt.numFirstTask; ++i){
if(FcntEqEcnt.pred[i][FcntEqEcnt.getEvent(this)]

|| FcntGeEcnt.pred[i][FcntGeEcnt.getEvent(this)])
FcntEqEcnt.pred[i][FcntEqEcnt.getEvent(this)] =
false;

else FcntEqEcnt.pred[i][FcntEqEcnt.getEvent(this)]
= Verify.randomBool();

}

// similar code for updating other inter-class
// abstract variables such as FcntGeEcnt, etc.
Verify.endAtomic();

Figure 5: Output of the abstraction tool for the assignment
statement

5.2 Discussion of Methodology

Using the tool, we have been able to obtain an abstract
Java program of the RA code automatically. In the exam-
ple, the unbounded integer variables are replaced by a set
of boolean variables, hence the abstract program is free
from the state explosion. Moreover, use of the tool helps
to avoid error-prone abstractions based on human reason-
ing. The tool generates a sound approximation of the
concrete program using an automated validity checker, al-
though it is not necessarily the most accurate one.

However, the user must give reasonable abstraction cri-
teria for the tool to generate a meaningful abstract pro-
gram in order to check some desired properties. In case
the abstraction criteria are not good enough, the result will
be a too rough abstract program which can not preserve
the properties to be checked.

6 Conclusion

This paper describes two major verification efforts carried
out within the Automated Software Engineering Group
at NASA Ames Research Center. The first effort con-
sisted of analyzing part of the RA autonomous space craft
software using the SPIN model checker. One of the er-
rors found with SPIN, a missing critical section around a
conditional wait statement, was in fact reintroduced in a
different subsystem that was not verified in this first pre-
flight effort. This error caused a real deadlock in the RA
during flight in space.

Such concurrency-related errors only happen as the re-
sult of particular scheduling circumstances. Scheduling is
totally uncontrolled when tests are run, and is highly sen-

sitive to variations in the operating environment (e.g. op-
erating system, other running tasks). This explains why
the anomaly happened in flight, though it had not oc-
curred even once in thousands of previous runs on the
various ground testbeds.

Developing the formal model of the program was, how-
ever, a time consuming task, requiring a manual trans-
lation from the RA LISP code to the PROMELA lan-
guage of the SPIN model checker. In addition, code de-
tails had to be abstracted away in order to obtain a small
enough finite state system that could be effectively model
checked. The translation difficulty spawned the initiative
to automate the translation from high level programming
languages to modeling languages for formal verification,
such as PROMELA. Java was chosen as the source lan-
guage because of its modern programming language con-
structs, such as support for object-oriented programming,
and the standardization across implementations of its con-
currency constructs. An automatic translator from Java to
PROMELA was designed and implemented, called Java
PathFinder (JPF). With JPF one can model check smaller
Java programs for assertion violations, deadlocks, and
general linear temporal logic properties. The translator
covers a substantial subset of Java, illustrating the feasi-
bility of the approach.

In the second effort, JPF was used for modeling the
RAX deadlock after it occurred. That is, after the front-
end team isolated a reduced subset of the code that likely
included the error, the back-end team developed a Java
program which exposed the error. The translator trans-
lated this into a PROMELA model, and the model check-
ing of this model then immediately revealed the error.
Java turned out to be an excellent choice as a modeling
language, with a high level of abstraction, due to its object
oriented features. In later work, a system that automates
certain aspects of predicate abstraction was developed and
successfully demonstrated on the same example.

This experience gave a clear demonstration that model
checking can locate errors that are very hard to find with
normal testing and can nevertheless compromise a sys-
tem’s safety. It stands as one of the more successful ap-
plications of formal methods to date. In its report of the
RAX incident, the RAX team indeed acknowledges that
it “provides a strong impetus for research on formal veri-
fication of flight critical systems” [13].

A posteriori, given the successful partial results, one
can wonder why the first verification effort was not ex-
tended to the rest of the Executive, which might have

spotted the error before it occurred in flight. There are
two reasons for that. First, the purpose of the effort was
to evaluate the verification technology, not to validate the
RA. The ASE team did not have the mission nor the re-
sources needed for a full-scale modeling and verification
effort. Second, the part of the code in which the error was
found has been written after the end of the first verifica-
tion experience.

Regarding software verification, the work presented
here demonstrates two main points. First of all, we be-
lieve that it is worthwhile to do source code verification
since code may contain serious errors that probably will
not reveal themselves in a design. Hence, although design
verification may have the economical benefit of catching
errors early, code verification will always be needed to
catch errors that have survived any good practice. Code
will always by definition contain more details than the
design – any such detail being a potential contributor to
failure.

Second, we believe that model checking source code is
practical. The translation issue can be fully automated,
as we have demonstrated. The remaining technical chal-
lenge is scaling the technology to work with larger pro-
grams - programs that could have very large state spaces
unless suitably abstracted. Abstraction is of course a ma-
jor obstacle, but our experience has been that this effort
can be minimized given a set of supporting tools.

Acknowledgments

We would like to thank Erann Gat, the developer of ESL,
for his useful responses to our error reports. We also want
to thank Ron Keesing and Barney Pell, of the RA pro-
gramming team, for explaining parts of the Executive and
suggesting properties to be verified. We also appreciate
Pandu Nayak, Kanna Rajan, Gregory Dorais, and Nicola
Muscettola for their comments on our second verification
effort. Finally, but certainly not least, we want to thank
SPIN’s designer, Gerard Holzmann, for his always reli-
able support during the work.

References

[1] C. Barrett, D. Dill, and J. Levitt. Validity Checking
for Combinations of Theories with Equality. In For-
mal Methods In Computer-Aided Design, volume
1166 of Lecture Notes in Computer Science, pages
187–201. Springer-Verlag, November 1996.

[2] D. Bernard et al. Spacecraft Autonomy Flight Ex-
perience: The DS1 Remote Agent Experiment. In
Proceedings of the AIAA 1999, Albuquerque, NM,
1999.

[3] M. Colón and T. Uribe. Generating Finite-State Ab-
stractions of Reactive Systems using Decision Pro-
cedures. In Proceedings of the 10th Conference on
Computer-Aided Verification, volume 1427 of Lec-
ture Notes in Computer Science, pages 293–304.
Springer-Verlag, July 1998.

[4] J. Corbett. Constructing Compact Models of Con-
current Java Programs. In Proceedings of the ACM
Sigsoft Symposium on Software Testing and Analy-
sis, March 1998. Clearwater Beach, Florida.

[5] C. Demartini, R. Iosif, and R. Sisto. Modeling and
Validation of Java Multithreading Applications us-
ing SPIN. In Proceedings of the 4th SPIN Workshop,
November 1998. Paris, France.

[6] K. Havelund. Java PathFinder, A Translator from
Java to Promela. In Theoretical and Practical As-
pects of SPIN Model Checking – 5th and 6th In-
ternational SPIN Workshops, volume 1680 of Lec-
ture Notes in Computer Science. Springer-Verlag,
July and September 1999. Trento, Italy – Toulouse,
France (presented at the 6th Workshop).

[7] K. Havelund, M. Lowry, and J. Penix. Formal Anal-
ysis of a Space Craft Controller using SPIN. In Pro-
ceedings of the 4th SPIN workshop, Paris, France,
November 1998. To appear in IEEE Transactions of
Software Engineering.

[8] K. Havelund and T. Pressburger. Model Checking
Java Programs using Java PathFinder. To appear
in a special issue of International Journal on Soft-
ware Tools for Technology Transfer (STTT) contain-
ing selected submissions to the 4th SPIN workshop,
Paris, France, 1998, February 1999.

[9] K. Havelund and J. Skakkebæk. Applying Model
Checking in Java Verification. In Theoretical
and Practical Aspects of SPIN Model Checking –
5th and 6th International SPIN Workshops, vol-
ume 1680 of Lecture Notes in Computer Science.
Springer-Verlag, July and September 1999. Trento,
Italy – Toulouse, France (presented at the 6th Work-
shop).

[10] G. Holzmann. The Design and Validation of Com-
puter Protocols. Prentice Hall, 1991.

[11] N. Muscettola. HSTS: Integrating Planning and
Scheduling. Morgan Kaufman, 1994.

[12] N. Muscettola, P. Nayak, B. Pell, and B. Williams.
Remote Agent: To Boldly Go Where No AI Sys-
tem Has Gone Before. Artificial Intelligence, 103(1-
2):5–48, August 1998.

[13] P. Nayak et al. Validating the DS1 Remote Agent
Experiment. In Proceedings of the 5th International
Symposium on Artificial Intelligence, Robotics and
Automation in Space (iSAIRAS-99). ESTEC, Noord-
wijk, 1999.

[14] B. Pell, D. Bernard, S. Chien, E. Gat, N. Muscet-
tola, P. Nayak, M. Wagner, and B. Williams. An Au-
tonomous Spacecraft Agent Prototype. Autonomous
Robots, 5(1), March 1998.

[15] H. Saı̈di and N. Shankar. Abstract and Model
Check While You Prove. In Proceedings of the
11th Conference on Computer-Aided Verification,
volume 1633 of Lecture Notes in Computer Science,
pages 443–454. Springer-Verlag, July 1999.

[16] B. Williams and P. Nayak. A Model-Based Ap-
proach to Reactive Self-Configuring Systems. In
Proceedings of AAAI-96, 1996.

