
1

CIS 842:
Specification and Verification
of Reactive Systems

Lecture SPIN-INTRO:
Introduction To SPIN

Copyright 2001, Matt Dwyer, John Hatcliff. The syllabus and all lectures for this course are copyrighted materials and may
not be used in other course settings outside of Kansas State University in their current form or modified form without the
express written permission of one of the copyright holders. During this course, students are prohibited from selling notes
to or being paid for taking notes by any person or commercial firm without the express written permission of one of the
copyright holders.

CIS 842: Spin-INTRO: Introduction to SPIN 2

Objectives

n Understand the purpose of
n the Promela modeling language, and
n the Spin analysis tool

n Understand the basic functionality of Spin
and how to apply it to reason about and
verify properties of simple concurrent
systems

n Understand Spin’s basic data structures

Be sure you have Spin installed
before you start this lecture!

Be sure you have Spin installed
before you start this lecture!

2

CIS 842: Spin-INTRO: Introduction to SPIN 3

Outline

n Computation trees
n view of state space exploration

n Basic functionality of Spin
n simulation mode
n verification mode

n Basic data structures of Spin
n Assertion checking
n Deadlock checking
n Dead code detection

CIS 842: Spin-INTRO: Introduction to SPIN 4

Promela & Spin
PROMELA (PROcess MEta LAnguage) is…

n a modeling language to describe concurrent (distributed)
systems:
n network protocols, telephone systems
n multi-threaded (-process) programs that communicate via

shared variables or synchronous/asynchronous message-passing

SPIN (Simple Promela INterpreter) is a tool for...
n analyzing Promela programs leading to detection of

errors in the design of systems, e.g,
n deadlocks, race conditions, assertion violations,
n safety properties (system is never in a “bad” state)
n liveness properties (system eventually arrives in a “good” state)

3

CIS 842: Spin-INTRO: Introduction to SPIN 5

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1(); run Thread2();
assert(x != N) }

Promela Example
variable declarationvariable declaration

system processsystem process

initial processinitial process

system processsystem process

start threadsstart threads

assertionassertion

Question:
can you pick a
value > 0 for N
such that the
assertion is
never violated?

CIS 842: Spin-INTRO: Introduction to SPIN 6

Assessment

n Answering the question on the following
slide requires us to reason about possible
schedules (i.e., orderings of instruction
execution)

n Let’s try to find schedules that cause the
assertion to be violated for various values
of N…

4

CIS 842: Spin-INTRO: Introduction to SPIN 7

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

Promela Example

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

Violating schedule for N = 1

0.1 [x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

violation

[x = 0, t1 = 0, t2 = 0]
(initial
values)

0.2

0.3

0.4

CIS 842: Spin-INTRO: Introduction to SPIN 8

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

Promela Example

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

Violating schedule for N = 2

0.1 [x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 1, t2 = 0]

violation

[x = 0, t1 = 0, t2 = 0]
(initial
values)

0.2

0.3

1.1

[x = 2, t1 = 1, t2 = 1]0.4

[x = 1, t1 = 1, t2 = 1]1.2

[x = 2, t1 = 1, t2 = 1]1.3

5

CIS 842: Spin-INTRO: Introduction to SPIN 9

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

Promela Example

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

Violating schedule for N = 2

0.1 [x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 1, t2 = 0]

violation

[x = 0, t1 = 0, t2 = 0]
(initial
values)

0.2

0.3

2.1

[x = 2, t1 = 1, t2 = 1]0.4

[x = 1, t1 = 1, t2 = 1]2.2

[x = 2, t1 = 1, t2 = 1]2.3

AnotherAnother

CIS 842: Spin-INTRO: Introduction to SPIN 10

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

Promela Example

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

Violating schedule for N = 2

0.1 [x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 0, t2 = 0]

[x = 1, t1 = 1, t2 = 0]

violation

[x = 0, t1 = 0, t2 = 0]
(initial
values)

0.2

0.3

1.1

[x = 2, t1 = 1, t2 = 1]0.4

[x = 1, t1 = 1, t2 = 1]2.2

[x = 2, t1 = 1, t2 = 1]2.3

Yet anotherYet another

[x = 1, t1 = 1, t2 = 0]2.1

6

CIS 842: Spin-INTRO: Introduction to SPIN 11

Computation Tree

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

system statesystem state

transitiontransition

choice point
(multiple enabled transitions)

choice point
(multiple enabled transitions)

n We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

CIS 842: Spin-INTRO: Introduction to SPIN 12

Computation Tree

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

…first trace (schedule)…first trace (schedule)
n We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

7

CIS 842: Spin-INTRO: Introduction to SPIN 13

Computation Tree

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

…second trace (schedule)…second trace (schedule)
n We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

CIS 842: Spin-INTRO: Introduction to SPIN 14

Computation Tree

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

…third trace (schedule)…third trace (schedule)
n We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

8

CIS 842: Spin-INTRO: Introduction to SPIN 15

Computation Tree

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

…fourth trace (schedule)…fourth trace (schedule)
n We can think of the
possible schedules
(execution traces) as
forming a
computation tree…

CIS 842: Spin-INTRO: Introduction to SPIN 16

Assessment

n Even though this is a
very small system, it is
already tedious for us to
try to find a violating
trace.

n Spin can act as a
simulator to help us find
a violating trace.

n Spin simulates in two
ways:
n random simulation
n user-guided simulation

.prom

Spin
(simulation mode)

user interaction

9

CIS 842: Spin-INTRO: Introduction to SPIN 17

Random Simulation

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

At choice points, SPIN
randomly chooses one of
the enabled transitions.

At choice points, SPIN
randomly chooses one of
the enabled transitions.

n In a random
simulation, SPIN
randomly chooses a
branch at a choice
point.

$ spin <promela file>

CIS 842: Spin-INTRO: Introduction to SPIN 18

Guided Simulation

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

n In a guided
simulation, SPIN asks
the user which
transition to take at a
choice point.

At choice points, SPIN
asks user which transition
to take.

At choice points, SPIN
asks user which transition
to take.

$ spin –i <promela file>

10

CIS 842: Spin-INTRO: Introduction to SPIN 19

Example – Guided Simulation
$ spin -i anyn.prom
Select a statement
choice 1: proc 1 (Thread1) line 6 "anyn.prom" (state 4) [t1 = x]
choice 2: proc 0 (:init:) line 25 "anyn.prom" (state 3) [(run Thread2())]

Select [1-2]: 2

Select a statement
choice 1: proc 2 (Thread2) line 15 "anyn.prom" (state 4) [t1 = x]
choice 2: proc 1 (Thread1) line 6 "anyn.prom" (state 4) [t1 = x]
choice 3: proc 0 (:init:) line 26 "anyn.prom" (state 4) [assert((x!=1))]

Select [1-3]: 3
spin: line 26 "anyn.prom", Error: assertion violated
spin: text of failed assertion: assert((x!=1))
[…]
$

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

1.11.1

0.30.3

…running to first choice point……running to first choice point…

CIS 842: Spin-INTRO: Introduction to SPIN 20

Example – Guided Simulation
$ spin -i anyn.prom
Select a statement
choice 1: proc 1 (Thread1) line 6 "anyn.prom" (state 4) [t1 = x]
choice 2: proc 0 (:init:) line 25 "anyn.prom" (state 3) [(run Thread2())]

Select [1-2]: 2

Select a statement
choice 1: proc 2 (Thread2) line 15 "anyn.prom" (state 4) [t1 = x]
choice 2: proc 1 (Thread1) line 6 "anyn.prom" (state 4) [t1 = x]
choice 3: proc 0 (:init:) line 26 "anyn.prom" (state 4) [assert((x!=1))]

Select [1-3]: 3
spin: line 26 "anyn.prom", Error: assertion violated
spin: text of failed assertion: assert((x!=1))
[…]
$

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

1.11.1

0.30.3

0.40.4

1.11.1

2.12.1
…running to next choice point……running to next choice point…

11

CIS 842: Spin-INTRO: Introduction to SPIN 21

Example – Guided Simulation
$ spin -i anyn.prom
Select a statement
choice 1: proc 1 (Thread1) line 6 "anyn.prom" (state 4) [t1 = x]
choice 2: proc 0 (:init:) line 25 "anyn.prom" (state 3) [(run Thread2())]

Select [1-2]: 2

Select a statement
choice 1: proc 2 (Thread2) line 15 "anyn.prom" (state 4) [t1 = x]
choice 2: proc 1 (Thread1) line 6 "anyn.prom" (state 4) [t1 = x]
choice 3: proc 0 (:init:) line 26 "anyn.prom" (state 4) [assert((x!=1))]

Select [1-3]: 3
spin: line 26 "anyn.prom", Error: assertion violated
spin: text of failed assertion: assert((x!=1))
[…]
$

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

1.11.1

0.30.3

0.40.4

1.11.1

2.12.1

…next state yields an
assertion violation

…next state yields an
assertion violation

CIS 842: Spin-INTRO: Introduction to SPIN 22

For You To Do…
n Pause the lecture…
n The computation tree for the AnyN example depicted on earlier slides is

five levels deep. Extend the diagram to six levels.
n Download the file anyn.prom from the examples page.
n Run SPIN in random simulation mode.

n Edit anyn.prom and change the assertion to x != 1.
n Do you understand Spin’s output? Was SPIN able to find a violating trace?

Why/why -not?
n Edit anyn.prom and change the assertion to x != 3.
n Run SPIN in random simulation mode. Do you understand Spin’s output? Was

SPIN able to find a violating trace? Why/why -not?
n Edit anyn.prom and change the assertion to x != 5.

n Using SPIN in guided simulation mode, construct a trace that leads to an
assertion violation. Is this the shortest trace that leads to a violation? How can
you be sure?

n Edit anyn.prom and change the assertion to x != 7.
n Using SPIN in guided simulation mode, construct a trace that leads to an

assertion violation. Is this the shortest trace that leads to a violation? How can
you be sure?

12

CIS 842: Spin-INTRO: Introduction to SPIN 23

Assessment

n SPIN in random simulation mode…
n sometimes it can find an error

n e.g., when assertion read x != 1

n most of the time it won’t find an error
n e.g., when assertion read x != 3
n in this case, SPIN runs forever, and you can notice

the overflow error messages associated with the
variables of type byte

CIS 842: Spin-INTRO: Introduction to SPIN 24

Assessment

n SPIN in guided simulation mode…
n the user can guide SPIN to the error

n but this requires that the user already know or at
least have a good idea about how the error can
occur!

n tedious and error prone
n infeasible on all but very short traces
n cannot be used in practice to obtain an exhaustive

search of all possible traces
n can be useful in practice if the user simply wants

to explore the behavior, e.g., of a particularly
troublesome section of code

13

CIS 842: Spin-INTRO: Introduction to SPIN 25

On To Exhaustive Exploration…

n SPIN’s randon simulation
n isn’t that useful for finding bugs
n only explores one execution trace

n SPIN’s guided simulation
n is only useful on short traces where the user already

has a good idea of how a property violation might
arise

n only feasible to explore a few execution traces

n The main strength of SPIN is its automatic
exhaustive search capabilities
n this is why people use SPIN
n this is what this course is all about

CIS 842: Spin-INTRO: Introduction to SPIN 26

Exhaustive Depth-first Search

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

n SPIN can perform
exhaustive depth-first
searches of a system’s
state-space.

At choice points, SPIN
chooses an unexplored
transitions and
remembers that it needs
to come back and explore
the others…

At choice points, SPIN
chooses an unexplored
transitions and
remembers that it needs
to come back and explore
the others…

14

CIS 842: Spin-INTRO: Introduction to SPIN 27

Exhaustive Depth-first Search

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

n SPIN can perform
exhaustive depth-first
searches of a system’s
state-space.

When SPIN has
finished with one
subtree, …

When SPIN has
finished with one
subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

CIS 842: Spin-INTRO: Introduction to SPIN 28

Exhaustive Depth-first Search

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

n SPIN can perform
exhaustive depth-first
searches of a system’s
state-space.

When SPIN has
finished with one
subtree, …

When SPIN has
finished with one
subtree, …

… it continues on
with the siblings.

… it continues on
with the siblings.

15

CIS 842: Spin-INTRO: Introduction to SPIN 29

Exhaustive Depth-first Search

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

n SPIN can perform
exhaustive depth-first
searches of a system’s
state-space.

… until the entire
computation tree is
covered.

… until the entire
computation tree is
covered.

CIS 842: Spin-INTRO: Introduction to SPIN 30

Exhaustive Depth-first Search

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

n SPIN can perform
exhaustive depth-first
searches of a system’s
state-space.

… until the entire
computation tree is
covered.

… until the entire
computation tree is
covered.

16

CIS 842: Spin-INTRO: Introduction to SPIN 31

Process of Using SPIN

mysys.prom

(analyzer generation
mode)

pan.*

gcc pan.exe
(mysys analyzer)

(simulation
mode)

spin

mysys.prom.trail

…system
description

…system
description

…error trace
description

…error trace
description

…if violation found

…search
statistics

…search
statistics

CIS 842: Spin-INTRO: Introduction to SPIN 32

Process of Using SPIN
n $ spin –a mysys.prom

n creates a dedicated PROMELA analyzer C program (pan.*) that
implements an exhaustive search on the system described in
mysys.prom

n $ gcc pan.c –o pan.exe
n compiles the analyzer source (pan.c) to yield an executable (pan.exe)
n user often supplies additional compiler flags (discussed later)

n $ pan.exe
n runs the analyzer
n user often supplies other command-line flags (discussed later)
n produces mysys.prom.trail which indicates the particular execution

trace that caused a property violation
n $ spin –t mysys.prom

n runs SPIN in simulation mode along the trace indicated by
mysys.prom.trail

n also print out diagnostic information (variable values, execution steps)
with various levels of verbosity (set by additional command-line args)

n use this information to diagnose bug and fix the system defect

17

CIS 842: Spin-INTRO: Introduction to SPIN 33

For You To Do…

n Pause the lecture…
n Edit anyn.prom and change the assertion to x != 3.
n Use SPIN as described on the previous slide to perform

an exhaustive search for property violations on the anyn
program.

n What happened? Try to figure out what SPIN’s output
is telling you.
n Did SPIN find an execution path that causes the assertion to be

violated?
n Can you determine what the path is from SPIN’s output?
n Can you determine how long the path is (how many steps)?
n What does the other information produced by SPIN tell you?

CIS 842: Spin-INTRO: Introduction to SPIN 34

SPIN Output
pan: assertion violated (x!=3) (at depth 1358)
pan: wrote anyn.prom.trail
(Spin Version 3.4.16 -- 2 June 2002)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 24 byte, depth reached 3267, errors: 1
14478 states, stored
19167 states, matched
33645 transitions (= stored+matched)

0 atomic steps
hash conflicts: 243 (resolved)
(max size 2^18 states)

18

CIS 842: Spin-INTRO: Introduction to SPIN 35

Assessment

n SPIN spits out a lot of information and we haven’t
covered enough material yet for you to understand what
it all means.

n We will now take some time to discover what most of
the output means, but we will leave some of the
information for later lectures.

n We will now discuss the basic data structures and
algorithm of SPIN. This will lead to a good
understanding of most of the information that SPIN
prints out after a verification run.

CIS 842: Spin-INTRO: Introduction to SPIN 36

SPIN’s Basic Data Structures
n State vector

n holds the value of all variables as well as program
counters (current position of execution) for each
process.

n Depth-first stack
n holds the states (or transitions) encountered down a

certain path in the computation tree.

n Seen state set
n holds the state vectors for all the states that have

been checked already (seen) in the depth-first search.
Note: we will represent the values of these data structures in an abstract manner that
captures the essence of the issues, but not the actual implementation. Spin actually
uses multiple clever representations to obtain a highly space/speed optimized search
algorithm.

19

CIS 842: Spin-INTRO: Introduction to SPIN 37

State Vector

[0.4,1.1,2.1,1,0,0]

… values of program
counter for each process

… values of program
counter for each process

… values of program
variables x, t1, t2

… values of program
variables x, t1, t2

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

Example State Vector

CIS 842: Spin-INTRO: Introduction to SPIN 38

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

State Vector

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

State vectors for our

Violating schedule for N = 2

0.1 [0.2,--,--,1,0,0]

[0.3,1.1,--,1,0,0]

[0.3,1.1,2.1,1,0,0]

[0.4,1.1,2.2,1,1,0]

violation

[0.1,--,--,0,0,0]
(initial
vector)

0.2

0.3

2.1

[*,1.1,2.1,2,1,1]0.4

[0.4,1.1,2.3,1,1,1]2.2

[0.4,1.1,2.1,2,1,1]2.3

Unstarted
processes

Unstarted
processes

Finished
process

Finished
process

Process
started

Process
started

20

CIS 842: Spin-INTRO: Introduction to SPIN 39

SPIN Output
pan: assertion violated (x!=3) (at depth 1358)
pan: wrote anyn.prom.trail
(Spin Version 3.4.16 -- 2 June 2002)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 24 byte, depth reached 3267, errors: 1
14478 states, stored
19167 states, matched
33645 transitions (= stored+matched)

0 atomic steps
hash conflicts: 243 (resolved)
(max size 2^18 states)

…indicates SPIN used
24 bytes to represent a
state vector

…indicates SPIN used
24 bytes to represent a
state vector

CIS 842: Spin-INTRO: Introduction to SPIN 40

For You To Do…

n Pause the lecture…
n Give the state vector sequence (as

illustrated a few slides ago) for a schedule
that leads to a violation of the assertion
set to assert(x != 3).

21

CIS 842: Spin-INTRO: Introduction to SPIN 41

Depth-first Stack

n The depth-first stack serves two purposes
n When we come to the end of a path (or a state that

we have seen before) and backtrack, the stack tells
us where to backtrack to.

n If an error is encountered, the current value of the
stack gives the computation path that leads to the
error.

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

G
ro

w
th

Depth-first Stack

CIS 842: Spin-INTRO: Introduction to SPIN 42

Depth-first Stack

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

[0.2,--,--,1,0,0]

[0.3,1.1,--,1,0,0]

[0.3,1.1,2.1,1,0,0]

[0.4,1.1,2.2,1,1,0]

[0.1,--,--,0,0,0]

[0.4,1.1,2.3,1,1,1]

G
row

th

Stack of State Vectors

n The depth-first stack can be implemented to
hold state vectors
n straight-forward implementation

22

CIS 842: Spin-INTRO: Introduction to SPIN 43

Depth-first Stack

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

[0.2]

[0.3]

[2.1]

[2.2]

[0.1]

G
row

th
Stack of Transitions

n The depth-first stack can be implemented to
hold transitions
n requires less space, but …(see next slide)…

CIS 842: Spin-INTRO: Introduction to SPIN 44

Depth-first Stack of Transitions

n Generating a new state requires that the analyzer run a
transition on the current state.

n Since the analyzer is not holding states in the stack, if it
needs to back-track and return to a previously
encountered state, it needs an “undo” operation to run
the transitions in the reverse direction.

n Since the analyzer is not holding states in the stack,
when providing variable values as diagnostic information
for an error path, the analyzer needs a simulation mode
where choice points are decided by the stacked
transitions.

23

CIS 842: Spin-INTRO: Introduction to SPIN 45

Depth-first Stack of Transitions
n Since the analyzer is not holding states in the stack, if it

needs to back-track and return to a previously
encountered state, it needs an “undo” operation to run
the transitions in the reverse direction.

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

…current state s2.2
…current state s2.2

s2.1
s2.1

[0.2]

[0.3]

[2.1]

[2.2]

[0.1]

Stack of Transitions

pop, s2.1 = undo(2.2,s2.2)
pop, s0.3 = undo(2.1,s2.1)
pop, s0.2 = undo(2.1,s0.3)s0.3

s0.3

s0.2
s0.2

CIS 842: Spin-INTRO: Introduction to SPIN 46

Depth-first Stack of Transitions
n Since the analyzer is not holding states in the stack,

when providing variable values as diagnostic information
for an error path, the analyzer needs a simulation mode
where choice points are decided by the transitions

0.1

0.2

0.3 1.1

0.4 1.1 2.1 0.3 1.2

1.1 2.1 0.4 1.2 2.1 1.1 2.20.4 0.4 1.2 2.1 0.4 1.3 2.1

s2.2
s2.2

s2.1
s2.1

[0.2]

[0.3]

[2.1]

[2.2]

[0.1]

Stack of Transitions
leading to error state

s0.3 = eval(0.3,s0.2)

s0.2 = eval(0.2,s0.1)

s0.1 = eval(0.1,sinit)

s0.3
s0.3

s0.2
s0.2

…

s2.1 = eval(2.1,s0.3)
s2.2 = eval(2.2,s2.1)

…

sinit
sinit

s0.1
s0.1

24

CIS 842: Spin-INTRO: Introduction to SPIN 47

Assessment
n SPIN implements a depth-first stack of

transitions.
n This reduces amount of required memory and

meshes well with its other space optimizations
(e.g., bit-state hashing – discussed in following
lectures).

n mysys.prom.trail contains SPIN’s transition
markers corresponding to the contents of the
depth-first stack at the point of e.g., an
assertion violation.

n spin –t mysys.prom runs the “simulation
guided by transition list” (as represented by the
.trail file) described on the previous slide.

CIS 842: Spin-INTRO: Introduction to SPIN 48

SPIN Trail File (transition list)

-4:-4:-4
1:0:14
2:0:15
3:0:16
4:2:7
5:2:8
6:1:0
7:2:9
8:1:1
9:1:2
10:2:7
11:2:8
12:1:0
13:2:9
…

anyn.prom.trail
(corresponding to run in “For You To Do…”)

Depth of position in stack
(step # in execution trace)

Depth of position in stack
(step # in execution trace)

Process IDentifier (PID) of process
that moved in the current step

Process IDentifier (PID) of process
that moved in the current step

Transition identifier for transition
taken in the current step

Transition identifier for transition
taken in the current step

Note: the transition list
continues for 1358 steps

25

CIS 842: Spin-INTRO: Introduction to SPIN 49

SPIN Output
pan: assertion violated (x!=3) (at depth 1358)
pan: wrote anyn.prom.trail
(Spin Version 3.4.16 -- 2 June 2002)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 24 byte, depth reached 3267, errors: 1
14478 states, stored
19167 states, matched
33645 transitions (= stored+matched)

0 atomic steps
hash conflicts: 243 (resolved)
(max size 2^18 states)

…depth in computation
tree (i.e., transition stack)
where assertion violation
was found (i.e., number
of steps in error trace)

…depth in computation
tree (i.e., transition stack)
where assertion violation
was found (i.e., number
of steps in error trace)

…deepest stack depth
reached during search

…deepest stack depth
reached during search

CIS 842: Spin-INTRO: Introduction to SPIN 50

Error Trace Length

n From SPIN’s output, we can see that it has
found a execution trace that violates the
assertion and that the trace is 1358 steps long
(using SPIN version 3.4.16).
n Having to reason about how the assertion can be

violated along a trace of 1358 steps is quite painful!
n You have previously discovered a much shorter

violating trace using SPIN’s simulation mode.
n Does this mean that the SPIN analyzer is not very

useful?
n Not at all!!

n We will see in a little bit how to tell SPIN to
search for shorter violating traces (as well as
minimal length violating traces) .

26

CIS 842: Spin-INTRO: Introduction to SPIN 51

n In general, a system may have many different traces
that lead to the same property violation.

Error Trace Length

n Because SPIN does a depth-first search (instead of a
bread-first search), the first violating trace that it finds
is usually not of minimal length.

property
violations

property
violations

first property
violation found
by SPIN

first property
violation found
by SPIN

GREEN shows portion of
statespace covered by
SPIN before first violation
found

GREEN shows portion of
statespace covered by
SPIN before first violation
found

CIS 842: Spin-INTRO: Introduction to SPIN 52

Setting SPIN’s Depth Bound
n Users can set a bound on the depth of

SPIN’s search (i.e., entries in SPIN’s
depth-first stack)
n pan.exe –mDEPTHBOUND

n This is often useful…
n …after a counterexample has been found and

you want to see if a shorter one exists.
n look at SPIN’s output to see the size, then rerun

pan.exe with an appropriate depth bound.
n …before a counterexample has been found

and SPIN is taking too long or is running out
of memory.

27

CIS 842: Spin-INTRO: Introduction to SPIN 53

Setting SPIN’s Depth Bound
n Be careful!

n when you bound SPIN’s search, SPIN will not be
exploring part of the system state-space, and the
omitted part may contain property violations that you
want to detect.

n If SPIN tells you that there are no violations, but you
have bounded the search, you cannot assume that
the system has no violations. You only know that
SPIN has found no violations in the part of the state-
space that it searched.

n SPIN displays “error: max search depth too
small” to let you know that the depth bound
prevented it from searching the complete state-
space.

CIS 842: Spin-INTRO: Introduction to SPIN 54

n When analyzing a system and given a depth bound as a command-
line argument, SPIN will backtrack when that depth is reached.

Bounded Depth-first Search

property
violations

property
violations

Depth-bound
of 6

Depth-bound
of 6

GREEN shows portion of
statespace covered by
SPIN before first violation
found

GREEN shows portion of
statespace covered by
SPIN before first violation
found

$ pan.exe –m6
Errors at depth greater than
bound are not detected.

Errors at depth greater than
bound are not detected.

28

CIS 842: Spin-INTRO: Introduction to SPIN 55

n When analyzing a system and given a depth bound as a command-
line argument, SPIN will backtrack when that depth is reached.

Bounded Depth-first Search

Depth-bound
of 3

Depth-bound
of 3

GREEN shows portion of
statespace covered by
SPIN before first violation
found

GREEN shows portion of
statespace covered by
SPIN before first violation
found

$ pan.exe –m3
Errors at depth greater than
bound are not detected.

Errors at depth greater than
bound are not detected.

In this case,
SPIN reports that
no violations
were found.

In this case,
SPIN reports that
no violations
were found.

CIS 842: Spin-INTRO: Introduction to SPIN 56

For You To Do…

n Pause the lecture…
n Edit anyn.prom and change the assertion to x != 3.
n Use SPIN (pan.exe –mDEPTHBOUND) to find an error

trace of minimal length.
n start with a depth bound that allows an error
n successively choose smaller versions of the bound until SPIN

reports no error
n determine a bound B such that running SPIN with bound B-1

reveals no errors, but running with B reveals an error
n How does this error trace compare to the one (i.e., size

and state vectors encountered) to the error trace that
you discovered earlier using SPIN’s guided simulation
mode?

n Note that there may be multiple minimal length error
traces.

29

CIS 842: Spin-INTRO: Introduction to SPIN 57

SPIN Output
error: max search depth too small
pan: assertion violated (x!=3) (at depth 10)
pan: wrote anyn.prom.trail
(Spin Version 3.4.16 -- 2 June 2002)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 24 byte, depth reached 9, errors: 1
25 states, stored
29 states, matched
54 transitions (= stored+matched)
0 atomic steps

…deepest stack depth
reached during search

…deepest stack depth
reached during search

…depth in computation
tree (i.e., transition stack)
where assertion violation
was found (i.e., number
of steps in error trace)

…depth in computation
tree (i.e., transition stack)
where assertion violation
was found (i.e., number
of steps in error trace)

…indicates that search was
truncated by depth-bound

…indicates that search was
truncated by depth-bound

…reports an
error found

…reports an
error found

$ pan.exe –m10

CIS 842: Spin-INTRO: Introduction to SPIN 58

SPIN Output
error: max search depth too small
(Spin Version 3.4.16 -- 2 June 2002)

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 24 byte, depth reached 8, errors: 0
38 states, stored
57 states, matched
95 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
(max size 2^18 states)

…deepest stack depth
reached during search

…deepest stack depth
reached during search

…indicates that search was
truncated by depth-bound

…indicates that search was
truncated by depth-bound

…reports no
errors found

…reports no
errors found

$ pan.exe –m9

30

CIS 842: Spin-INTRO: Introduction to SPIN 59

Assessment

n Minimal length error traces can be found with
the –mDEPTHBOUND command line option for pan.exe.
n This is somewhat tedious for the user.

n SPIN provides two other options to find shorter traces…
n pan.exe –i

n finds a minimal length path by successively rerunning with bound
set to length-of-current -violating-trace – 1 (can be costly!)

n pan.exe –I
n similar to the option above but faster (a form of binary search is

used), but approximate (sometimes minimal error trace is not
found)

n Note: these require pan.c to be compiled with the –DREACH
compile flag

CIS 842: Spin-INTRO: Introduction to SPIN 60

SPIN Output
pan: assertion violated (x!=3) (at depth 1358)
pan: wrote anyn.prom.trail
pan: reducing search depth to 1357
pan: wrote anyn.prom.trail
pan: reducing search depth to 1356
pan: wrote anyn.prom.trail
pan: reducing search depth to 1355
pan: wrote anyn.prom.trail
pan: reducing search depth to 1354
pan: wrote anyn.prom.trail

…
pan: reducing search depth to 395
pan: wrote anyn.prom.trail
pan: reducing search depth to 394
pan: wrote anyn.prom.trail

…
pan: reducing search depth to 12
pan: wrote anyn.prom.trail
pan: reducing search depth to 11
pan: wrote anyn.prom.trail
pan: reducing search depth to 10
pan: wrote anyn.prom.trail
pan: reducing search depth to 9
…

…first violation found …first violation found

$ gcc –DREACH pan.c
$ pan.exe –i

…SPIN picks a bound
one step smaller than
length of current
minimal violating trace

…SPIN picks a bound
one step smaller than
length of current
minimal violating trace

…when no error is
found, the process
stops, and a trace of
minimal length appears
in anyn.prom.trail

…when no error is
found, the process
stops, and a trace of
minimal length appears
in anyn.prom.trail

Note: output continued on next slide

31

CIS 842: Spin-INTRO: Introduction to SPIN 61

SPIN Output (continued)

(Spin Version 3.4.16 -- 2 June 2002)
+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates+

State-vector 24 byte, depth reached 3267, errors: 87
15314 states, stored
253332 states, matched
268646 transitions (= stored+matched)

0 atomic steps
hash conflicts: 8384 (resolved)
(max size 2^18 states)

1.801 memory usage (Mbyte)

$ gcc –DREACH pan.c
$ pan.exe –i

…SPIN ran 88 times
and found an error
everytime but the last
(which indicated that it
should stop)

…SPIN ran 88 times
and found an error
everytime but the last
(which indicated that it
should stop)

Note: output continued from previous slide

CIS 842: Spin-INTRO: Introduction to SPIN 62

SPIN Output

$ gcc –DREACH pan.c
$ pan.exe –I

pan: assertion violated (x!=3) (at depth 1358)
pan: wrote anyn.prom.trail
pan: reducing search depth to 679
pan: wrote anyn.prom.trail
pan: reducing search depth to 678
pan: wrote anyn.prom.trail
pan: reducing search depth to 678
pan: wrote anyn.prom.trail
pan: reducing search depth to 677
pan: wrote anyn.prom.trail
pan: reducing search depth to 677
pan: wrote anyn.prom.trail
pan: reducing search depth to 334
pan: wrote anyn.prom.trail
pan: reducing search depth to 333
…
pan: reducing search depth to 7
pan: wrote anyn.prom.trail
pan: reducing search depth to 6
pan: wrote anyn.prom.trail
pan: reducing search depth to 5
pan: wrote anyn.prom.trail
pan: reducing search depth to 5

…first violation found …first violation found

…SPIN takes half the
length of the violating
trace for the next depth
bound.

…SPIN takes half the
length of the violating
trace for the next depth
bound.

…SPIN overshoots the
minimal length
counterexample.

…SPIN overshoots the
minimal length
counterexample.

Note: output continued on next slide

32

CIS 842: Spin-INTRO: Introduction to SPIN 63

SPIN Output (continued)

(Spin Version 3.4.16 -- 2 June 2002)
+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates+

State-vector 24 byte, depth reached 3267, errors: 22
14828 states, stored
157190 states, matched
172018 transitions (= stored+matched)

0 atomic steps
hash conflicts: 3980 (resolved)
(max size 2^18 states)

1.801 memory usage (Mbyte)

$ gcc –DREACH pan.c
$ pan.exe –I

…SPIN ran 23 times
and found an error
everytime but the last
(which indicated that it
should stop)

…SPIN ran 23 times
and found an error
everytime but the last
(which indicated that it
should stop)

Note: output continued from previous slide

CIS 842: Spin-INTRO: Introduction to SPIN 64

For You To Do…

n Pause the lecture…
n Edit anyn.prom and change the assertion to x != 6.
n Use SPIN (pan.exe –i) to find an error trace of minimal

length.
n Use SPIN (pan.exe –I) to find a short error trace.
n Did the two options above produce the same error trace

at completion?
n Did the two options run the analyzer the same number

of times?

33

CIS 842: Spin-INTRO: Introduction to SPIN 65

Simulation Mode Flags
n When SPIN produces a .trail file and we replay

the error trail using spin –t, we usually want
more information than what SPIN provides by
default.

n The following flags can be provided to SPIN
(e.g., along with –t) to produce more
information:
n -g …display values of global variables
n -p …print all statements
n -l …with –p, display values of local variables
n -v …very verbose format for the above

n See SPIN documentation or spin –help for
other flags.

CIS 842: Spin-INTRO: Introduction to SPIN 66

For You To Do…

n Pause the lecture…
n Run SPIN in analysis mode to find a short

violating trace of the anyn.prom system.
n Experiment with the flags on the previous

page when replaying the error trace.

34

CIS 842: Spin-INTRO: Introduction to SPIN 67

Error Trail
1: proc 0 (:init:) line 23 "anyn.prom" (state 1) [x = 1]
2: proc 0 (:init:) line 24 "anyn.prom" (state 2) [(run Thread1())]
3: proc 0 (:init:) line 25 "anyn.prom" (state 3) [(run Thread2())]
4: proc 2 (Thread2) line 16 "anyn.prom" (state 1) [t1 = x]
5: proc 2 (Thread2) line 17 "anyn.prom" (state 2) [t2 = x]
6: proc 1 (Thread1) line 7 "anyn.prom" (state 1) [t1 = x]
7: proc 2 (Thread2) line 18 "anyn.prom" (state 3) [x = (t1+t2)]
8: proc 1 (Thread1) line 8 "anyn.prom" (state 2) [t2 = x]
9: proc 1 (Thread1) line 9 "anyn.prom" (state 3) [x = (t1+t2)]

spin: line 26 "anyn.prom", Error: assertion violated
spin: text of failed assertion: assert((x!=3))
10: proc 0 (:init:) line 26 "anyn.prom" (state 4) [assert((x!=3))]

spin: trail ends after 10 steps
#processes: 3

x = 3
t1 = 1
t2 = 2

10: proc 2 (Thread2) line 15 "anyn.prom" (state 4)
10: proc 1 (Thread1) line 6 "anyn.prom" (state 4)
10: proc 0 (:init:) line 27 "anyn.prom" (state 5) <valid endstate>

3 processes created

Position of threads at the end of error tracePosition of threads at the end of error trace

Statements executed
at each step of trace.

Statements executed
at each step of trace.

$ spin –t –p anyn.prom

Values of global variables at
end of trace.

Values of global variables at
end of trace.

CIS 842: Spin-INTRO: Introduction to SPIN 68

Seen State Set

n Often the analyzer will proceed along a different
path to a state S that it has checked before.

n In such a case, there is no need to check S
again (or any of S’s children in the computation
tree) since these have been checked before.

n SPIN maintains a Seen State set (implemented
as a hash table) of states that have been seen
before, and it consults this set to avoid
exploring/checking a part of the computation
tree that is identical to a part that has already
been explored before.

35

CIS 842: Spin-INTRO: Introduction to SPIN 69

=

Revisting Via A Different Path

[0.4,1.1,2.1,1,0,0]

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

State Vectors in Fragment
of Computation Tree

[0.4,1.2,2.1,1,1,0]

1.1

[0.4,1.2,2.2,1,1,0]

2.1

[0.4,1.1,2.2,1,1,0]

2.1

[0.4,1.2,2.2,1,1,0]

1.1

…no need to explore this branch
because it is identical to one
previously explored

…no need to explore this branch
because it is identical to one
previously explored

CIS 842: Spin-INTRO: Introduction to SPIN 70

Computation Tree as Graph

[0.4,1.1,2.1,1,0,0]

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

1.1
1.2
1.3

2.1
2.2
2.3

0.1
0.2
0.3
0.4

Some times we view the
computation tree as a graph

[0.4,1.2,2.1,1,1,0]

1.1

[0.4,1.2,2.2,1,1,0]

2.1

[0.4,1.1,2.2,1,1,0]

2.1

1.1

…sharing a node corresponds to
(re)visiting a node that has been
seen before.

…sharing a node corresponds to
(re)visiting a node that has been
seen before.

36

CIS 842: Spin-INTRO: Introduction to SPIN 71

Seen State Set

[0.4,1.1,2.1,1,0,0]

byte x,t1,t2;

proctype Thread1()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

proctype Thread2()
{ do :: t1 = x;

t2 = x;
x = t1 + t2

od }

init
{ x = 1;

run Thread1();
run Thread2();
assert(x != N) }

1.1

1.2

1.3

2.1

2.2

2.3

0.1

0.2

0.3

0.4

Computation Tree

[0.4,1.2,2.1,1,1,0]

1.1

[0.4,1.2,2.2,1,1,0]

[0.4,1.1,2.2,1,1,0]

2.1

…when SPIN gets to this node, it
checks the Seen Set and finds it
already has been checked, so it
backtracks from this point

…when SPIN gets to this node, it
checks the Seen Set and finds it
already has been checked, so it
backtracks from this point

Seen Set

2.1

…
[0.4,1.1,2.1,1,0,0]
[0.4,1.2,2.1,1,1,0]
[0.4,1.2,2.2,1,1,0]
[0.4,1.1,2.2,1,1,0]

[0.4,1.2,2.2,1,1,0]

1.1

CIS 842: Spin-INTRO: Introduction to SPIN 72

Non-Terminating Systems

n Due to the use of the Seen Set, checking
a non-terminating system may terminate
if the system only has a finite number of
states.

n In SPIN, all systems are “finite” because
of the bounds on basic data types.

n However, some systems are “more finite”
than others.
n i.e., they have a much smaller state-space.

37

CIS 842: Spin-INTRO: Introduction to SPIN 73

Non-Terminating Systems

n Consider this example
system…
n How many states does

it have?
n Does execution of the

system terminate?
n Does an exhaustive

analysis of the state-
space of the system
terminate?

bool x;

proctype Thread1()
{ do

:: x = !x;
od }

proctype Thread2()
{ do

:: x = !x;
od }

init {
x = false;
run Thread1();
run Thread2(); }

CIS 842: Spin-INTRO: Introduction to SPIN 74

For You To Do…

n Pause the lecture…
n Download the file finitenonterminating.prom

from the examples page.
n Run SPIN in simulation mode on the example.

n What do you observe?

n Run SPIN in analysis mode.
n What do you observe?
n Use the output of SPIN to answer the following

questions…
n How many states does the system have?
n How many states were stored in the Seen Set?
n How many states does the program generate before it

comes back to a previous state?

38

CIS 842: Spin-INTRO: Introduction to SPIN 75

SPIN Output
pan: assertion violated (x!=3) (at depth 1358)
pan: wrote anyn.prom.trail
(Spin Version 3.4.16 -- 2 June 2002)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid endstates +

State-vector 24 byte, depth reached 3267, errors: 1
14478 states, stored
19167 states, matched
33645 transitions (= stored+matched)

0 atomic steps
hash conflicts: 243 (resolved)
(max size 2^18 states)

…states stored
in Seen Set

…states stored
in Seen Set

… # transitions taken during analysis
equals # stored states +
generated states seen before

… # transitions taken during analysis
equals # stored states +
generated states seen before

…generated states
that were found to
be already in the
Seen Set

…generated states
that were found to
be already in the
Seen Set

CIS 842: Spin-INTRO: Introduction to SPIN 76

Assessment

n By now you should understand the role of each
of SPIN’s basic data structures…
n State vector
n Depth-first stack
n Seen state set

n You should be able to understand what almost
all of SPIN’s output means.

n We’ll now reenforce your intuition behind the
main data structures by presenting the pseudo-
code for the main loop of the SPIN analysis
engine.

39

CIS 842: Spin-INTRO: Introduction to SPIN 77

SPIN’s Analysis Algorithm
verify(state,trace,depth) {

if (depth > depth_limit) {
System.out.println(“error: max search depth too small”);
trace_limit_reached = true;

} else {
if (state is error state) {

dump .trail file, print error message, throw exception;
}
if (state !in seen) {

seen = {state} union seen;
for each active process p at state do {

for each enabled transition t in p at state do {
state’ = eval_tran(p,t,state);
trace’ = trace append t;
depth’ = depth + 1;
verify(state’,trace’,depth’)

} } } }

roughly!roughly!

…check depth limit (from –m option)…check depth limit (from –m option)

…check is an assertion is violated …check is an assertion is violated

…if we haven’t explored this state before …if we haven’t explored this state before

…add it to seen set…add it to seen set

…get the successor
state of this state

…get the successor
state of this state

…update trace and
depth info

…update trace and
depth info

…explore
successor state

…explore
successor state

CIS 842: Spin-INTRO: Introduction to SPIN 78

Other Checks

n SPIN also performs some other simple
checks that we will discuss in this
lecture…
n deadlock checking (invalid end-states)
n checks for dead/unexecuted code

40

CIS 842: Spin-INTRO: Introduction to SPIN 79

Invalid End States
byte x,y;

proctype Thread1()
{
if
:: (x == 0)

-> {x++;
if :: (y == 0)

-> y++; y--
fi}
x--;

fi
}

byte x,y;

proctype Thread1()
{
if
:: (y == 0)

-> {y++;
if :: (x == 0)

-> x++; x--
fi}
y--;

fi
}

init {
run Thread1();
run Thread2();

}

Is there a schedule
where this program
reaches a deadlock?

Is there a schedule
where this program
reaches a deadlock?

CIS 842: Spin-INTRO: Introduction to SPIN 80

For You To Do…

n Pause the lecture…
n Download the file simple-deadlock.prom (the

example from the previous slide) from the
examples page.

n Use SPIN to analyze the program
simple-deadlock.prom and find an error trace of
minimal length.

n What can you infer from SPIN’s output?
n Use the error-trace guided simulation mode to

view the error trace execution.
n What can you infer from the error trace

information?

41

CIS 842: Spin-INTRO: Introduction to SPIN 81

SPIN Output
pan: invalid endstate (at depth 6)
pan: wrote simple-deadlock.prom.trail
pan: reducing search depth to 5
(Spin Version 3.4.16 -- 2 June 2002)

+ Partial Order Reduction

Full statespace search for:
never-claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid endstates +

State-vector 20 byte, depth reached 17, errors: 1
31 states, stored
11 states, matched
42 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
(max size 2^18 states)

Indicates that
there is a
deadlock.

Indicates that
there is a
deadlock.

CIS 842: Spin-INTRO: Introduction to SPIN 82

Assessment

n “Invalid end state” means that SPIN found an execution
where the program cannot take another step, and at the
point where it has stopped at least one of the processes
is at a point that is not the end of its execution.

n Usually, this means that the discovered execution is a
deadlock error (at least two threads are stuck).

n However, we will see later on in the course that you
may specifically design a program where one or more
threads are designed to run forever. In this case, we
can attach special labels to statements to tell Spin that
some “invalid end states” are actually OK.

42

CIS 842: Spin-INTRO: Introduction to SPIN 83

Error Trail

1: proc 0 (:init:) line 29 (state 1) [(run Thread1())]
2: proc 0 (:init:) line 30 (state 2) [(run Thread2())]
3: proc 2 (Thread2) line 19 (state 1) [((y==0))]
4: proc 2 (Thread2) line 20 (state 2) [y = (y+1)]
5: proc 1 (Thread1) line 7 (state 1) [((x==0))]
6: proc 1 (Thread1) line 8 (state 2) [x = (x+1)]

spin: trail ends after 6 steps
#processes: 3

x = 1
y = 1

6: proc 2 (Thread2) line 21 (state 6)
6: proc 1 (Thread1) line 9 (state 6)
6: proc 0 (:init:) line 31 (state 3) <valid endstate>

3 processes created
pan: invalid endstate (at depth 6)

Position of threads at the end of error tracePosition of threads at the end of error trace

Invalid end states for
Thread1 and Thread2

Invalid end states for
Thread1 and Thread2

CIS 842: Spin-INTRO: Introduction to SPIN 84

Invalid End States
byte x,y;

proctype Thread1()
{
if
:: (x == 0)

-> {x++;
if :: (y == 0)

-> y++; y--
fi}
x--;

fi
}

byte x,y;

proctype Thread1()
{
if
:: (y == 0)

-> {y++;
if :: (x == 0)

-> x++; x--
fi}
y--;

fi
}

init {
run Thread1();
run Thread2();

}

Invalid end states are
displayed above in red.
Valid end state is displayed
in green.

Invalid end states are
displayed above in red.
Valid end state is displayed
in green.

line 9line 9 line 21line 21

line 9line 9

43

CIS 842: Spin-INTRO: Introduction to SPIN 85

Dead/Unexecuted Code
byte x,y;

proctype Thread1()
{

x = 0;
goto l1;
y = 1;

l1: y = 0;
}

init {
run Thread1();

}

Is there any dead code in this
program (statements that can
never be executed)?

Is there any dead code in this
program (statements that can
never be executed)?

CIS 842: Spin-INTRO: Introduction to SPIN 86

For You To Do…

n Pause the lecture…
n Download the file deadcode.prom from the examples

web page.
n Use SPIN to analyze the program.
n What can you infer from the output?

44

CIS 842: Spin-INTRO: Introduction to SPIN 87

SPIN Output
Full statespace search for:

…

State-vector 16 byte, depth reached 5, errors: 0
6 states, stored
0 states, matched
6 transitions (= stored+matched)
0 atomic steps

hash conflicts: 0 (resolved)
(max size 2^18 states)

1.493 memory usage (Mbyte)

unreached in proctype Thread1
line 8, state 3, "y = 1"
(1 of 5 states)

unreached in proctype :init:
(0 of 2 states)

Indicates that there is
an unreached state
(statement) in Thread1

Indicates that there is
an unreached state
(statement) in Thread1

Indicates that there
are no unreached
states in init process

Indicates that there
are no unreached
states in init process

CIS 842: Spin-INTRO: Introduction to SPIN 88

Dead/Unexecuted Code
byte x,y;

proctype Thread1()
{

x = 0;
goto l1;
y = 1;

l1: y = 0;
}

init {
run Thread1();

}

line 8 (unreached)line 8 (unreached)

45

CIS 842: Spin-INTRO: Introduction to SPIN 89

Summary

n SPIN is a powerful tool for exploring the state-space of
concurrent systems
n simulation mode
n verification mode

n SPIN’s three main data structures
n state vector

n holds values of variables and program counter for each thread
n depth-first stack

n holds states (or transitions) encountered during search
n used to display the error trace

n seen set
n holds states already explored

n SPIN can be used to check for assertion violations,
invalid end-states (deadlock), dead code (and more).

CIS 842: Spin-INTRO: Introduction to SPIN 90

Acknowledgements

n See the SPIN online documentation at
http://cm.bell-labs.com/cm/cs/what/spin/Man/index.html for
details on the SPIN command-line options.

