
doi:10.1145/1785414.1785443

July 2010 | vol. 53 | no. 7 | communications of the acm 89

x86-TSO: A Rigorous and
Usable Programmer’s Model
for x86 Multiprocessors
By Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen

Abstract
Exploiting the multiprocessors that have recently become
ubiquitous requires high-performance and reliable concur-
rent systems code, for concurrent data structures, operating
system kernels, synchronization libraries, compilers, and
so on. However, concurrent programming, which is always
challenging, is made much more so by two problems. First,
real multiprocessors typically do not provide the sequen-
tially consistent memory that is assumed by most work
on semantics and verification. Instead, they have relaxed
memory models, varying in subtle ways between proces-
sor families, in which different hardware threads may have
only loosely consistent views of a shared memory. Second,
the public vendor architectures, supposedly specifying what
programmers can rely on, are often in ambiguous informal
prose (a particularly poor medium for loose specifications),
leading to widespread confusion.

In this paper we focus on x86 processors. We review sev-
eral recent Intel and AMD specifications, showing that all
contain serious ambiguities, some are arguably too weak to
program above, and some are simply unsound with respect
to actual hardware. We present a new x86-TSO programmer’s
model that, to the best of our knowledge, suffers from none
of these problems. It is mathematically precise (rigorously
defined in HOL4) but can be presented as an intuitive abstract
machine which should be widely accessible to working pro-
grammers. We illustrate how this can be used to reason
about the correctness of a Linux spinlock implementation
and describe a general theory of data-race freedom for x86-
TSO. This should put x86 multiprocessor system building on
a more solid foundation; it should also provide a basis for
future work on verification of such systems.

1. INTRODUCTION
Multiprocessor machines, with many processors acting on a
shared memory, have been developed since the 1960s; they are
now ubiquitous. Meanwhile, the difficulty of programming
concurrent systems has motivated extensive research on
programming language design, semantics, and verification,
from semaphores and monitors to program logics, software
model checking, and so forth. This work has almost always
assumed that concurrent threads share a single sequentially
consistent memory,21 with their reads and writes interleaved
in some order. In fact, however, real multiprocessors use
sophisticated techniques to achieve high performance: store
buffers, hierarchies of local cache, speculative execution,

etc. These optimizations are not observable by sequential
code, but in multithreaded programs different threads may
see subtly different views of memory; such machines exhibit
relaxed, or weak, memory models.6, 7, 17, 19

For a simple example, consider the following assembly
language program (SB) for modern Intel or AMD x86 mul-
tiprocessors: given two distinct memory locations x and y
(initially holding 0), if two processors respectively write 1 to x
and y and then read from y and x (into register EAX on proces-
sor 0 and EBX on processor 1), it is possible for both to read
0 in the same execution. It is easy to check that this result can-
not arise from any interleaving of the reads and writes of the
two processors; modern x86 multiprocessors do not have a
sequentially consistent semantics.

Microarchitecturally, one can view this particular example
as a visible consequence of store buffering: if each proces-
sor effectively has a FIFO buffer of pending memory writes
(to avoid the need to block while a write completes), then the
reads from y and x could occur before the writes have propa-
gated from the buffers to main memory.

Other families of multiprocessors, dating back at least
to the IBM 370, and including ARM, Itanium, POWER, and
SPARC, also exhibit relaxed-memory behavior. Moreover,
there are major and subtle differences between different pro-
cessor families (arising from their different internal design
choices): in the details of exactly what non-sequentially-con-
sistent executions they permit, and of what memory barrier
and synchronization instructions they provide to let the pro-
grammer regain control.

For any of these processors, relaxed-memory behavior
exacerbates the difficulties of writing concurrent software,
as systems programmers cannot reason, at the level of
abstraction of memory reads and writes, in terms of an intui-
tive concept of global time.

This paper is based on work that first appeared in the
Proceedings of the 36th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), 2009, and
in the Proceedings of the 22nd International Conference on
Theorem Proving in Higher-Order Logics (TPHOLs), 2009.

SB
Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[y]

MOV [y]¬1
MOV EBX¬[x]

Allowed Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

90 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

addressing modes, etc., can then be used to generate both
an event-based semantics that can be integrated with mem-
ory models, and a state-based semantics for sequential pro-
grams; the latter enables us to test the semantics against
implementations. We also build an instruction decoding
function, directly from the vendor documentation, to support
reasoning about concrete machine code.

The intended scope of x86-TSO is typical user code and
most kernel code: we cover programs using coherent write-
back memory, without exceptions, misaligned or mixed-size
accesses, “nontemporal” operations (e.g., MOVNTI), self-
modifying code, or page-table changes. Within this domain,
and together with our earlier instruction semantics, x86-
TSO thus defines a complete semantics of programs.

Relaxed memory models play an important role also in
the design of high-level concurrent languages such as Java or
C++0x, where programs are subject not just to the memory
model of the underlying processor but also to reorderings
introduced by compiler optimizations. The Java Memory
Model24 attempts to ensure that data-race free (DRF) pro-
grams are sequentially consistent; all programs satisfy
memory safety/security properties; and common compiler
optimizations are sound. Unfortunately, as shown by Ševčík
and Aspinall,33 the last goal is not met. In the future, we hope
that it will be possible to prove correctness of implemen
tations of language-level memory models above the models
provided by real-world processors; ensuring that both are
precisely and clearly specified is a first step towards that goal.

2. ARCHITECTURE SPECIFICATIONS
To describe what programmers can rely on, processor ven-
dors document architectures. These are loose specifica-
tions, claimed to cover a range of past and future processor
implementations, which should specify processor behavior
tightly enough to enable effective programming, but with-
out unduly constraining future processor designs. For some
architectures, the memory-model aspects of these specifica-
tions are expressed in reasonably precise mathematics, as
in the normative Appendix K of the SPARC v.8 specification.2
For x86, however, the vendor architecture specifications are
informal prose documents. Informal prose is a poor medium
for loose specification of subtle properties, and, as we shall
see, such documents are almost inevitably ambiguous and
sometimes wrong. Moreover, one cannot test programs
above such a vague specification (one can only run programs
on particular actual processors), and one cannot use them
as criteria for testing processor implementations. In this
section, we review the informal-prose Intel and AMD x86
specifications: the Intel 64 and IA-32 Architectures Software
Developer’s Manual (SDM)5 and the AMD64 Architecture
Programmer’s Manual (APM).3 There have been several ver-
sions of these, some differing radically; we contrast them
with each other, and with what we have discovered of the
behavior of actual processors. In the process we introduce
the key discriminating examples.

2.1. Pre-IWP (before Aug. 2007)
Early revisions of the Intel SDM (e.g. rev. 22, Nov. 2006)
gave an informal-prose model called “processor ordering,”

Still worse, while some vendors’ architectural specifi-
cations clearly define what they guarantee, others do not,
despite the extensive previous research on relaxed memory
models. We focus in this paper on x86 processors. In Section
2, we introduce the key examples and discuss several ven-
dor specifications, showing that they all leave key questions
ambiguous, some give unusably weak guarantees, and some
are simply wrong, prohibiting behavior that actual proces-
sors do exhibit.

For there to be any hope of building reliable multipro-
cessor software, systems programmers need to understand
what relaxed-memory behavior they can rely on, but at
present that understanding exists only in folklore, not in
clear public specifications. To remedy this, we aim to pro-
duce mathematically precise (but still appropriately loose)
programmer’s models for real-world multiprocessors, to
inform the intuition of systems programmers, to provide
a sound foundation for rigorous reasoning about multi-
processor programs, and to give a clear correctness crite-
rion for hardware. In Section 3, we describe a simple x86
memory model, x86-TSO.27 In contrast to those vendor spec-
ifications, it is unambiguous, defined in rigorous mathe-
matics, but it is also accessible, presented in an operational
abstract-machine style. To the best of our knowledge it is
consistent with the behavior of actual processors. We con-
sider the relevant vendor litmus tests in Section 3.2 and
describe some empirical test results in Section 3.3.

Relaxed memory behavior is particularly critical for low-
level systems code: synchronization libraries, concurrent
data structure libraries, language runtime systems, com-
pilers for concurrent languages, and so on. To reason (even
informally) about such code, such as the implementation of
an OS mutual exclusion lock, one would necessarily depend
on the details of a specific model. Higher-level application
code, on the other hand, should normally be oblivious to
the underlying processor memory model. The usual expec-
tation is that such code is in some sense race free, with all
access to shared memory (except for accesses within the
library code) protected by locks or clearly identified as syn-
chronization accesses. Most memory models are designed
with the intention that such race-free code behaves as if it
were executing on a sequentially consistent machine. In
Section 4, we describe an implementation of spin locks for
x86, from one version of the Linux kernel, and discuss infor-
mally why it is correct with respect to x86-TSO. In Section
5, we define a precise notion of data race for x86 and dis-
cuss results showing that programs that use spin locks but
are otherwise race-free (except for the races within the lock
implementation) do indeed behave as if executing on a
sequentially consistent machine.26

To support formal reasoning about programs, a memory
model must be integrated with a semantics for machine
instructions (a problem which has usually been neglected
in the relaxed-memory literature). In previous work31, §3 we
describe a semantics for core x86 instructions, with several
innovations. We take care not to over-sequentialize the mem-
ory accesses within each instruction, parameterizing the
instruction semantics over parallel and sequential combina-
tors. A single definition, with all the intricacies of flag-setting,

july 2010 | vol. 53 | no. 7 | communications of the acm 91

and following some testing, IRIW is not observable in
practice, even without MFENCEs. It appears that some
JVM implementations depend on this fact, and would not
be correct if one assumed only the IWP/AMD3.14/x86-CC
architecture.15

Second, more seriously, x86-CC and IWP are unsound with
respect to current processors. The following example, n6, due
to Paul Loewenstein [personal communication, Nov. 2008]
shows a behavior that is observable (e.g., on an Intel Core 2

duo) but that is disallowed by x86-CC and by any interpreta-
tion we can make of IWP principles P1, 2, 4 and 6.27, A.5

To see why this could be allowed by multiprocessors with
FIFO store buffers, suppose that first the Proc 1 write of
[y]=2 is buffered, then Proc 0 buffers its write of [x]=1, reads
[x]=1 from its own store buffer, and reads [y]=0 from main
memory, then Proc 1 buffers its [x]=2 write and flushes its
buffered [y]=2 and [x]=2 writes to memory, then finally Proc
0 flushes its [x]=1 write to memory.

The AMD3.14 manual is not expressed in terms of a
clearly identified set of principles, and the main text (vol. 2,
§7.2) leaves the ordering of stores to a single location uncon-
strained, though elsewhere the manual describes a micro-
architecture with store buffers and cache protocols that
strongly implies that memory is coherent. In the absence of
an analogue of the IWP P6, the reasoning prohibiting n6 does
not carry over.

2.3. Intel SDM rev. 29–34 (Nov. 2008–Mar. 2010)
The most recent substantial change to the Intel memory-
model specification, at the time of writing, was in revision
29 of the Intel SDM (revisions 29–34 are essentially identical
except for the LFENCE text). This is in a similar informal-
prose style to previous versions, again supported by litmus
tests, but is significantly different to IWP/x86-CC/AMD3.14.
First, the IRIW final state above is forbidden,5, Example 8–7, vol. 3A
and the previous coherence condition: “P6. In a multipro-
cessor system, stores to the same location have a total order”
has been replaced by: “Any two stores are seen in a consistent
order by processors other than those performing the stores” (we
label this P9).

Second, the memory barrier instructions are now inclu
ded. It is stated that reads and writes cannot pass MFENCE
instructions, together with more refined properties for
SFENCE and LFENCE

Third, same-processor writes are now explicitly ordered:
“Writes by a single processor are observed in the same order by
all processors” (P10) (we regarded this as implicit in the IWP
“P2. Stores are not reordered with other stores”).

This revision appears to deal with the unsoundness, admit-
ting the n6 behavior above, but, unfortunately, it is still prob-
lematic. The first issue is, again, how to interpret “causality”

unsupported by any examples. It is hard to see precisely
what this prose means, especially without additional
knowledge or assumptions about the microarchitecture
of particular implementations. The uncertainty about
x86 behavior that at least some systems programmers
had about earlier IA-32 processors can be gauged from an
extensive discussion about the correctness of a proposed
optimization to a Linux spinlock implementation.1 The
discussion is largely in microarchitectural terms, not just
in terms of the specified architecture, and seems to have
been resolved only with input from Intel staff. We return to
this optimization in Section 4, where we can explain why it
is sound with respect to x86-TSO.

2.2. IWP/AMD3.14/x86-CC
In August 2007, an Intel White Paper4 (IWP) gave a somewhat
more precise model, with 8 informal-prose principles P1–P8
supported by 10 examples (known as litmus tests). This was
incorporated, essentially unchanged, into later revisions of
the Intel SDM (including rev. 26–28), and AMD gave simi-
lar, though not identical, prose and tests in rev. 3.14 of their
manual3, vol. 2, §7.2 (AMD3.14). These are essentially causal-
consistency models,9 and they allow different processors to
see writes to independent locations in different orders, as
in the IRIW litmus test11 below.  a AMD3.14 allows this explic-
itly, while IWP allows it implicitly, as IRIW is not ruled out by
the stated principles. Microarchitecturally, IRIW can arise

from store buffers that are shared between some but not all
processors.
However, both require that, in some sense, causality is
respected, as in the IWP principle “P5. In a multiprocessor
system, memory ordering obeys causality (memory ordering
respects transitive visibility).”

We used these informal specifications as the basis for a
formal model, x86-CC,31 for which a key issue was giving a
reasonable interpretation to this “causality,” which is not
defined in IWP or AMD3.14. Apart from that, the informal
specifications were reasonably unambiguous—but they
turned out to have two serious flaws.

First, they are arguably rather weak for programmers. In
particular, they admit the IRIW behavior above but, under
reasonable assumptions on the strongest x86 memory
barrier, MFENCE, adding MFENCEs would not suffice to
recover sequential consistency (instead, one would have to
make liberal use of x86 LOCK’d instructions).31, §2.12 Here,
the specifications seem to be much looser than the behavior
of implemented processors: to the best of our knowledge,

a  We use Intel assembly syntax throughout except that we use an arrow ← to
indicate the direction of data flow, so MOV [x]←1 is a write of 1 to address x
and MOV EAX←[x] is a read from address x into register EAX. Initial states
are all 0 unless otherwise specified.

IRIW
Proc 0 Proc 1 Proc 2 Proc 3

MOV [x]¬1 MOV [y]¬1 MOV EAX¬[x]
MOV EBX¬[y]

MOV ECX¬[y]
MOV EDX¬[x]

Forbidden Final State: Proc 2:EAX=1 ∧ Proc 2:EBX=0
∧ Proc 3:ECX=1 ∧ Proc 3:EDX=0

n6
Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[x]
MOV EBX¬[y]

MOV [y]¬2
MOV [x]¬2

Allowed Final State: Proc 0:EAX=1 ∧ Proc 0:EBX=0 ∧ [x]=1

92 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

We emphasize that our aim is a programmer’s model, of
the allowable behaviors of x86 processors as observed by
assembly programs, not of the internal structure of pro-
cessor implementations, or of what could be observed on
hardware interfaces. We present the model in an abstract-
machine style to make it accessible, but are concerned
only with its external behavior; its buffers and locks are
highly abstracted from the microarchitecture of processor
implementations.

The fact that store buffering is observable, as in the SB
and n6 examples, but IRIW is not (and IRIW is explicitly
forbidden in the SDM revs. 29–34 and AMD3.15), together
with additional tests that prohibit many other reorderings,
strongly suggests that, apart from store buffering, all pro-
cessors share the same view of memory. Moreover, differ-
ent processors or hardware threads do not observably share
store buffers. This is in sharp contrast to x86-CC, where each
processor has a separate view order of its memory accesses
and other processors’ writes. To the best of our knowledge,
for the usual write-back memory, no other aspects of the
microarchitecture (the out-of-order execution, cache hier-
archies and protocols, interconnect topology, and so on)
are observable to the programmer, except in so far as they
affect performance.

This is broadly similar to the SPARC Total Store Ordering
(TSO) memory model,2, 32 which is essentially an axiomatic
description of the behavior of store-buffer multiproces-
sors. Accordingly, we have designed a TSO-like model for
x86, called x86-TSO.27 It is defined mathematically in two
styles: an abstract machine with explicit store buffers and
an axiomatic model that defines valid executions in terms
of memory orders; they are formalized in HOL420 and are
proved equivalent. The abstract machine conveys the
programmer-level operational intuition behind x86-TSO;
we describe it informally in the next subsection. The axi-
omatic model supports constraint-based reasoning about
example programs (e.g. by our memevents tool in Section
3.3); it is similar to that of SPARCv8,2, App. K but we also deal
with x86 CISC instructions with multiple memory accesses
and with x86 barriers and atomic (or LOCK’d) instructions.
The x86 supports a range of atomic instructions: one can
add a LOCK prefix to many read–modify–write instructions
(ADD, INC, etc.), and the XCHG instruction is implicitly
LOCK’d. There are three main memory barriers: MFENCE,
SFENCE and LFENCE.

3.1. The abstract machine
Our programmer’s model of a multiprocessor x86 system
is illustrated in Figure 1. At the top of the figure are a num-
ber of hardware threads, each corresponding to a single
in-order stream of instruction execution. (In this program-
mer’s model there is no need to consider physical proces-
sors explicitly; it is the hardware threads that correspond to
the Proc N columns in the tests we give.) They interact with a
storage subsystem, drawn as the dotted box.

The state of the storage subsystem comprises a shared
memory that maps addresses to values, a global lock to
indicate when a particular hardware thread has exclu-
sive access to memory, and one store buffer per hardware

as used in P5. The second issue is one of weakness: the new
P9 says nothing about observations of two stores by those
two processors themselves (or by one of those processors
and one other). The following examples (which we call n5
and n4b) illustrate potentially surprising behavior that argu-
ably violates coherence. Their final states are not allowed in
x86-CC, are not allowed in a pure store-buffer implementa-
tion or in x86-TSO, and we have not observed them on actual
processors. However, the principles stated in revisions 29–34
of the Intel SDM appear, presumably unintentionally, to
allow them. The AMD3.14 vol. 2, §7.2 text taken alone would
allow them, but the implied coherence from elsewhere in
the AMD manual would forbid them. These points illustrate

once again the difficulty of writing unambiguous and correct
loose specifications in informal prose.

2.4. AMD3.15 (Nov. 2009)
In November 2009, AMD produced a new revision, 3.15, of
their manuals. The main difference in the memory-model
specification is that IRIW is now explicitly forbidden.

Summarizing the key litmus-test differences, we have the

following, where √ and × entries are explicit in the specifica-
tion text and starred entries indicate possible deductions,
some of which may not have been intended.
There are also many non-differences: tests for which the
behaviors coincide in all three cases. We return to these,
and go through the other tests from the Intel and AMD
documentation, in Section 3.2.

3. OUR x86-TSO PROGRAMMER’S MODEL
Given these problems with the informal specifications, we
cannot produce a useful rigorous model by formalizing the
“principles” they contain, as we attempted with x86-CC.31
Instead, we have to build a reasonable model that is con-
sistent with the given litmus tests, with observed processor
behavior, and with what we know of the needs of program-
mers, the vendors’ intentions, and the folklore in the area.

n5

Proc 0 Proc 1

MOV [x]¬1
MOV EAX¬[x]

MOV [x]¬2
MOV EBX¬[x]

Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:EBX=1

n4b
Proc 0 Proc 1

MOV EAX¬[x]
MOV [x]¬1

MOV ECX¬[x]
MOV [x]¬2

Forbidden Final State: Proc 0:EAX=2 ∧ Proc 1:ECX=1

IWP/x86-CC 3.14 29–34 3.15 Actual
processors

IRIW
n6
n5/n4b

√* / √
×*/×
×*/×

√
√*
×*

×
√*
√*

×
√*
×*

Not observed
Observed

Not observed

july 2010 | vol. 53 | no. 7 | communications of the acm 93

executing a LOCK’d instruction.

1.	 Rp[a]=u: p can read u from memory at address a if p is
not blocked, there are no writes to a in p’s store buffer,
and the memory does contain u at a.

2.	 Rp[a]=u: p can read u from its store buffer for address a
if p is not blocked and has u as the newest write to a in
its buffer.

3.	 Wp[a]=u: p can write u to its store buffer for address a at
any time.

4.	 tp: if p is not blocked, it can silently dequeue the oldest
write from its store buffer and place the value in mem-
ory at the given address, without coordinating with any
hardware thread.

5.	 Fp: if p’s store buffer is empty, it can execute an MFENCE
(note that if a hardware thread encounters an MFENCE
instruction when its store buffer is not empty, it can
take one or more tp steps to empty the buffer and
proceed, and similarly in 7 below).

6.	 Lp: if the lock is not held, it can begin a LOCK’d
instruction.

7.	 Up: if p holds the lock, and its store buffer is empty, it
can end a LOCK’d instruction.

Technically, the formal versions of these rules27 define a
labeled transition system (with the events as labels) for the
storage subsystem, and we define the behavior of the whole
system as a parallel composition of that and transition sys-
tems for each thread, synchronizing on the non-t labels as
in CCS.25

Additionally, we tentatively impose a progress condi-
tion, that each memory write is eventually propagated from
the relevant store buffer to the shared memory. This is not
stated in the documentation and is hard to test. We are
assured that it holds at least for AMD processors.

For write-back cacheable memory, and the fragment
of the instruction set that we consider, we treat LFENCE
and SFENCE semantically as no-ops. This follows the Intel
and AMD documentation, both of which imply that these
fences do not order store/load pairs which are the only
reorderings allowed in x86-TSO. Note, though, that else-
where it is stated that the Intel SFENCE flushes the store
buffer.5, vol.3A, §11.10

3.2. Litmus tests
For our introductory SB example from Section 1, x86-TSO
permits the given behavior for the same reasons as set forth
there. For each of the examples in Section 2 (IRIW, n6, and
n5/n4b), x86-TSO permits the given final state if and only
if it is observable in our testing of actual processors, i.e.,
for IRIW it is forbidden (in contrast to IWP and AMD3.14),
for n6 it is allowed (in contrast to IWP), and for n5/n4b it
is forbidden (in contrast to the Intel SDM rev. 29–34). For
all the other relevant tests from the current Intel and AMD
manuals the stated behavior agrees with x86-TSO. We now
go through Examples 8–1 to 8–10 from rev. 34 of the Intel
SDM, and the three other tests from AMD3.15, and explain
the x86-TSO behavior in each case.

For completeness we repeat the Intel SDM short

thread.
The behavior of the storage subsystem is described in

more detail below, but the main points are:
˲˲ The store buffers are FIFO and a reading thread must

read its most recent buffered write, if there is one, to that
address; otherwise reads are satisfied from shared memory.

˲˲ An MFENCE instruction flushes the store buffer of that
thread.

˲˲ To execute a LOCK’d instruction, a thread must first ob-
tain the global lock. At the end of the instruction, it flushes
its store buffer and relinquishes the lock. While the lock is
held by one thread, no other thread can read.

˲˲ A buffered write from a thread can propagate to the
shared memory at any time except when some other thread
holds the lock.

More precisely, the possible interactions between the
threads and the storage subsystem are described by the
following events:

˲˲ Wp [a]=u, for a write of value u to address a by thread p
˲˲ Rp [a]=u, for a read of u from a by thread p
˲˲ Fp, for an MFENCE memory barrier by thread p
˲˲ Lp, at the start of a LOCK’d instruction by thread p
˲˲ Up, at the end of a LOCK’d instruction by thread p
˲˲ tp, for an internal action of the storage subsystem, prop-

agating a write from p’s store buffer to the shared memory

For example, suppose a particular hardware thread p has
come to the instruction INC [56] (which adds 1 to the value
at address 56), and p’s store buffer contains a single write to
56, of value 0. In one execution we might see read and write
events, Rp[56]=0 and Wp[56]=1, followed by two tp events as
the two writes propagate to shared memory. Another execu-
tion might start with the write of 0 propagating to shared
memory, where it could be overwritten by another thread.
Executions of LOCK;INC [56] would be similar but bracketed
by Lp and Up events.

The behavior of the storage subsystem is specified by
the following rules, where we define a hardware thread to
be blocked if the storage subsystem lock is taken by another
hardware thread, i.e., while another hardware thread is

Lock

W
rite buffer

W
rite buffer

Shared memory

H/W thread H/W thread

Figure 1. x89-TSO block diagram.

94 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

Example 8–7. Stores Are Seen in a Consistent Order by
Other Processors. This test rules out the IRIW behavior as
described in Section 2.2. x86-TSO forbids the given final state
because the Proc 2 constraints imply that x was written to
shared memory before y whereas the Proc 3 constraints imply
that y was written to shared memory before x.

Example 8–8. Locked Instructions Have a Total
Order. This is the same as the IRIW Example 8–7 but with
LOCK’d instructions for the writes; x86-TSO forbids the final
state for the same reason as above.

Example 8–9. Loads Are not Reordered with Locks.

This test indicates that locking both writes in Example 8–3
would forbid the nonsequentially consistent result. x86-
TSO forbids the final state because LOCK’d instructions
flush the local store buffer. If only one write were LOCK’d
(say the write to x), the Example 8–3 final state would be
allowed as follows: on Proc 1, buffer the write to y and exe-
cute the read x, then on Proc 0 write to x in shared memory
then read from y.

Example 8–10. Stores Are not Reordered with Locks.
This is implied by Example 8–1, as we treat the memory writes
of LOCK’d instructions as stores.

Test amd5.

For x86-TSO, this test has the same force as Example 8.8, but
using MFENCE instructions to flush the buffers instead of
LOCK’d instructions. The tenth AMD test is similar. None of
the Intel litmus tests include fence instructions.

In x86-TSO adding MFENCE between every instruction
would clearly suffice to regain sequential consistency (though
obviously in practice one would insert fewer barriers), in con-
trast to IWP/x86-CC/AMD3.14.

3.3. Empirical testing
To build confidence that we have a sound model of the
behavior of actual x86 processors we have tested the

descriptions of these tests, e.g. “stores are not reordered
with other stores,” but note that “not reordered with” is not
defined there and is open to misinterpretation.27, §3.2

Example 8–1. Stores Are not Reordered with other
Stores.

This test implies that the writes by Proc 0 are seen in order by
Proc 1’s reads, which also execute in order. x86-TSO forbids
the final state because Proc 0’s store buffer is FIFO, and Proc
0 communicates with Proc 1 only through shared memory.

Example 8–2. Stores Are Not Reordered with Older
Loads.

x86-TSO forbids the final state because reads are never
delayed.

Example 8–3. Loads May Be Reordered with Older
Stores. This test is just the SB example from Section 1,
which x86-TSO permits. The third AMD test (amd3) is simi-
lar but with additional writes inserted in the middle of each
thread, of 2 to x and y respectively.

Example 8–4. Loads Are not Reordered with Older
Stores to the Same Location.

x86-TSO requires the specified result because reads must
check the local store buffer.

Example 8–5. Intra-Processor Forwarding Is Allowed.
This test is similar to Example 8–3.

Example 8–6. Stores Are Transitively Visible.

x86-TSO forbids the given final state because otherwise
the Proc 2 constraints imply that y was written to shared
memory before x. Hence the write to x must be in Proc 0’s
store buffer (or the instruction has not executed), when the
write to y is initiated. Note that this test contains the only
mention of “transitive visibility” in the Intel SDM, leaving
its meaning unclear.

Proc 0 Proc 1

MOV [x]←1
MOV [y]←1

MOV EAX←[y]
MOV EBX←[x]

Forbidden Final State: Proc 1:EAX=1 ∧ Proc 1:EBX=0

Proc 0 Proc 1

MOV EAX←[x]
MOV [y]←1

MOV EBX←[y]
MOV [x]←1

Forbidden Final State: Proc 0:EAX=1 ∧ Proc 1:EBX=1

Proc 0

MOV [x]←1
MOV EAX←[x]

Required Final State: Proc 0:EAX=1

Proc 0 Proc 1 Proc 2

MOV [x]←1 MOV EAX←[x]
MOV [y]←1

MOV EBX←[y]
MOV ECX←[x]

Forbidden Final State: Proc 1:EAX=1 ∧ Proc 2:EBX=1 ∧ Proc 2:ECX=0

Proc 0 Proc 1

XCHG [x]←EAX
MOV EBX←[y]

XCHG [y]←ECX
MOV EDX←[x]

Initial state: Proc 0:EAX=1 ∧ Proc 1:ECX=1 (elsewhere 0)

Forbidden Final State: Proc 0:EBX=0 ∧ Proc 1:EDX=0

Proc 0 Proc 1

XCHG [x]←EAX
MOV [y]←1

MOV EBX←[y]
MOV ECX←[x]

Initial state: Proc 0:EAX=1 (elsewhere 0)

Forbidden Final State: Proc 1:EBX=1 ∧ Proc 1:ECX=0

Proc 0 Proc 1

MOV [x]←1
MFENCE
MOV EAX←[y]

MOV [y]←1
MFENCE
MOV EBX←[x]

Forbidden Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

july 2010 | vol. 53 | no. 7 | communications of the acm 95

A spinlock is represented by a signed integer which is 1 if
the lock is free and 0 or less if the lock is held. To acquire
a lock, a thread atomically decrements the integer (which
will not wrap around assuming there are fewer than 231
hardware threads). If the lock was free, it is now held and
the thread can proceed to the critical section. If the lock was
held, the thread loops, waiting for it to become free. Because
there might be multiple threads waiting for the lock, once
it is freed, each waiting thread must again attempt to enter
through the LOCK’d decrement. To release the lock, a thread
simply sets its value to 1.

The optimization in question made the releasing MOV
instruction not LOCK’d (removing a LOCK prefix and hence
letting the releasing thread proceed without flushing its
buffer).

For example, consider a spinlock at address x and let y
be another shared memory address. Suppose that several
threads want to access y, and that they use spinlocks to
ensure mutual exclusion. Initially, no one has the lock and
[x] = 1. The first thread t to try to acquire the lock atomically
decrements x by 1 (using a LOCK prefix); it then jumps into
the critical section. Because a store buffer flush is part of
LOCK’d instructions, [x] will be 0 in shared memory after
the decrement.

Now if another thread attempts to acquire the lock, it
will not jump into the critical section after performing the
atomic decrement, since x was not 1. It will thus enter the
spin loop. In this loop, the waiting thread continually reads
the value of x until it gets a positive result.

Returning to the original thread t, it can read and write
y inside of its critical section while the others are spinning.
These writes are initially placed in t’s store buffer, and some
may be propagated to shared memory. However, it does
not matter how many (if any) are written to main memory,
because (by assumption) no other thread is attempting to
read (or write) y. When t is ready to exit the critical section, it
releases the lock by writing the value 1 to x; this write is put
in t’s store buffer. It can now continue after the critical sec-
tion (in the text below, we assume it does not try to reacquire
the lock).

If the releasing MOV had the LOCK prefix then all of the
buffered writes to y would be sent to main memory, as would
the write of 1 to x. Another thread could then acquire the
spinlock.

However, since it does not, the other threads continue to
spin until the write setting x to 1 is removed from t’s write
buffer and sent to shared memory at some point in the
future. At that point, the spinning threads will read 1 and
restart the acquisition with atomic decrements, and another
thread could enter its critical section. However, because t’s
write buffer is emptied in FIFO order, any writes to y from
within t’s critical section must have been propagated to
shared memory (in order) before the write to x. Thus, the
next thread to enter a critical section will not be able to see y
in an inconsistent state.

5. DATA-RACE FREEDOM
To make a relaxed-memory architecture usable for large-
scale programming, it is highly desirable (perhaps essential)

correspondence between them in various ways.
First, for the memory model, we have a litmus tool that

takes a litmus test (essentially as given in this paper) and
builds a C program with embedded assembly to run the test
repeatedly to try to produce all possible results, taking care
to synchronize the different threads and with some random-
ization of memory usage. We have run these on the Intel and
AMD processors that we have access to. The results can be
compared with the output of a memevents tool that takes
such tests and computes the set of all possible executions
allowed by the x86-TSO model. We use a verified witness
checker, extracted from the HOL4 definition of the model, to
verify that any executions found are indeed allowed.

The results correspond exactly for all the tests given here
and others we have tried, including amd3, n1,31 n7,27 the sin-
gle-XCHG variant of Example 8–9, and an unfenced variant of
RWC.11 In general, though, there may be tests where x86-TSO
allows some final state that cannot be observed in practice,
perhaps because litmus does not drive the processor into
the correct internal state (of store buffers, cache lines, etc.)
to exhibit it, or perhaps because the particular implementa-
tions we tested cannot exhibit it. For example, we have only
seen amd3 on a four-processor (×2 hyperthread) machine
and only very rarely, 4 out of 3.2e9 times. Testing, especially
this black-box testing of a complex and time-dependent sys-
tem, is obviously subject to the usual limitations; it cannot
conclusively prove that some outcome is not possible.

Second, for the behavior of individual instructions, we have
an x86sem tool that generates random instances of instruc-
tions, runs them on an actual machine, and generates a HOL4
conjecture relating the memory and register state before and
after. These conjectures are then automatically verified, by a
HOL4 script, for the 4600 instances that we tried.

4. A LINUX x86 SPINLOCK IMPLEMENTATION
In Section 2.1, we mentioned the uncertainty that arose in a
discussion on a particular optimization for Linux spin-locks.1
In this section, we present a spinlock from the Linux kernel
(version 2.6.24.7) that incorporates the proposed optimization,
as an example of a small but nontrivial concurrent program-
ming idiom. We show how one can reason about this code
using the x86-TSO programmer’s model, explaining in terms
of the model why it works and why the optimization is sound—
thus making clear what (we presume) the developer’s informal
reasoning depended on. For accessibility we do this in prose,
but the argument could easily be formalized as a proof.

The implementation comprises code to acquire and
release a spinlock. It is assumed that these are properly
bracketed around critical sections and that spinlocks are
not mutated by any other code.

On entry the address of spinlock is in register EAX and the spinlock is
unlocked iff its value is 1

acquire: LOCK;DEC   [EAX]            ; LOCK’d decrement of [EAX]
     JNS        enter       ; branch if [EAX] was ≥ 1
spin:     CMP    [EAX],0        ; test [EAX]
     JLE      spin           ; branch if [EAX] was ≤ 0
     JMP      acquire       ; try again
enter: ; the critical section starts here

release:   MOV [EAX]←1

96 communications of the acm | july 2010 | vol. 53 | no. 7

research highlights

than ours is, and is idealized rather than x86-specific. Park
and Dill28 verify programs by model checking them directly
above TSO. Burckhardt and Musuvathi13, App. A also give opera-
tional and axiomatic definitions of a TSO model and prove
equivalence, but only for finite executions. Their models
treat memory reads and writes and barrier events, but lack
instruction semantics and LOCK’d instructions with mul-
tiple events that happen atomically. Hangal et al.18 describe
the Sun TSOtool, checking the observed behavior of pseudo-
randomly generated programs against a TSO model. Roy
et al.29 describe an efficient algorithm for checking whether
an execution lies within an approximation to a TSO model,
used in Intel’s Random Instruction Test (RIT) generator.
Loewenstein et al.22 describe a “golden memory model” for
SPARC TSO, somewhat closer to a particular implementa-
tion microarchitecture than the abstract machine we give in
Section 3, that they use for testing implementations. They
argue that the additional intensional detail increases the
effectiveness of simulation-based verification. Boudol and
Petri12 give an operational model with hierarchical write buf-
fers (thereby permitting IRIW behaviors), and prove sequen-
tial consistency for DRF programs. Burckhardt et al.14 define
an x86 memory model based on IWP.4 The mathematical
form of their definitions is rather different to our axiomatic
and abstract-machine models, using rewrite rules to reorder
or eliminate memory accesses in sets of traces. Their model
validates the 10 IWP tests and also some instances of IRIW
(depending on how parallel compositions are associated),
so it will not coincide with x86-TSO or x86-CC. Saraswat et
al.30 also define memory models in terms of local reordering,
and prove a DRF theorem, but focus on high-level languages.

7. CONCLUSION
We have described x86-TSO, a memory model for x86 proces-
sors that does not suffer from the ambiguities, weaknesses,
or unsoundnesses of earlier models. Its abstract-machine
definition should be intuitive for programmers, and its
equivalent axiomatic definition supports the memevents
exhaustive search and permits an easy comparison with
related models; the similarity with SPARCv8 suggests x86-
TSO is strong enough to program above. This work high-
lights the clarity of mathematically rigorous definitions, in
contrast to informal prose, for subtle loose specifications.

We do not speak for any x86 vendor, and it is, of course,
entirely possible that x86-TSO is not a good description of
some existing or future x86 implementation (we would be
very interested to hear of any such example). Nonetheless, we
hope that this will clarify the semantics of x86 architectures
as they exist, for systems programmers, hardware developers,
and those working on the verification of concurrent software.

Acknowledgments
We thank Luc Maranget for his work on memevents and
litmus, Tom Ridge, Thomas Braibant and Jade Alglave for
their other work on the project, and Hans Boehm, David
Christie, Dave Dice, Doug Lea, Paul Loewenstein, and Gil
Neiger for helpful remarks. We acknowledge funding from
EPSRC grants EP/F036345 and EP/H005633 and ANR grant
ANR-06-SETI-010-02.�

to identify programming idioms which ensure that one can
reason in terms of a traditional interleaving model of con-
currency, showing that any relaxed memory execution is
equivalent to one that is possible above a sequentially con-
sistent memory model. One common idiom with this prop-
erty is data-race freedom. Informally, a program has a data
race if multiple threads can access the same location (where
at least one is writing to the location) without a synchroni-
zation operation separating the accesses. Programs where
every shared access is in a critical section are one common
example of DRF programs.

A variety of relaxed models, both for processors and for
programming languages, have been proved to support sequen
tially consistent semantics for DRF programs.8, 9, 10, 12, 16, 23
Saraswat et al.30 call supporting sequentially consistent
semantics for DRF programs the “fundamental property”
of a relaxed memory model, and indeed memory models
have sometimes been defined in these terms.6 However,
for a processor architecture, we prefer to define a memory
model that is applicable to arbitrary programs, to support
reasoning about low-level code, and have results about well-
behaved programs as theorems above it.

The details of what constitutes a data race, or a synchro-
nization operation, vary from model to model. For x86-TSO,
we define two events on different threads to be competing if
they access the same address, one is a write, and the other
is a read (for aligned x86 accesses, it is not necessary to con-
sider write/write pairs as competing). We say that a program
is data race free if it is impossible for a competing read/write
pair to execute back-to-back. Critically, we require this prop-
erty only of sequentially consistent executions (equivalently,
the x86-TSO executions where store buffers are always
flushed immediately after each write).

We have proved that x86-TSO supports interleaving
semantics for DRF programs. However, this theorem alone
is not often useful, because most programs do contain data
races at this level of abstraction. For example, the read in the
spin loop of Section 4’s spinlock races with the write in the
release. We have, therefore, identified an extended notion
of data race freedom that the spinlock code does satisfy,
and we have used it to prove that, for well-synchronized pro-
grams using the spinlock, every x86-TSO execution has an
equivalent sequentially consistent execution.26

Thus, the relaxed nature of x86-TSO is provably not a
concern for low-level systems code that uses spinlocks to
synchronize. Extending this result to other synchronization
primitives, and to code compiled from high-level languages,
is a major topic for future work.

6. RELATED WORK
There is an extensive literature on relaxed memory models,
but most of it does not address x86. We touch here on some
of the most closely related work.

There are several surveys of weak memory models, includ-
ing those by Adve and Gharachorloo,6 Luchango,23 and
Higham et al.19 The latter, in particular, formalizes a range
of models, including a TSO model, in both operational and
axiomatic styles, and proves equivalence results. Their axi-
omatic TSO model is rather closer to the operational style

july 2010 | vol. 53 | no. 7 | communications of the acm 97

	 1.	L inux kernel mailing list, thread
"spin_unlock optimization (i386)",
119 messages, Nov. 20–Dec. 7, 1999,
http://www.gossamer-threads.com/
lists/engine?post=105365;list=linux.
Accessed 2009/11/18.

	 2.	 The SPARC Architecture Manual, V.
8. SPARC International, Inc., 1992.
Revision SAV080SI9308. http://www.
sparc.org/standards/V8.pdf.

	 3.	 AMD64 Architecture Programmer’s
Manual (3 vols). Advanced Micro
Devices, Sept. 2007. rev. 3.14.

	 4.	 Intel 64 architecture memory
ordering white paper, 2007. Intel
Corporation. SKU 318147-001.

	 5.	 Intel 64 and IA-32 Architectures
Software Developer’s Manual (5 vols).
Intel Corporation, Mar. 2010. rev. 34.

	 6.	 Adve, S. Gharachorloo, K. Shared
memory consistency models: A
tutorial. IEEE Comput. 29, 12 (Dec.
1996), 66–76.

	 7.	 Adve, S.V., Boehm, H.-J. Memory
models: A case for rethinking parallel
languages and hardware. C. ACM. To
appear.

	 8.	 Adve, S.V., Hill, M.D. A unified
formalization of four shared-memory
models. IEEE Trans. Parallel Distrib.
Syst. 4, 6 (1993), 613–624.

	 9.	 Ahamad, M., Neiger, G., Burns, J.,
Kohli, P., Hutto, P. Causal memory:
Definitions, implementation, and
programming. Distrib. Comput. 9, 1
(1995), 37–49.

	10.	 Aspinall, D., Ševčík J. Formalising
Java’s data race free guarantee. In
Proc. TPHOLs, LNCS 4732 (2007),
22–37.

	11.	B oehm, H.-J.. Adve, S. Foundations of
the C++ concurrency memory model.

In Proceedings of PLDI (2008).
	12.	B oudol, G., Petri, G. Relaxed memory

models: An operational approach.
In Proceedings of POPL, 2009.

	13.	B urckhardt, S., Musuvathi, M.
Effective program verification for
relaxed memory models. Technical
Report MSR-TR-2008-12, Microsoft
Research, 2008. Conference version
in Proceedings of CAV, LNCS 5123
(2008).

	14.	B urckhardt, S., Musuvathi, M., Singh,
V. Verifying compiler transformations
for concurrent programs, Jan. 2009.
Technical report MSR-TR-2008-171.

	15.	 Dice, D. Java memory model
concerns on Intel and AMD systems.
http://blogs.sun.com/dave/entry/
java_memory_model_concerns_on,
Jan. 2008.

	16.	 Friedman, R. Consistency conditions
for distributed shared memories.
Israel Institute of Technologie, 1994.

	17.	 Gharachorloo, K. Memory consistency
models for shared-memory
multiprocessors. WRL Res. Rep. 95, 9
(1995).

	18.	H angal, S., Vahia, D., Manovit, C.,
Lu, J.-Y.J., Narayanan, S. TSOtool:
A program for verifying memory
systems using the memory
consistency model. In Proceedings of
ISCA (2004), 114–123.

	19.	H igham, L., Kawash, J., Verwaal, N.
Weak memory consistency models
part I: Definitions and comparisons.
Technical Report98/612/03,
Department of Computer Science,
The University of Calgary, January,
1998. Full version of a paper in PDCS
1997.

	20.	 The HOL 4 system. http://hol.

sourceforge.net/.
	21.	L amport, L. How to make a

multiprocessor computer that
correctly executes multiprocess
programs. IEEE Trans. Comput. C-28,
9 (1979), 690–691.

	22.	L oewenstein, P.N., Chaudhry, S.,
Cypher, R., Manovit, C. Multiprocessor
memory model verification. In
Proceedings of AFM (Automated
Formal Methods) (Aug. 2006). FLoC
workshop. http://fm.csl.sri.com/
AFM06/.

	23.	L uchango, V.M. Memory consistency
models for high-performance
distributed computing. PhD thesis,
MIT, 2001.

	24.	 Manson, J., Pugh, W., Adve, S. The
Java memory model. In Proceedings
of POPL (2005).

	25.	 Milner, R. Communication and
Concurrency. Prentice Hall
International, 1989.

	26.	O wens, S. Reasoning about the
implementation of concurrency
abstractions on x86-TSO. In
Proceedings of ECOOP (2010).
To appear.

	27.	O wens, S., Sarkar, S., Sewell, P. A
better x86 memory model: x86-TSO.
In Proceedings of TPHOLs, LNCS
5674 (2009), 391–407. Full version as
Technical Report UCAM-CL-TR-745,

Univ. of Cambridge.
	28.	 Park, S., Dill, D.L. An executable

specification and verifier for relaxed
memory order. IEEE Trans. Comput.
48, 2 (1999), 227–235.

	29.	 Roy, A., Zeisset, S., Fleckenstein, C.J.,
Huang, J.C. Fast and generalized
polynomial time memory consistency
verification. In CAV (2006), 503–516.

	30.	S araswat, V., Jagadeesan, R.,
Michael, M., von Praun, C. A theory of
memory models. In Proceedings of
PPoPP (2007).

	31.	S arkar, S., Sewell, P., Zappa Nardelli,
F., Owens, S., Ridge, T., Braibant, T.,
Myreen, M., Alglave, J. The semantics
of x86-CC multiprocessor machine
code. In Proceedings of POPL 2009
(Jan. 2009).

	32.	S indhu, P.S., Frailong, J.-M., Cekleov,
M. Formal specification of memory
models. In Scalable Shared Memory
Multiprocessors, Kluwer, 1991,
25–42.

	33.	 Ševcík, J., Aspinall, D. On validity of
program transformations in the Java
memory model. In ECOOP (2008),
27–51.

References

© 2010 ACM 0001-0782/10/0700 $10.00

Peter Sewell (http://www.cl.cam.
ac.uk/~pes20), University of Cambridge.

Susmit Sarkar (http://www.cl.cam.
ac.uk/~ss726), University of Cambridge.

Scott Owens (http://www.cl.cam.
ac.uk/~so294), University of Cambridge.

Francesco Zappa Nardelli (http://www.
moscova.inria.fr/~zappa), INRIA.

Magnus O. Myreen (http://www.cl.cam.
ac.uk/~mom22), University of Cambridge.

ˇ

Announcing ACM’s Newly Improved
Career & Job Center!

Are you looking for your next IT job? Do you need Career Advice?

Visit ACM’s newly enhanced career resource at:
http://www.acm.org/careercenter

◆ ◆ ◆ ◆ ◆

The ACM Career & Job Center offers ACM members a host of benefits including:
➜ A highly targeted focus on job opportunities in the computing industry
➜ Access to hundreds of corporate job postings
➜ Resume posting keeping you connected to the employment market while letting you maintain full

control over your confidential information
➜ An advanced Job Alert system that notifies you of new opportunities matching your criteria
➜ Career coaching and guidance from trained experts dedicated to your success
➜ A content library of the best career articles complied from hundreds of sources, and much more!

The ACM Career & Job Center is the perfect place to
begin searching for your next employment opportunity!

Visit today at http://www.acm.org/careercenter

