
SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 1

SPIN 2004 Tutorial Barcelona, Spain, April 2004

Advanced
SPIN Tutorial

Gerard Holzmann

NASA/JPL Laboratory for
Reliable Software

Pasadena, CA

email: gholzmann@acm.org
http://spinroot.com/gerard

Theo Ruys

University of Twente
The Netherlands

email: ruys@cs.utwente.nl
http://www.cs.utwente.nl/~ruys/

2Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Common Design Flaws

• Deadlock
• Livelock, starvation
• Underspecification

unexpected reception
of messages

• Overspecification
dead code

• Violations of constraints
buffer overruns
array bounds violations

• Assumptions about speed
logical correctness vs.
real-time performance

Designing concurrent (software)
systems is so hard, that these
flaws are often overlooked...

Fortunately, most of these
design errors can be detected

using model checking techniques

In designing distributed systems:
network applications,
data communication protocols,
multithreaded code,
client-server applications.

3Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Model Checking

byte n;
proctype Aap() {

do
:: n++
:: noot!MIES
od

}

Model M

[] (n<3)

Property φφφφ

Model Checker

State Space

YES,
property is
satisfied

NO,
+ trace to

error

ϕ=|M

state space explosion: state
space can grow exponentially

in the number of parallel
components.

4Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Verification vs. Debugging

• Two approaches with respect to the application of model
checkers.

verification approach: tries to ascertain the correctness of a
detailed model M of the system under validation.
debugging approach: tries to find errors in a model M.

• Model checking is often most effective as a design
debugging approach.

Automatic verification is not just good for
proving correctness. It also excels at finding
bugs very early in the design of a new system.

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 2

5Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

System Development

System
Engineering

Analysis

Design

Code

Testing

Maintenance

“Modern”
Model Checking

“Classic”
Model Checking

Classic “waterfall model”
[Pressman 1996]

6Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

To cope with the
state space explosion.

Classic vs Modern Approach

Model
Checker

Abstract
Verification Model

(initial) Design

Implementation

(manual)
abstractions

refinement
techniques

Modern Approach

abstraction
techniques

Abstract
Verification Model

Implementation

C, Java

Abstraction is the key activity
in both approaches.

1st Part 2nd Part

Classic Approach

7Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Overview

Tutorial - Part 1

Introduction

Effective SPIN: the art of
Promela Modelling

Lossy channels

Dealing with time

Checking Invariance

Systematic Verification

Solving optimisation
problems with SPIN 4.x

Tutorial - Part 2

• How SPIN works:
Some automata theory

• Complexity issues
Reduction and compression

• Model extraction
Software model checking

8Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

SPIN – Introduction

• Major versions:

embedded C code; BFS; data abstractionJan 20034.0
minimised automaton representationApr 19973.0
partial order reductionJan 19952.0
initial version (first Spin book)Jan 19911.0

• Some success factors of SPIN
– “push the button” verification style (model checker)
– very efficient implementation (using C)
– nice graphical user interface (Xspin)
– not just a research tool, but well supported
– contains more than two decades research on advanced

computer aided verification (many optimization algorithms)

1983 Unix
1986 TeX
1997 Tcl/Tk
2001 SPIN
2002 Java

2001

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 3

9Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Documentation on SPIN

• SPIN’s home page:
http://spinroot.com

Basic SPIN manual
Getting started with Xspin
Getting started with SPIN
Examples and Exercises
Concise Promela Reference (by Rob Gerth)
Proceedings of all SPIN Workshops

• Gerard’s website with many papers on SPIN:
http://spinroot.com/gerard/abs.html

• SPIN version 1.0 is described in [Holzmann 1991]

New book: Gerard J. Holzmann
The Spin Model Checker

Primer and Reference Manual
Addison Wesley, 2004

ISBN 0-32122-862-6, 608 pages.
describes SPIN up to version 4.0.

available in PDF from spinroot.com

10Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Promela Model

• A Promela model consist of:

type declarations

channel declarations

global variable declarations

process declarations

[init process] behavior of the processes:
local variables + statements

- simple vars
- structured vars
- vars can be accessed
by all processes

initialises variables and
starts processes

chan ch = [cap] of {type, …}
asynchronous: cap > 0
rendez-vous: cap == 0

mtype, constants,
typedefs (records)

11Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Promela constructs

assignment ------ always executable
expression ------ executable if non-zero (i.e., true)
send (ch!) ----- executable if channel ch is not full
receive (ch?) --- executable if channel ch is not empty
assert(<expr>)-- always executable
printf -------- always executable

skip --------- always executable (equivalent to 1 or true)
timeout ------- variable, true if no other statement is executable

if ------------ executable if at least one guard is executable
do ------------ executable if at least one guard is executable
atomic { ... } ----- executable if first statement is executable
d_step { ... } ----- executable if first statement is executable

goto ---------- jump to label
break --------- exit do-statement

are either executable or blocked

most important
Promela constructs

six basic
statements

expression
statements

control-flow
specifiers

compound
statements

specifiers like “;” and “->”,
also only specify control-flow

12Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

mtype = {REQ,ACK};
typedef Msg {
byte a[2];
mtype tp;

} ;
chan toR = [1] of {Msg};
bool flag;

proctype Sender() {
Msg m;
...
m.a[0]=2; m.a[1]=7; m.tp = REQ;
toR ! m;

}

proctype Receiver(byte n) {
Msg m;
...
toR ? m;

}

init {
run Sender();
run Receiver(2);

}

Promela Example

A Promela model corresponds with a (usually
very large, but) finite transition system, so

no unbounded data
no unbounded channels
no unbounded processes
no unbounded process creation

channel declaration

creates processes

global variable

local variable

message types (constants)

“record” declaration

sending a message

receving a message

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 4

13Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Basic recipe to check

1. Sanity check
Interactive and random simulations.

2. Partial check
Use SPIN’s bitstate hashing mode to quickly sweep over the
state space.

3. Exhaustive check
If this fails, SPIN supports several options to proceed:
1. Compression (of state vector)
2. Optimisations (SPIN-options or manually)
3. Abstractions (manually, guided by SPIN’s slicing algorithm)
4. Bitstate hashing variants like HashCompact

states not stored; fast method

ϕ=|M

Properties:
1. deadlock
2. assertions
3. invariance
4. liveness (LTL)

14Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Xspin

ϕϕϕϕ
•deadlocks
•safety properties
•liveness properties

ϕ=|M
M

verifier generatorsimulator LTL translator

spin.exe

Promela

ANSI C

=|

error (+ counter example)

pan.*

(g)cc

verifier

random
guided

interactive

(X
)S

p
in

A
rch

ite
ctu

re

no error

Several improvements
over last few years.

15Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

while (! error & ! allBlocked) do
ActionList menu = getCurrentExecutableActions();
allBlocked = (menu.size() == 0);
if (! allBlocked)

Action act = menu.chooseRandom();
error = act.execute();

fi
od

Simulation Algorithm

act is executed and the
system enters a new state

interactive simulation:
act is chosen by the user

Visit all processes and collect
all executable actions .

deadlock ≡ allBlocked

s t
act

16Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

procedure dfs(s: state)
if error(s) then report error fi
add s to Statespace
foreach successor t of s do

if t not in Statespace then dfs(t) fi
od

end dfs

Verification Algorithm (1)

• SPIN uses a depth first search algorithm (DFS) to generate
and explore the complete state space.

• Note that statespace construction and error checking happen
at the same time: SPIN is an on-the-fly model checker.

states are stored in hash table

the old states s are kept on the dfs-stack, which
corresponds with a complete execution path

state matchingOnly works
for safety

properties.

s t
act

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 5

17Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Process automaton (1)

• Every promela proctype defines a finite state
automaton, (S, s0, L, T, F), where

S is a set of states
s0 is the initial state, s0 ∈∈∈∈ S
L is a finite set of labels
T is a set of transitions, T ⊆⊆⊆⊆ S ×××× L ×××× S
F is a set of final states, F ⊆⊆⊆⊆ S

A label l ∈∈∈∈ L is one of the
six basic statements:

• assignment
• assert
• printf
• send (!)
• receive (?)
• expression

other Promela statements
serve to specify possible flow
of control, i.e. the transition

relation T.

18Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Process automaton (2)

proctype gcd(int x, y) {
L: if

:: (x > y) -> x = x-y; goto L
:: (x < y) -> y = y-x; goto L
:: (x == y) -> assert(x == y);
fi;
printf("gcd = %d\n", x)

}

To generate automaton:
spin –a –o3 gcd.pr
gcc –o pan pan.c
pan -d

Can also from
within Xspin

-o3 is to disable
statement merging

S9

S5S2 S8

S11

S12

S0

x==y

x>y x<y

x=x-y y=y-x

assert

printf

-end-

Each process has
an implicit -end-

transition in which
the process dies...

19Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Verification Algorithm (2)

P1 P2 Pn…

interleaving
product

SBuchi
Automaton

ϕ

¬ϕ

A Büchi
Automaton

translation

language
intersection

The intersection X should be empty. If non-empty,
Spin searches for a reachable accepting state in
the intersection that is reachable from itself. This
is implemented by a nested DFS procedure.
See [Holzmann 1996 et. al. – DFS] for details. Based on

[Vardi & Wolper 1986].

accepts
words

never claim

20Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Verification of Properties

safety property
“nothing bad ever happens”

invariance
x is always less than 5

deadlock freedom
the system never reaches a
state where no actions are
possible

liveness property
“something good will eventually
happen”

termination
the system will eventually
terminate
response
if action X occurs then
eventually action Y will occur

SPIN: find a trace leading to the
“bad” thing. If there is not such

a trace, the property is satisfied.

SPIN: find a (infinite) loop in
which the “good” thing does not
happen. If there is not such a
loop, the property is satisfied.

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 6

21Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

State vector

• A state vector is the information to uniquely identify a system
state; it contains:

all global variables
contents of all message channels
for each process in the system:

– all local variables
– the process counter of the process

• It is important to minimize the size of the state vector.

state vector = m bytes
state space = n states

storing the state space
may require n*m bytes

SPIN provides several algorithms to
compress the state vector.

[Holzmann 1997 - State Compression]

22Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

SPIN’s Reduction Algorithms

• SPIN has several optimisation algorithms to make verification runs more
effective:

partial order reduction
idea: if in some global state, a process P can execute only “local” statements,
then all other processes may be deferred until later

bitstate hashing (approximate)
instead of storing each state explicitly, only one bit of memory is used to store
a reachable state

hash compaction (approximate)

state vector compression (“zipping the individual states”)

minimized automaton encoding of states (much like a BDD)

dataflow analysis: dead variable analysis, statement merging

slicing algorithm (“give hints of what can be thrown away”)

SPIN’s power (and popularity) is partly based on
these (default) optimisation/reduction algorithms.

23Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Moore’s Law & Advanced Algorithms

[Holzmann 2000 M’dorf]
Verification results of Tpc (The phone company)

1

10

100

1000

10000

1980 1987 1995 1999 2000

Available Memory
Required Memory

memory requirements
to (fully) verify Tpc

7 days 7 secs

1980: pan

1987: bitstate hashing

1995: partial order reduction

1999: minimised automaton

24Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Effective Modelling

• BRP = Bounded Retransmission Protocol
alternating bit protocol with timers
1997: exhaustive verification with SPIN and UPPAAL
2002: optimised version of the original model
shows the effectiveness of a tuned model

14.354116.399Memory (Mb)

169,2081,799,340# states

96 bytes104 bytesstate vector

BRP 2002BRP 1997

took upto an hour in 1997

Both verified with
SPIN 3.4.x

took 2 sec. in 2002

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 7

25Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Art of (Promela) Modelling

• expert user
uses ‘assembler programming’ approach to model building
knows how to exploit the directives and options of the
model checker to optimise and tune the verification runs
realises that different versions of the model might be
constructed for each different property

• space vs. time
considerations, priorities:
1. Number of states
2. Size of the state vector
3. Maximum search depth
4. Verification time

Experimentation:
• several optimising options make it

difficult to predict the behaviour of
a new verification run;

• there are many different ways to
model a particular aspect

• use series of controlled verification
runs with different settings to
conclude which modelling solution
works best.

It’s all about abstractions!

26Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Some Promela “Patterns”

• Tool Support

• First Things First

• Macros

• Atomicity

• Randomness

• Bitvectors

• Subranges

• Abstract Data Types: Deque

• Lossy channels

• Multicast Protocols

• Reordering a Promela model

• Invariance

• Modelling Time in Promela

Added this week

[Ruys PhD Thesis 2001]

[Ruys SPIN 2003]

• Solving optimisation problems

27Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Checking for “pure” atomicity

• Suppose we want to check that none of the atomic clauses in
our model are ever blocked (i.e. pure atomicity).

atomic {
stat1;

stat2;

...

statn;

}

2. Change all atomic clauses to:1. Add a global bit variable:

bit aflag;

3. Check that aflag is always 0.

[]!aflag

active process monitor {
assert(!aflag);

}

e.g.

aflag=1;

aflag=0;

28Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Lossy channels

• It’s already difficult to design and implement systems for
an ideal world in which no mistakes are made.

Unfortunately, users and environment are not perfect.
Still the system has to be error-proof.

• Even if we restrict ourselves to a (lower level) protocol,
which defines a means to transmit messages between
processes, several types of errors can be introduced:

messages can get lost
– These types of errors are the most common, caused by so-

called “lossy channels”.
messages can be duplicated
messages can be inserted

• How can we implement lossy channels in Promela?

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 8

29Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Alternating Bit Protocol

#define MAX 4;

mtype {MSG, ACK};

chan toR = [1] of {mtype, byte, bit};
chan toS = [1] of {mtype, bit};

active proctype Sender()
{
byte data;
bit sendb, recvb;

sendb = 0;
data = 0;
do
:: toR ! MSG(data,sendb) ->

toS ? ACK(recvb);
if
:: recvb == sendb ->

sendb = 1-sendb;
data = (data+1)%MAX;

:: else /* resend old data */
fi

od
}

active proctype Receiver()
{
byte data, exp_data;
bit ab, exp_ab;

exp_ab = 0;
exp_data = 0;

do
:: toR ? MSG(data,ab) ->

if
:: (ab == exp_ab) ->

assert(data == exp_data);

exp_ab = 1-exp_ab;
exp_data = (exp_data+1)%MAX;

:: else
fi;
toS ! ACK(ab)

od
}

perfect channels

Consequently, the else-
branches will never be taken.

30Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Lossy channels - Daemon

Introduce Daemon process that
steals messages from the
channels toS and toR.

Let the Sender recover from a
message not received.
Notes:

+ original model does not have to
be modified

– extra process: extra space in
state vector

– receive channels may not longer
be exclusive to processes

active proctype Sender()
{
...
do
:: toR ! MSG(data,sendb) ->

if
:: toS ? ACK(recvb);

if
:: recvb == sendb ->

sendb = 1-sendb;
data = (data+1)%MAX;

:: else /* resend data */
fi

:: timeout /* message lost */
fi

od
}

active proctype Daemon()
{
do
:: toR ? _, _, _
:: toS ? _, _
od

}

SPIN’s slicing algorithm reports:
spin: proctype Daemon defines a sink process
to reduce complexity, consider merging the
code of each sink process into the code of its
source

31Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Lossy channels - Sending process loses msgs

Follow SPIN’s advice: let each
sending process that sends a
message also lose the message
(i.e. not sending the message).

In the ABP example both the
Sender and Receiver are
‘sending processes’.
Notes:

– original model must be modified
+ no extra process needed
+ channels may still be exclusive

to processes

active proctype Sender()
{
...
do
:: if

:: toR ! MSG(data,sendb)
:: true
fi;

if
:: toS ? ACK(recvb);

if
:: recvb == sendb ->

sendb = 1-sendb;
data = (data+1)%MAX;

:: else /* resend data */
fi

:: timeout /* message lost */
fi

od
}

Each send operation in the model will be
enclosed in an if-clause with an always

enabled second guard (i.e. true).

This means that we can use Promela’s
xs and xr declarations to help SPIN’s

partial order reduction algorithm.

32Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Lossy channels - Receiving proc loses msgs

Instead of not sending a
message we can also have each
receiving process lose messages
by ignoring messages received
(i.e. not doing anything with the
message).

In the ABP example both the
Sender and Receiver are
‘receiving processes’.
Notes:

– original model must be modified
– message is actually send; extra

states will get introduced
+ no extra process needed
+ channels may still be exclusive to

processes

active proctype Sender()
{
...
do
:: toR ! MSG(data,sendb);

if
:: toS ? ACK(recvb);

if
:: recvb == sendb ->

sendb = 1-sendb;
data = (data+1)%MAX;

:: else /* resend data */
fi

:: toS ? _,_ /* lose message */
:: timeout /* message lost */
fi

od
}

Do not add a skip-alternative (as in
the ‘sending loses msg’ case), as this

models an premature timeout.

again we can use xs and xr declarations

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 9

33Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Lossy channels - Experiments with BRP

150000

160000

170000

180000

190000

states

daemon
daemon + xs
send loses
send loses + xs/xr
recv loses
recv loses + xs/xr

PowerBook G4 1Ghz 768Mb
Mac OS X 10.3.2 SPIN 4.1.2

100% 95.4% 99.9% 110.7
%91.7% 104.5%

state vector daemon: 92
state vector others: 88

34Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Lossy channels - Conclusions

• Advice

Always try to use xs/xr declarations in your model.

To model lossy channels, simply use a “daemon process”
in your preliminary models.

When running out of memory, implement the ‘sending
process loses message’ scheme.

– Be careful: this is not always as easy as simply adding some
skips. Especially if the daemon process does something more
than just stealing messages.

Do not use the ‘receiving process loses message’ scheme.

35Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Timeouts (1)

• Promela is optimised for logic verification: it does not have real-time features.
In Promela we only specify functional behaviour.
But, most protocols use timers or a timeout mechanism to resend
messages or acknowledgements.

• timeout

special variable in Promela
value of timeout will only be set to true in a state when there is no other
statement in the system which is executable.

– so, timeout models a global timeout.
timeout provides an escape from deadlock states.
beware of statements that are always executable…

• else

is also a special variable (!) which can be used in if/do statements
value is only true when all other guards of the if/do statement in which it
appears are non-executable
matches intuition for standard if-then-else style constructs

36Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Timeouts (2)

• General scheme to recover from message loss:
proctype Sender() {
...
do
:: toR ! MSG(data,sendb) ->

if
:: toS ? ACK(recvb) -> ... /* normal case */
:: timeout -> ... /* message got lost */
fi

od
}

Premature timeouts can be modelled
by replacing the timeout by a skip

(which is always executable).

One might want to limit the number of premature
timeouts, though… [Ruys & Langerak 1997].

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 10

37Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Timeouts (3)

• Simple scheme to limit the number of premature timeouts:

#define timerexpired \
premature_timeout || timeout

#define set_premature_timeout \
if \
:: nr_prem_timeouts <= MAX_PREM_TIMEOUTS -> \

if \
:: premature_timeout=true ; \

nr_prem_timeouts++ \
:: premature_timeout=false \
fi \

:: else -> premature_timeout=false \
fi

do
:: toR ! MSG(data,sendb) ->

if
:: toS ? ACK(recvb) -> /* normal */
:: timerexpired -> /* error */
fi

od

This macro should be called each time a premature timeout
has occurred, i.e., in the /* error */ part above.

38Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Timeouts (4)

• Modelling timeout using special timeout channels.
E.g., after losing a message, the Daemon process also
sends a timeout message to the waiting process.

:: toR ! MSG(data,sendb) ->
if
:: toS ? ACK(recvb) -> ... /* normal case */
:: timeoutCh?1 -> ... /* message got lost */
fi

chan timeoutCh = [0] of {bit};

active proctype Daemon()
{

do
:: atomic {toR ? _, _, _ -> timeoutCh!1 }
:: atomic {toS ? _, _ -> timeoutCh!1 }
od

}

39Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Simulating time (1)

• Instead of using an abstraction of timeouts, it is also possible
to simulate (discrete) time.
byte time;
proctype Tick() {
do
:: timeout -> (time = time+1)%MAXTIME;
od

}

byte stamp;
...
do
:: atomic {toR ! MSG(data,sendb) -> stamp=time };

if
:: toS ? ACK(recvb) -> /* good */
:: time >= (stamp + SENDER_TIMEOUT)%MAXTIME; -> /* bad */
fi

od

• Other processes can now wait for time to pass:

If none of the other processes can
proceed, it is time to increase the time.

Note: by using this timeout, you
cannot longer search for deadlocks.

but, beware of effects of module MAXTIME counting!

40Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Simulating time (2)

• Using this approach to simulate time does work, but has a few
disadvantages.

All actions that take time have to synchronise on time.
– The passing of time acts like a scheduler for the model, which

makes the model harder to understand.

Importantly, it is an expensive way of dealing with time.
– Due to the process Tick the number of states can blow up.

• Variants and enhancements of the approach have been
proved to work (for small cases).

See for instance [Bosnacki & Dams, FORTE/PSTV 1998].

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 11

41Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Simulating time (3)

• Variable time advance
Well-known technique from operations research.
Simulated time goes forward to the next moment in time at
which some event triggers a state transition, and all
intervening time is skipped.

byte time;

global time (like with Tick)

byte next_time[N]

each process i can set its timer next_time[i] to signal that it
is waiting, otherwise it is zero.

#define PROCESS_WAITING \
(next_time[0] + ...+ next_time[N-1]) > 0

this expression is non-zero if at least on process i is waiting for
time to reach next_time[i].

Works efficiently for scheduling problems
(e.g. [Brinksma & Mader 2000], [Ruys 2003]).

This becomes especially attractive
when the differences between

these moments in time are large.

42Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Simulating time (4)

proctype TimeAdvance() {
byte i, earliest;
do
:: d_step {

PROCESS_WAITING ->
i=0; earliest=MAX_TIME;
do
:: i<N -> if

:: next_time[i] > 0 &&
next_time[i] < earliest ->

earliest = next_time[i]
:: else
fi;
i++

:: else -> break
od;
time=earliest; i=0; earliest=0;

}
od

}
Note, if an action within a process takes time, the

variable time should be updated within that
particular process (beware of concurrent actions).

As in the original Tick process, it is
sometimes needed to guard the ‘passing

of time’ by a timeout statement.

43Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Simulating time (5)

• Two successful implementations of time into SPIN.
RT-SPIN [Tripakis & Courcoubetis 1996]

– real-time
DT-SPIN [Bosnacki & Dams 1998]

– deterministic time
– uses similar approach like the process Tick, but has changed

the partial order algorithm in SPIN to take advantage of special
characteristics of the process Tick.

• When serious about verifying timing constraints, one should use
a dedicated real-time model checker like UPPAAL.

Use them both:
– SPIN for the functional correctness of the model

(abstracting from time)
– UPPAAL for checking the timing constraints

A disadvantage of these
approaches is that they
are not available for the
‘latest’ versions of SPIN.

44Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Invariance

• []P where P is a state property
safety property
invariance ≡ global universality or global absence
[Dwyer et. al. 1999]:

– 25% of the properties that are being checked with
model checkers are invariance properties

– BTW, 48% of the properties are response
properties

examples:
– [] !aflag
– [] mutex != 2

• SPIN supports (at least) 7 ways to check for invariance.

[]P

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 12

45Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

variant 1+2 - monitor process (single assert)

• proposed in older documentation on SPIN

• add the following monitor process to
the Promela model: 1

2

0

assert(P)

-end-

If the monitor process is
created last, the –end-

transition will be executable
after executing assert(P).

• Two variations:
– 1. monitor process is created first
– 2. monitor process is created last

active proctype monitor()
{

assert(P);
}

[]P

46Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

variant 3 - guarded monitor process

• Drawback of solution “1+2 monitor process” is that the
assert statement is executable in every state.

active proctype monitor()
{
assert(P) ;

}

active proctype monitor()
{
atomic {
!P -> assert(P) ;
}

}

• The atomic statement only becomes executable when P
itself is not true.

We are searching for a state where P
is not true. If it does not exist, []P is true.

[]P

47Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

variant 4 - monitor process (do assert)

• From an operational viewpoint, the following monitor
process seems less effective:

• But the number of states is clearly advantageous.

2 assert(P)

active proctype monitor()
{

do
:: assert(P)
od

}

[]P

48Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

never {
do
:: assert(P)
od

}

variant 5 - never claim (do assert)

• also proposed in SPIN's documentation

… and this never claim has not been generated…

… but SPIN will issue the following unnerving warning:
warning: for p.o. reduction to be valid the never claim must be stutter-closed
(never claims generated from LTL formulae are stutter-closed)

SPIN will synchronise the never claim
automaton with the automaton of the
system. SPIN also uses never claims
to verify LTL formulae.

[]P

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 13

49Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

variant 6 - LTL property

• The logical way...

• SPIN translates the LTL formula into an accepting
never claim.

never { ![]P
TO_init:

if
:: (!P) -> goto accept_all
:: (1) -> goto TO_init
fi;

accept_all:
skip

}

[]P

50Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

variant 7 - unless {!P -> ...}

• Enclose the body of (at least) one of the processes into the
following unless clause:

This is quite
restrictive.

Note: disabling partial reduction (-DNOREDUCE) may have severe
negative consequences on the effectiveness of the verification run.

• Discussion
+ no extra process is needed: saves 4 bytes in state vector
+ local variables can be used in the property P
– definition of the process has to be changed
– the unless construct can reach inside atomic clauses
– partial order reduction may be invalid if rendez-vous

communication is used within body
– the body is not allowed to end

{ body } unless { atomic { !P -> assert(P) ; } }

[]P

51Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Invariance experiments (1)

0

10

20

30

40

50

60

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property
 7. unless

PII 300Mhz
128 Mb

SPIN 3.3.10
Linux 2.2.12

-DNOREDUCE
memory (Mb)

NO partial order reduction

52Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Invariance experiments (2)

0

5

10

15

20

25

30

35

40

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property
 7. unless

-DNOREDUCE
time (sec)

NO partial order reduction

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 14

53Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

0

5

10

15

20

25

30

35

40

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property

seems
attractive...

default settings
memory (Mb)

Invariance experiments (3)

54Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

0

5

10

15

20

25

30

35

brp philo pftp

 1. monitor first
 2. monitor last
 3. guarded monitor
 4. monitor do assert
 5. never do assert
 6. LTL property

default settings
time (sec)

Invariance experiments (4)

55Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Invariance - Conclusions

• The methods 1 and 2 “monitor process with single assert”
performed worst on all experiments.

When checking invariance, these methods should be avoided.

• Variant 4 “monitor do assert” seems attractive, after verifying
the pftp model.

unfortunately, this method modifies the original pftp model!
the pftp model contains a timeout statement
because the do-assert loop is always executable, the
timeout will never become executable

⇒never use variant 4 in the presence of timeouts

• Variant 3 “guarded monitor process” is the most effective and
reliable method for checking invariance.

56Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Invariance - Conclusions

• Generalizing, if one need to check
[] (P && Q && ... && Z)

one should use:

active process monitor()
{

if
:: atomic {!P -> assert(P)}
:: atomic {!Q -> assert(Q)}
:: ...
:: atomic {!Z -> assert(Z)}
fi

}

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 15

57Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Data Space Explosion (1)

• Industrial size verification projects do not only suffer from
the infamous state space explosion, but also suffer from a
“data space explosion”.

• Management of information and data
Many documents (specifications) from many parties
Several versions of the same document
Consecutive versions of validation models
Results of validation runs

• Annotations to the model are
important:

identifying the source of
information
discussing and explaining

– modelling choices
– abstractions

identifying points of attention

Use literate programming tools to
annotate the (Promela) models.
From a single source file one can
either generate

• the plain Promela model or
• a nicely annotated LaTeX/HTML

document.
[Ruys & Brinksma 1998]

LP works like javadoc,
but then in separate

source files.

58Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• Two important principles of verification phase:
– Re-verification in case of an error.
– Validation results should be reproducible.

• general engineering practice: use logbook

Data Space Explosion (2)

• Version space explosion of verification phase:
various models

– variants: Mi
– revisions: Mi,j

various properties: ϕϕϕϕi
validation results:

– simulation traces
– verification results

directives and options to build verifiers
notes and remarks on validation runs

Use Software Configuration
Management (SCM) tools
or version-control systems
to save all verification data.

59Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

(Spin Version 3.4.12 -- 18 December 2001)
+ Partial Order Reduction

Full statespace search for:
never-claim - (not selected)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates +

State-vector 96 byte, depth reached 18637, errors: 0
169208 states, stored
71378 states, matched

240586 transitions (= stored+matched)
31120 atomic steps

hash conflicts: 150999 (resolved)
(max size 2^19 states)

Stats on memory usage (in Megabytes):
17.598 equivalent memory usage for states

(stored*(State-vector + overhead))
11.634 actual memory usage for states (compression: 66.11%)

State-vector as stored = 61 byte + 8 byte overhead
2.097 memory used for hash-table (-w19)
0.480 memory used for DFS stack (-m20000)
14.354 total actual memory usage

property was
satisfied

total number of states
(i.e. the state space)

the size of a single state

longest execution path

total amount of memory used for this verification

SPIN
Verification Report

60Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Systematic Verification Model

interpret error

M, S

abstract

Mi, ϕϕϕϕi

model check

correct error

reverify models

error

all done?

correct

modelling

Design phase

Modelling phase

system description requirements

simulation

design
error

back to
design
phase

no

yes
verified M w.r.t. S

Verification phase

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 16

61Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Beyond Xspin

Promela model

models
options
results

options
spin

runspin gcc

pan

pan results
runspin data

retrieve

ppr

parse pan results:
identifies 49 items

shell script to
automatically run
spin, gcc & pan

version control system or
literate programming tool

LaTeX file .csv file
to analyse in
spreadsheet

“personal” SPIN setup

Verification results
obtained using a
verification tool

should always be
reproducible.

62Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Optimisation problems with SPIN

• Introduction: Traveling Salesman Problem

• SPIN 4.x - new features

• Branch & Bound with SPIN 4.x

• Reordering the Promela model

63Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Traveling Salesman Problem

• Traveling Salesman Problem (TSP)
n cities
cost cij between city i and j
non-Euclidean: cij ≠ cji
TSP: connect the cities with the shortest closed tour,
passing each exactly once.

-8323
8-762
73-41
297-0
3210

0 1

23

7

9
2

4

3
7

6
7

8

2
3

8

cost matrix

tour with lowest cost

Example:
n=4

64Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Promela model of TSP

Promela model:
single process TSP
N places/labels
bit vv[N]
(to mark visited cities)
variable cost to hold the
total cost so far
from each label we jump
non-deterministically to
cities not visited yet
when a choice is made,
cost is updated

local bit vv[4];
local int cost;

active proctype TSP()
{
P0: atomic {

if
:: !vv[1] -> cost = cost+7; goto P1
:: !vv[2] -> cost = cost+9; goto P2
:: !vv[3] -> cost = cost+2; goto P3
fi

}
P1: atomic {

vv[1] = true;
if
:: !vv[2] -> cost = cost+3; goto P2
:: !vv[3] -> cost = cost+7; goto P3
:: else -> cost = cost+4; goto end
fi

}
...
end:

skip
}

-8323
8-762
73-41
297-0
3210

global so we can access
them in the never claim

here all places have been visitedNote: it is better to use bitvectors
than bit[] (see [Ruys 2000]).

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 17

65Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Finding the shortest tour

• We now use the Promela model to let SPIN find the
shortest tour through the cities.

• We let SPIN verify iteratively:

◊◊◊◊(cost >= 1000)
not satisfied: counter example with cost = 20

◊◊◊◊(cost >= 20)
not satisfied: counter example with cost = 14

◊◊◊◊(cost >= 14)
satisfied
so the minimum cost = 14

66Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Optimisation problems with SPIN (1)

• M = model of the problem in Promela
with (local) costs (or time) added to (some) states/transitions
a global variable cost is updated when a transition is taken or
a state is reached.

• Goal: find schedule to an end-state with minimum cost.
1. Verify that M is error-free.
2. Find optimal schedule:

min = guess of (worst case, maximum) cost
do

verify M = ◊◊◊◊ (cost ≥≥≥≥ min)
if (error) min = cost fi

while (error) If there is a path to a final state for which
the cost is less than min, SPIN will generate

an error trail leading to this state.

“eventually cost will be larger than min”

67Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Optimisation problems with SPIN (2)

• Idea of using (plain) model checkers for solving scheduling problems
has been taken up. See for instance (among many others):

[Ruys & Brinksma - TACAS 1998]
[Brinksma & Mader - SPIN 2000]
[Larsen et. al. – CAV 2001]
[Ansgar Fehnker - PhD Thesis 2002]

Model Checkers are
being used for serious
optimisation problems!

However, due to SPIN’s on-the-fly model checking
algorithm, for each subsequent iteration, less of
the state space has to be checked: SPIN stops
when it finds a state for which cost ≥ min holds.

• Original idea works, but is inefficient:
the (initial) complete state space already
contains the most optimal solution;
iteratively checking ◊ (cost ≥ min) to obtain
this solution is not needed, of course.

68Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Optimisation problems with SPIN (3)

Good solution should
be in the left part of

the state space.

Not all states have
been visited.

rsxz >>>> >>>> >>>>MAXINT >>>>Example: We iteratively check
(<> cost >= min)

z

z

z z z

s

s

s

r

s s

r sx

x

x x x x x x x x

x

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 18

69Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Optimisation problems with SPIN (4)

• If we could make the best cost “global” to all execution paths,
we could update this best cost each time we find a better one.

• Sketch to find an optimal solution in SPIN version 3.x:
Add a global variable best_cost to pan.c that is global for all
verification runs; the variable best_cost will not be part of the
state vector.

Everytime a solution is found of which the cost is lower, the
variable best_cost is updated and the trail leading to this
solution is saved.

The variable best_cost is initialised in a special section before
the verification is started.

Drawback: the C source code of the pan
verifier (or of SPIN itself) has to be modified.

70Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

SPIN 4.x (1)

• SPIN 4.x supports the inclusion of embedded C code into
Promela models. Five new primitives:

c_decl

c_state

c_expr

c_code

c_track

to introduce C types that can be
used in the Promela model

to add new C variables: Global,
Local or Hidden

to execute a C expression and
use the return value in the model

to add atomic C statements to the
model

can be used to track memory,
holding state information

71Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

SPIN 4.x (2)

• The purpose of the new primitives is to provide support
for automatic model extraction from C code.

to build your “own” FeaVer [Holzmann 2000] .

• … “The capability to embed arbitrary fragments of C code
into a Promela model is powerful and therefore easily
misused” … [Holzmann 2004, p. 501].

But we can safely use it to find the optimal
solution for an optimization problem, like the TSP.

Another feature of SPIN 4.x: pan now has a
“guided simulation” mode. It is not longer

needed to replay the simulation with spin.

72Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

TSP in SPIN 4.x (1)

local bit vv[4];
local int cost;

active proctype TSP()
{
...
P1: atomic {

vv[1] = true;
if
:: !vv[2] -> cost = cost+3; goto P2
:: !vv[3] -> cost = cost+7; goto P3
:: else -> cost = cost+4; goto end
fi

}
...
end:

}

c_code {
printf("found another solution: %d\n", now.cost);

}

“now” is the current state; we
can access the global and local

variables via this C variable.

Just printing the cost
of the solutions found.

we could also save the schedules by calling pan’s
putrail()

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 19

73Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

TSP in SPIN 4.x (2)

c_state "int min_cost" "Hidden" "1000"

c_code {
if (now.cost < min_cost) {

min_cost = now.cost;
printf("> min cost now: %d\n", min_cost);
putrail();
Nr_Trails--; /* only save the best trail */

};
}

Only saving the
best solution.

(1) In the declaration part of the Promela file:

(2) At the end-label of the TSP proctype
(i.e. in the final state of a possible solution):

“Hidden” means that the
variable is not stored in the
state vector, but is global for

the whole verification.

This declaration is copied
verbatim to pan.c.

putrail and Nr_Trails are globals of pan.c.

initial value

74Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

TSP in SPIN 4.x (3)

Simple optimization:
If after visiting a place, the cost is already greater than min_cost,
we know that this execution trace will not lead to a better trace. So,
we could stop searching the state space.

Pi: atomic {
vv[i] = true;

if
:: c_expr { now.cost > min_cost } -> goto end
:: else
fi;

if
:: !vv[1] -> cost = ... ; goto P1
:: ...
:: else -> cost = ... ; goto end
fi

}

Optimisation: simple
(branch &) bound.

At the beginning of each place Pi:

Beware: we are now changing the model.

executable if the C expression is non-zero

75Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

TSP in SPIN 4.x (4)

Branch & bound in never claim:
Instead of pruning the search tree from within the Promela model,
we can also limit the search of the state space via an LTL property
(i.e. combination with original idea).

Optimisation: (branch &)
bound in never claim.

We on-the-fly check ◊◊◊◊ (now.cost ≥≥≥≥ min_cost):

Note that the property we are checking is
dynamically changed during the verification!

By the way, please note that SPIN verifies a LTL formula using a
never claim, that is automatically generated from the LTL formula.

• This means that we let SPIN use its liveness machinery to
solve a safety problem.

Big advantage:
We do not have to change the model to prune the search tree.

76Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Reordering the model

• How to get good solutions in the left part of the search tree?
… by only modifying the Promela model

• SPIN’s basic depth-first-search algorithm

procedure dfs(s: state)
if error(s) then report error fi
add s to Statespace
foreach successor t of s do

if t not in Statespace then dfs(t) fi
od

end dfs

Only in the selection of the
successors we can influence

the DFS algorithm.

SPIN orders the list of successors as follows:
• processes are arranged in reverse order of creation
• within each process, all possible executable statements

(i.e. if or do) are arranged in normal order

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 20

77Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Nearest Neighbour

• Nearest Neighbour (NN) Heuristic
The salesman always goes to the nearest city (lowest
cost), which has not yet been visited.
To apply the NN-heuristic with SPIN it is sufficient to sort
the guards in the if-clauses according to the cost.

active proctype TSP() {
...
P7: atomic {
...
if
:: !vv[1] -> cost = cost+11; goto P1
:: !vv[2] -> cost = cost+ 9; goto P2
:: !vv[3] -> cost = cost+23; goto P3
:: !vv[4] -> cost = cost+21; goto P4
:: !vv[5] -> cost = cost+ 7; goto P5
:: !vv[6] -> cost = cost+14; goto P6
:: else -> cost = cost+20; goto end
fi
}
...

active proctype TSP() {
...
P7: atomic {
...
if
:: !vv[5] -> cost = cost+ 7; goto P5
:: !vv[2] -> cost = cost+ 9; goto P2
:: !vv[1] -> cost = cost+11; goto P1
:: !vv[6] -> cost = cost+14; goto P6
:: !vv[4] -> cost = cost+21; goto P4
:: !vv[3] -> cost = cost+23; goto P3
:: else -> cost = cost+20; goto end
fi
}
...

Note that changing the order of
the guards does not change the

behaviour of the model.

78Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

TSP - some experiments

480572737107432401666249801

1388100 174813014007554924132517

1010080105058017330972022111920

28208802478440514332212984278753

o.m.o.m. 54594801878490572729

sorted (NN)
BB in property

sorted (NN)
BB in model

unsorted
BB in property

unsorted
BB in model

no B&B

N=15N=14N=13N=12N=11#states

PIII/Mobile 1Ghz 256 Mb
SPIN 4.0.1 Windows 2000

Of course, we used some automated scripts to (i) generate random cost matrices, (ii)
generate the Promela models from these matrices and (iii) run SPIN on these models.

79Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

General procedure

• To find the optimal solution to a integer problem specified in
Promela, change the model such that when a solution is found

the hidden c_state variable min_cost is updated
the path corresponding to this solution is saved

#define higher_cost (c_expr {

(now.cost >= min_cost) || \

(will_not_be_better()) \

})

<> higher_cost

where

Branch & Bound: the C function will_not_be_better “looks into
the future”: it returns a non-zero value if given the current state, the
best possible remainder will be worse than the min_cost so far.

then use SPIN to check:

80Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

TSP - final remarks

• Observations

no need to check for acceptance cycles in never claim
– will have impact on the search time (roughly divided by 2).

no need to store states
– The search space is always a tree with a continuously

growing cost on the paths: the DFS stack is enough to
complete the search.
gcc -DBITSTATE -DRANDSTOR=-1 ...

– uses bitstate hashing
– sets change of storing a state to less than -1%

– Now we can find solutions for TSPs of arbitrary size
(as long as there is enough time…).

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 21

81Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Summary – on optimization problems

• The model checking approach to find an optimal solution to an
integer optimization problem is appealing:

First use the model checker to verify that the formalisation
of the problem is correct.
Then use the model checker to obtain an (optimal) solution
to the problem.

• SPIN 4.x offers nice features to implement the Branch &
Bound approach on the Promela level.

The Branch & Bound functionality can elegantly and efficiently be
isolated in the property being checked.
By reordering the Promela model, we can further improve the
search dramatically:

– For certain problems to find the optimal solution, less than 5%
of the states had to be visited.

82Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Overview

Part 1

Introduction

Effective SPIN: the art of
Promela Modelling

Checking invariance

Systematic Verification

Solving optimisation
problems with SPIN 4.0

Part 2

• How SPIN works:
Some automata theory

• Complexity issues
Reduction and compression

• Model extraction
Software model checking

83Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

likely rare

harmless

catastrophic

Damage \ Probability

1 2

3 4

1+3 -- covered by standard testing
3+4 -- covered by logic verification
2 -- covered but not important

Added value of logic verification

84Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

The Spin Model Checker
Primer and Reference Manual

Gerard J. Holzmann

Addison Wesley
ISBN 0-32122-862-6, 608 pgs

some additional documentation

Complete lecture notes from a course on Logic Model Checking
based on the new book, taught at Caltech University, Jan-Mar. 2004
are available online at:

http://spinroot.com/spin/Doc/course/index.html

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 22

85Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

How Spin Works

Basic Verification Method

1. Construct/derive an abstract model of a system

2. Formalize its correctness properties

3. Run the model checking algorithm

4. Interpret the result
the model satisfies the property
the model can violate the property
there were insufficient resources to solve the problem
(interpretation: insufficient abstraction -> find a better model)

5. Revise 1,2 and repeat 3,4,5 until happy…

86Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• System: L(Model)

• Requirement: L(Prop)

• Show that: L(Model) ⊆⊆⊆⊆ L(Prop)

• Method:

L(Model) ∩∩∩∩ (Σωωωω \ L(Prop)) = ∅∅∅∅

• i.e.:
L(Model) ∩∩∩∩ L(! Prop) = ∅∅∅∅

The One-Slide Theory

logical negation of the property

87Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

if I is empty: the Model satisfies the Property
if I is non-empty: the Model can violate the Property

and I contains at least one counter-example

L(Model)

L(!Prop)

language intersection I

Intersection of 2 formal languages

88Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Finite automata

• A finite automaton is a tuple {S, s0, L, F, T}
S finite set of states
s0 ∈∈∈∈ S initial state
L finite set of labels (symbols)
F ⊆⊆⊆⊆ S set of final states
T ⊆⊆⊆⊆ SxLxS transition relation

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 23

89Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

An example

s0 s1

s2 s4

s3

αααα0000

αααα2222

αααα4444
αααα5555

αααα1111

αααα3333

S: { s0, s1, s2, s3, s4 }
L = { αααα0000, α, α, α, α1111, α, α, α, α2222, α, α, α, α3333, α, α, α, α4444, α, α, α, α5555 }
F = { s4 }
T = {(s0,αααα0,s1), (s1, αααα1,s2), ...}

90Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

An interpretation

91Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

a run of automaton {S, s0, L, T, F} is an ordered set
σ = {s0, s1, s2, …, sk}

such that
∀∀∀∀i, 0 ≤ i <<<< k : ∃α∃α∃α∃α, α∈α∈α∈α∈L and (si,α,si+1) ∈ T.

each run corresponds to one or more words over L

run: { idle, ready, execute,
waiting, execute, end }

word: {start, run, block,
unblock, stop }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

The definition of a run

92Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

a finite run σ = {s0, s1, s2, …, sk}
of automaton {S, s0, L, T, F} is accepted if and only if
its final state sk ∈∈∈∈ F.

acceptance

the language of automaton {S, s0, L, T, F} is
the set of all words over L corresponding to
accepted runs of the automaton

formal language

Standard acceptance

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 24

93Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

an infinite run σ = {s0, s1, s2, …}
of automaton {S, s0, L, T, F} is accepted if and only if

∃ sk ∈∈∈∈ F, sk appears infinitely often in σ.

run: { idle, [ready, execute,]* }

word: {start, [run, pre-empt,]* }
idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

language:
set of all ω-words accepted

Omega acceptance

94Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• a finite run can be extended into an infinite run by
stuttering the final state (on a no-op ε-symbol)

run: { idle, ready, execute,
waiting, execute, [end,]* }

word: {start, run, block,
unblock, stop, εεεε* }

idle ready

execute end

waiting

start

pre-empt run

blockunblock

stop

εεεε

The stutter extension rule

95Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• We need a precise way to express the properties of a run
a formalism to state properties of concurrent systems

• Leading candidate: propositional linear temporal logic (LTL)
introduced by Amir Pnueli in late 70s
based on work in ‘tense logics’ in 50s and 60s
direct link with theory of ωωωω-automata

• Example:
[] ((a != b) -> <> (a == b))
it is always the case [] that when (a != b) eventually <> we
must have (a == b)
this defines a class of executions, rather than an instance

Logic properties

96Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

LTL formula ::=
true, false
propositional symbols p, q, r, …
(f)
unary f
f binary f

binary ::=
U --- strong until
&& --- logical and
|| --- logical or
-> --- implication
<-> --- equivalence

unary ::=
[] --- always, henceforth
<> --- eventually
X --- next
! --- logical negation

caution

Spin’s LTL syntax

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 25

97Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

run: σσσσ = { s0, s1, s2, s3 … }

propositional symbols: p,q,…
∀∀∀∀i,(i ≥≥≥≥ 0) and ∀∀∀∀ p, si |= p is defined

temporal formulae: e,f,…

σσσσ |= f iff s0 |= f

with:
si |= []f iff

∀∀∀∀j,(j >= i): sj|= f
si |= <>f iff

∃∃∃∃j,(j >= i): sj|= f
si |= e U f iff

∃∃∃∃j,(j >= i): sj|= f and
∀∀∀∀k,(i <= k < j) : sk |= e

LTL semantics

98Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

avoiding X:
next-time-free properties
are stutter-invariant

correlationeventually p imlies eventually q<>p -> <>q

stability (non-progress)eventually, always p<>[]p

recurrence (progress)always, eventually p[]<>p

precedencep implies q until rp -> (q U r)

responsep implies eventually qp -> (<>q)

guaranteeeventually p<>p

invariancealways p[]p

useful equivalences:
![] p <=> <> !p

!<> p <=> [] !p

Typical LTL formulae

99Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• for any LTL formula f there exists a Büchi automaton that
accepts precisely those ωωωω- runs for which f is satisfied

• example: the formula <>[]p corresponds to the non-
deterministic Büchi automaton:

• to turn a property f into a claim (the complement of f), it suffices
to negate it: ! <>[] p ≡≡≡≡ []![]p ≡ [] <> ! p

p s1 ptrue s0

! p
s1true s0

true

From logic to automata

100Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• System: L (system)

• Property: L (prop)

• Show: L (system) ⊆ L (prop)

• Or that: L (system) ∩ (Lω \ L (prop)) = ∅

none of the strongly connected components in the
reachability graph of the intersection of system and

claim may contain an accepting state

(any cycle through an accepting state is an accepting ωωωω-run)

Automata theoretic verification

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 26

101Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

explore()
{ store = {};

dfs(s0)
}
dfs(s)
{

if s ∈∈∈∈ store
return;

else
store = store ∪∪∪∪ {s};

foreach successor s’ of s
dfs(s’);

}

• recursively explore the state graph
• store as little data as possible
• no need to store transitions
• need not store all states
• in approximate searches, need not store states accurately

Reachability by depth-first search

102Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• errors (violations of an LTL property) correspond to runs
with infinitely many accepting states

• in a finite graph, these correspond to reachable strongly
connected components (scc’s) with accepting states

• Tarjan’s algorithm constructs the scc’s in polynomial
time -- can check each for the presence of accepting
states

• but, we can do better:
it suffices to prove that no reachable accepting state
is reachable from itself
same complexity, smaller constant factor

Cycle detection (1)

103Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

example: prove absence of non-progress cycles

progress
state

1

2

3

6

5

4

Cycle detection (2)

104Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• memory overhead: 2 bits per
state

Tarjan’s dfs requires
2x32 bits per state

• worst case time: 2x dfs

• no special data-structures -
standard reachability

1

2

3

6

5

4

1’

2’

3’

6’

5’

4’

1,0

1,0

1,0

1,0

1,0

1,1

1,1

1,1 0,1

1,1

seed
state

Nested depth-first search

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 27

105Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

1

2

3

5

4

1’

2’

3’

5’

4’

1,0

1,0

1,0

1,0

1,0

1,1

1,1

1,1 1,1

1,1

seed
state

6 6’1,0

1
2
3
6

1
2
3
6

6’

5’
2’
3’
6’

dfs stack

Detecting acceptance cycles

106Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

number of states: R

memory requirements per state: S

R x S default memory cost

strategies for reducing R
• abstraction (model reduction)

• partial order reduction, symmetry reduction, etc.

strategies for reducing S
• lossless memory compression

• don’t store states but a minimized DFA recognizer

• lossy compression (proof approximation)

Computational cost

107Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• many runs are equivalent under given interpretation

• two transitions are independent at state s if
both are enabled at s
the execution of neither can disable the other
the combined effect of both transitions is independent of the
relative order of execution

• strong independence
two transitions are strongly independent if they are independent at
every state where both are enabled

• safety (a static property…)
a transition is safe if it is strongly independent from all other
transitions in the system
a statement is conditionally safe for condition c if it is safe in all
states where c holds

Partial order reduction

108Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Effect of
partial
order
reduction

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 28

109Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

state descriptors can be stored as a
minimized deterministic finite automaton

example:
states = { 011, 101, 110, 111 }

adding a new state s can be done in time O(|s|)
time/memory tradeoff:
- can reduce memory use exponentially
- more time consuming than explicit storage

0,1 0 1 0,1

0 1

0 1 0 1

Minimized dfa storage in spin

110Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

State storage: hash-tables

S3 h(s)

state hash
function

lookup
table

S3S1 S45

S12

∅∅∅∅

H-1

∅∅∅∅

Assume R states to be stored

H << R avg. ≈R/H states/slot
memory use R.S+overhead

H >> R avg. < 1 state/slot
(1 bit of information/slot)
effective memory use R bits

111Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• assume H >> R, no need to store hash-key

• possibility of a collision becomes remote
• “no-one to this author’s knowledge has ever implemented this idea,

and if anyone has, he might well not admit it.’’ [Bob Morris, CACM1968]

• even better: use k>1 independent hash-functions
“store” each state k times
hash-collision now requires k matches
spin uses 2 out of 32 possible CRC polynomials

Robert Morris 1968

112Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Burton Bloom 1970

• k independent hash-functions

• initially the hash-table has all zero bits.

• after r states have been stored, the probability of a specific
bit being zero is:

1 k.r
1 - 

m
probability of a hash-collision on (r+1)th entry:

1 k.r k -k.r/m k
1 - 1 -  = 1 - e

m

rhs is minimized for k = ln 2 x m/r

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 29

113Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

area of
interest

The optimal number of hash-functions

114Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Close-up view

Memory bits divided by number of states (m/r)

115Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

Problem
Coverage
(%)

Available Memory (bits)

standard

bitstate

(Data: a Commercial Data Transfer Protocol)

greater coverage

The effect of bitstate hashing

116Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• most properties of interest are in
general undecidable

• map the problem into a different
domain: apply abstraction

• the best level of abstraction depends
on the property to be proven

• to what extent can we automate
program abstraction?

program

model

check

property

Software verification

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 30

117Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

possible errors in manual steps:
• wrong property
• wrong abstraction
• wrong interpretation of trail
• (or true error in program…)
possible errors in automated steps:
• model checker error

program

model

model building
and
property definition

model checking

manual

automated

Classic model checking

118Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

possible errors in manual steps:
• error in program or
• error in requirements

program

model

requirements

model checking

manual

automated

Model extraction

119Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

beginthread

main

exit

exit

an automaton with a
specific label set L

Program control flow graph

120Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

• parsing

• interpretation
slicing

abstraction

generalization

restriction

• simplification

• model generation

program

cfg

model

Model extraction (FeaVer)

SPIN 2004, Barcelona, Spain, 1 April 2004 version: 1 April 2004

© Theo C. Ruys & Gerard J. Holzmann - Advanced SPIN Tutorial 31

121Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

int c, nl, nw, nc;

init {
bool inword = false;

do
:: STDIN?c -> nc++;

if
:: c == '\n' -> nl++
:: else
fi;
if
:: c == ' ' || c == '\n' ->

inword = false
:: else ->

if
:: inword == false ->

nw++; inword = true
:: else /* do nothing */
fi

fi
od;
printf("%d\t%d\t%d\n", nl, nw, nc)

}

int c, nl, nw, nc;

main(void)
{ int inword = 0;

while(c = getchar())
{

nc++;
if (c == '\n’)

nl++;
if (c == ' ' || c == '\n’)

inword = 0
else if (inword == 0)
{

nw++;
inword = 1;

}
}
printf("%d\t%d\t%d\n", nl, nw, nc)

}

C Promela

Syntactic conversion

122Theo Ruys & Gerard Holzmann SPIN 2004 Advanced SPIN Tutorial

int c, nw, nl, nc;

init {
bool inword = false;

do
:: STDIN?c -> nc++;

if
:: c == '\n' -> nl++
:: else
fi;
if
:: c == ' ' || c == '\n' ->

inword = false
:: else ->

if
:: inword == false ->

nw++; inword = true
:: else /* do nothing */
fi

fi
od;
printf("%d\t%d\t%d\n", nl, nw, nc)

}

data dependent
control dependent
independent

related issues:
boundedness
assumptions about environment
n.b.: property is not satisfied
(nc and nl can wrap around max)

property: [] (nl ≥≥≥≥ nc)
slice criteria: {nl, nc}

Slicing

