
Automata-based Model Checking

Gerard J. Holzmann
Computing Principles Research

Bell Labs, USA

s0
s1

f

10/21/98 2

outline

•

introduction
–

what is model checking all about
–

what are the central issues
•

the automata theoretic method
–

finite automata and omega automata
–

relation with propositional linear temporal logic
•

spin’s core algorithms for ltl

model checking

–

depth first search, nested depth first search
–

state storage, memory/time trade-offs
•

practical considerations
–

complexity and abstraction
–

some applications

10/21/98 3

1. introduction

10/21/98 4

designing systems

•

“a design without requirements cannot be right
or wrong, it can only be surprising”

•

the designer’s first task is to find out what the
requirements are, and then to build a system
that meets those requirements

Design = Specification + Requirements

•

design verification = showing that the
specification logically implies the requirements

10/21/98 5

principles of design

•

principles

of design used in most disciplines:
–

abstraction
•

‘‘modeling”

(constructing mathematical models, and/or
executable models/design prototypes)

–

analysis
•

‘‘model checking’’

(manual or automated)

•

principles

used in software engineering:
–

trial and error
•

running it until it appears to work...
–

duplication
•

adjusting trusted earlier designs by peers

•

model checking allows the first set of principles to be
applied in the design of distributed systems software

10/21/98 6

model checking

•

to prove that a system implies its specification:

1

construct a model of the system (an abstraction)
2

formalize its essential properties (e.g., in PLTL)
3

run the model checking algorithm
4

if answer is inconclusive, revise 1 or 2 and repeat 3 and 4

•

the possible answers provided by a model checker
–

ok --

if the model definitely satisfies the property
–

not ok --

if not, illustrated by a counter-example
–

inconclusive --

if resource-limits (time/space) prohibit
the algorithm from running to completion

10/21/98 7

state implosion

•

model checkers work by the grace of the fact
that logical properties of bounded models are
decidable
–

more about the complexity bounds later
•

time and space are also bounded
–

time: a hard upper-bound is somewhere around
76x364x24x60x60 CPU seconds (~ 10)

–

space: today, somewhere around 10 Gbyte

(~ 10)
•

the bounds of the model can easily exceed the
bounds imposed by physical reality….

•

in practice, the art of model checking is the art of
building executable abstractions

9
10

10/21/98 8

modeling = abstracting

a small example:
The requirements for NASA’s Mars Pathfinder

control software included:

•

mutual exclusion rules
–

a process cannot access the databus

unless it owns a
mutual exclusion lock

•

scheduling priority rules
–

a lower priority process cannot execute when a
higher priority process is ready to execute

–

saving data to memory, for instance, has higher
priority than processing data

10/21/98 9

basic sequence for data-bus access

idle

waiting

running

obtain lock

release lock

wait for mutex lock

execute critical sequence

10/21/98 10

enforcing the priority rule

Low priority process
(processing data)

i = idle
w = waiting
r = running

f = mutex

lock free
H

= high owns lock
L

= low owns lock

cannot run unless: i,-,-

High priority process
(dumping measurements)
restricted by lock

i,i,f

i,w,f

i,r,L

obtain lock

w,i,f

r,i,H

obtain lock

release lock release lock

?

?

10/21/98 11

model checking run (e.g., []<> (i,i,f))

i = idle
w = waiting
r = running

f = mutex

lock free
H

= high owns lock
L

= low owns lock

the hangup

problem
from July 1997

i,i,f

w,i,f i,w,f

r,i,H i,r,L

obtain lock

release lock

w,w,f

r,w,H

w,r,L

release lock

obtain lock

release lock

10/21/98 12

synopsis

‘‘Entities should not be multiplied
unnecessarily’’

William of Occam

(c. 1285-1349)

‘‘Seek simplicity --

and distrust it’’
Alfred North Whitehead (1861-1947)

the model checking challenge is to find
a model that is as simple as possible,
but no simpler...

10/21/98 13

2. the automata theoretic method

10/21/98 14

finite automata (labeled transition systems)

•

a classic FSA

is a tuple

{S, s0, L, T, F} with
–

S --

a finite set of states
–

s0 --

a distinguished initial state
–

L --

a finite set of labels

/ symbols
–

T --

a set of transitions

from SxLxS
–

F

--

a set of final states

from S

•

a run

of an FSA is an ordered set of transitions
from T …, {si,li,si+1}, {si+1,li+1,si+2}, ...

such that
–

for all i >= 0: {si,li,si+1} is in T

•

an accepting

run of an FSA is a finite run in which
the final state is in F

10/21/98 15

a sample fsa

s0s1

s2 s3 s4

s5

not “,

not /

“

*

/ *

“

not

/
not

*

not

*/

not

*
not

/
\.

“

/

not

“, not

\ *

(FSA for checking C-style comments /* ... */)

10/21/98 16

the notion of acceptance

•

an ω-run

of an FSA is a run that is infinitely long
–

an acyclic FSA does not permit ω-runs
•

an ω-run is accepting

if at least one state in F

 appears infinitely often within the run
–

this is called Buchi

Acceptance
–

automata with this acceptance rule are Buchi

Automata
•

some decidable properties of Buchi

automata :

–

intersection (given two Buchi

automata, find one automaton
that accepts only runs accepted by both)

–

union (given two Buchi

automata, find one automaton that
accepts all runs accepted by either)

–

non-emptiness (does a Buchi

automaton accept any ω-runs
at all?)

10/21/98 17

stuttering

•

Problem: if an FSA has both finite and infinite
runs --

can we apply a notion of ω-acceptance to

both?
•

Stutter extension

rule:

–

the final state of a finite run is considered to be
repeated ad infinitem

on a dummy self-loop
ω-acceptance is applied as before

•

Stutter invariance:
–

a property is stutter invariant if it is insensitive to the
introduction or removal of stuttering steps at any

point
in the execution

10/21/98 18

a sample buchi

automaton

s1

s2

awaiting access to
shared resource

accessing shared
resource

normal
execution

s0

(only runs that do not get stuck in
states s1

or s2

are to be accepted)

10/21/98 19

automata theoretic verification

vardi/wolper

[vw86], given:
•

a system modeled by ω-automaton

R
•

a correctness requirement given as PLTL formula f
then
•

convert

f

into an ω-automaton P

that satisfies !f

 (the negation

of f)
•

compute the language intersection V = PvR
result
•

if V

is empty,

f

is satisfied
•

if not, V contains the violations of f

10/21/98 20

application challenges

•

conversion from a program-like notation into
formal automata

•

computation of a global automaton from local
automata, given
–

asynchronous process components
–

dynamic creation and deletion of processes
–

message passing and rendezvous semantics
•

it turned out to be a natural fit for Spin
–

a general-purpose verification system based on automata
–

using an on-the-fly verification paradigm (1980)

10/21/98 21

spin’s on-the-fly verification procedure

Counter-Examples

Global Graph is
Never Explicitly
Built!

A Distributed System

Buchi
Automaton

LTL

A Correctness
Requirement

x

1 2 n

1 2 n

Automata Model

Abstraction

convert

language
intersection

!LTL
negation

10/21/98 22

computational cost

•

complexity bounds:
–

LTL model checking is PSPACE-complete [Sistla&Clark85]
•

verifying safety

properties (states):

–

linear in the number of reachable states R

•

verifying liveness

properties (cycles):
–

at most 2xR

time, and R

space (memory)

·

verifying ω−properties (including ltl):
–

with property automaton of N

states:
–

2xRxN

time, and RxN

space
–

for LTL, N

may be exponentially larger than the number of
operators in the formula: 1 <= N <= 2

–

in practice N

is typically in the range 1..10
|f|

10/21/98 23

practice: two ways to build a verifier

•

Given
L

= language of the system
P

= language of the requirement
•

First

Method

prove: P includes

L
assuming P

holds, minimal cost to prove this by language

inclusion

 is

P + L
•

Second

Method

construct

!P
prove: P excludes

L
assuming P

holds, minimal cost to prove it by language intersection

 is zero

10/21/98 24

correctness:
 reasoning about behavior

s0 s1 s2 s3
t0 t1 t3

x = 13 x = x/2 + 1 x > 0

x = x/2

t2
x <= 0

t4

3 views of an execution:

a sequence of states:

a sequence of events:

a sequence of properties:

s0 s1 s2 s3 s2 s2 s2s3 s3

t0 t1 t3 t4 t3 t4 t3 t4 t2

F T T T T T T F F
(x%2 > 0)

10/21/98 25

from logic to automata

•

The truth of an LTL formula is defined over execution sequences
–

the 3rd view

of an execution applies: a sequence of propositional
values

•

For any LTL formula f there exists an automaton that accepts
precisely those executions for which f

is true
•

If the automaton is insensitive to stuttering, it can be very small
•

The acceptance conditions of the automaton are defined over
infinite

sequences (Buchi

acceptance)
•

Example: the LTL formula <>[] P corresponds to the Buchi

 automaton:

s1
P Ptrue s0

10/21/98 26

temporal operators in ltl
the until operator:
•

(p U q) --

p holds at least until q holds
•

defined over ω-runs --

there are two variants:
σ[i] |= (p U

q) weak until
<=>
σ[i] |= q or
σ[i] |= p and σ[i+1] |= (p U

q)

σ[i] |= (p U

q) strong until
<=>
(p U

q) and

∃j, j >= i, σ[i] |= q

always, eventually:
σ[i] |= ([] p) <=> (p U

false)
σ[i] |= (<> p) <=> (true U

p)

spin

10/21/98 27

spin’s LTL grammar

•

ltl

formula

f ::=
–

true, false
–

propositional symbols p, q, r, …
–

(f)
–

unary_operator

f, f binary_operator

f
•

unary_operators:
[] ---

always, henceforth (box)
<> ---

eventually (diamond)
! ---

logical negation (not)
•

binary_operators:
U ---

strong until
&& ---

logical and
|| ---

logical or
-> ---

implication
<-> ---

equivalence

10/21/98 28

ltl

formulae

•

two useful equivalences:
![] p <=> <> !p
!<> p <=> [] !p

•

a deliberate omission (to secure stutter invariance):
–

X ---

the next operator

•

often used properties:
–

[] p ---

invariance
–

<> p ---

guarantee
–

p -> (<> q) ---

response
–

p -> (q U r) ---

precedence
–

[]<> p ---

recurrence (progress)
–

<>[] p ---

stability (non-progress)
–

<> p -> <> q ---

correlation

10/21/98 29

logic -> automata

manual conversion:
! [] (p −>

<> q)

! [] (!p \/ <> q)

the definition of ->
<> ! (!p \/ <> q) equivalence
<> (p /\

!<> q) De Morgan’s law
<> (p /\

[] !q) equivalence

the corresponding Buchi

Automaton:

(don’t worry, there’s an easier way…)

p && !q
true !q

s0 s1

10/21/98 30

deriving automata from ltl

formulae

•

define the Closure of f:
–

Cl(f) = the set of all sub-formulae of f

and their
negations

•

example:
– Cl (<> [] P

) =
<> [] P
<> P
P
!<> [] P
!<> P
!P

10/21/98 31

step 1: construct a
 generalized buchi

automaton

•

A = {S, s0, L, T, F }
–

States: S = 2
–

Initial state: s0, with formula f

ε

s0
–

Labels (alphabet): L = 2
–

Transition relation: T from S x L x S
–

Acceptance: n

sets Fi, subsets of S
•

Define the transition relation as:
–

(s, p, s’) ε

T iff
–

(p) satisfies s
–

(q U r) ε

s implies
•

r ε

s or

q ε

s and (q U r) ε

s’
(i.e., (qUr) is satisfied at s or it persists)

•

For each subformula

(q U r):
–

Fi = {s : (q U r) ε

s or r ε

s}

Prop

Cl(f)

10/21/98 32

step 2: map the result to a
 standard Buchi

automaton

•

generalized Buchi

acceptance defines:
–

k sets F: F1, …, Fk and
–

For each set i, require infinitely many visits in Fi.
•

Choueka’s

flag construction can be used to

translate generalized into standard Buchi
 acceptance [Choueka,1974]

–

Add counter n, with initial value 0
–

Upon reaching any state in Fi, increment n = (n+1) % k
(with k the number of acceptance sets Fi)

–

Select any one of the sets Fi as the new single
acceptance set F

10/21/98 33

spin’s syntax for ω-automata

•

Other types of acceptance can
also be expressed in never claims

p && !q
true !q

never {
do
:: true
:: p && !q -> break
od;

accept:
do
:: !q
od

}

ω-automaton: corrresponding

never-claim:

10/21/98 34

•

Define n pairs of set of states {Li,Ui}
•

for at least one i, detect any infinite execution sequence with
–

infinitely many visits in Ui
–

but only finitely many visits in Li
•

Propositional symbols ui, li

formalize the corresponding sets
never {

do
:: true /* allows li

*/
:: u1 && !l1 -> goto

set1 /* choice */
:: u2 && !l2 -> goto

set2
:: ...
od;

set1:

do
:: !l1
:: u1 && !l1 -> accept1: skip
od;

set2:

...
}

Rabin acceptance [Rabin72]

10/21/98 35

3. spin: core algorithms
 for ltl

model checking

10/21/98 36

choices, choices...

•

the focus of the exisiting

model checkers differs
significantly
–

they are optimized for different domains of application
and different logics

–

making it hard to do head-to-head comparisons
–

each model checker can soundly beat the others within
its own domain of application...

•

model checkers are intended to be applied to bounded
models, not directly to implementations
–

a model is a design abstraction
–

properties of bounded models are decidable
–

models and ltl

properties can be converted mechanically
into finite automata and can be analyzed in that domain

10/21/98 37

spin’s focus

•

Spin models describe distributed, not sequential, systems
–

they focus on coordination

not computation
•

Spin targets asynchronous, not synchronous, systems:
–

Spin targets software, not hardware, verification
problems

–

it uses primitives for message-channels, rv-ports, etc.
–

not gates, clocks, signal wires, flip-flops, etc.
•

Spin is optimized for the verification of omega regular
properties,

with LTL as its most significant subset.
–

It cannot handle branching-time properties.

10/21/98 38

spin’s graphical user interface

10/21/98 39

(Petri Net Token Machines)

(PAN)

Trace

Supertrace
SdlValid
VfsmValid
SPIN

spin’s origin (and automata-based verification)

(Approver, DMA)
Reachability

Analysis
Depth First Search

On-The-Fly Verification

Automata-Theoretic
Framework (Vardi/Wolper83-86)

Partial Order Reduction
(Peled95)
LTL -> Automata

BDD-Like Storage (Puri97)

1970s

1980

1987

1990

1983

1995

1998 logic
based

automata
based

(Xesar/EMC)

(SMV)
(BDD’s)

10/21/98 40

spin’s structure

Tcl/Tk: LTL
property

Parser

Model Checker
Generator

SimulatorYacc, C

Behavior
Spec.

Sequence
Diagrams

-

Exhaustive Search
-

Partial Order Search
-

Supertrace

Search
-

Safety/Liveness/LTL

source: pan.c Model
Checker

panexecutable: errors

sp
in

xs
pi
n

pa
n

10/21/98 41

on-the-fly cycle detection

•

violations of ω−properties correspond to executions
that contain infinitely many

accepting states

•

in a finite graph, these correspond to reachable
strongly connected components (scc’s) with one or
more accepting states

•

Tarjan’s

classic depth-first-search algorithm could
be used
–

cost: linear in the size of the graph
•

but, it suffices to prove or disprove that:
–

no reachable accepting state is reachable from itself…
–

has the same complexity, but a lower memory overhead

10/21/98 42

non-progress and acceptance

•

non-progress:
–

an ω−run, containing only finitely many progress states
–

in ltl, using buchi

acceptance: <>[] np_
•

buchi

acceptance:

–

an

ω−run, containing at least one accepting state
infinitely many times

p

a
non-progress acceptance

10/21/98 43

depth-first search

•

recursive expansion of global graph
•

asynchronous interleaving of concurrent actions

•

storing as little data as possible about previously
visited states
–

need only detailed info for counter-examples, not for
global graph

–

no need to store edges of graph
–

one-way compression of states
–

avoid revisiting states
revisits

10/21/98 44

detecting non-progress

•

prove absence or existence of non-progress cycles

progress state p

10/21/98 45

the nested depth-first search

•

memory overhead: 2 bits

per state
–

Tarjan’s

dfs

requires 2x32 bits

per state
•

worst-case time overhead: 2x

dfs
•

compatible with bitstate

storage / hash-compact, etc.

10/21/98 46

state storage options

•

exhaustive storage
–

very fast, but consumes most memory
•

lossless one-way compression
–

huffman

compression, runlength

encoding
–

hierarchical indexing (Collapse)
•

lossy

compression

–

bitstate

hashing (compress down to 2 bit positions/state)
–

hash-compact (compress down to 40 bits/state, stored in
regular hashtable)

•

minimized automaton representation
–

[HolzmannPuri98], STTT98, in Spin since 1/98

10/21/98 47

4. model checking in practice

10/21/98 48

modeling and verification:
 the bottom line

•

model checking is an exercise in abstraction:
formalizing the interfaces between modules, without
formalizing the details of the modules themselves

•

the right abstraction can make seemingly intractable
problems tractable

•

Spin doesn’t verify implementations, but it can
thoroughly check a range of interesting properties
of bounded models

10/21/98 49

an example: pots (plain old telephone service)

on-hook

phone phone
handler

Global
Network

Local
Switch:

interfaces

off-hookring

dialtoneoff-hook

digitsanswer

busy

on-hook

on-hook

idle

... waiting

talking dialing

... ringing

10/21/98 50

busy

pots model (phone handler in switch)

idle
off-hook

onhook

dialtone

digits

!connect

?reject ?accept

answer

?connect

ringtone

off-hook

!disconnect

?disconnect

?disconnect

onhook

onhook

!disconnect

talking

!accept

onhook

?connect

!reject

! send
? recv

10/21/98 51

POTS subscriber x handler

•

40 x 113 = 4520 states per user
•

with N users: (4520) system states
•

feasibility of model checking for 10, 100, 1000 subscribers?
•

this model omits a crucial abstraction!
•

abstraction of the network, as seen by each handler:

N

approx. 6 visible

states

?connect !connect

?reject!reject

!accept ?accept

!disconnect?disconnect
?disconnect !disconnect

idle

talking

10/21/98 52

original model checking run
 (reachable states, with p.o. reduction)

1 2 3 4
nr of full subscriber/handlers

7

1620

3,219,300

~200 X

~2000 X
?

minimum
needed

10/21/98 53

checking the revised model

1+1 1+2 1+3 1+4
subscriber/handlers
+ environment handlers

7

1,620

3,219,300

223

3,419

42,083

448,135

minimum
needed

10/21/98 54

1 formalize all relevant design assumptions in
an executable design abstraction (a model)

2 in a distributed system: processes
define the elements of the model.
the model details interface behavior
(coordination) not internal behavior
(computation)

3 make the design abstraction refutable
by adding explicit and falsifiable requirements

4 the abstraction enables and empowers the
analysis

5 the refinement of the model and of the
properties proceed together --

start simple

model checking method
 when used for design verification

10/21/98 55

reducing complexity

10/21/98 56

computational cost revisted

verification of

ω−properties:
–

property automaton of N

states:
–

R

nr reachable states, S

nr bytes used per state
–

cost is roughly: 2xRxNxS

time and RxNxS

in memory

reduction strategies:
–

try to reduce the size of N:
•

avoid LTL, or use a simpler property (separable properties)
–

try to reduce the size of R:
•

model reduction (abstraction), symmetry reduction, etc.
•

partial order reduction (default)
•

state space caching, etc.
–

try to reduce the size of S:
•

use compression (-DCOLLAPSE)
•

compute a DFA recognizer for RxS

(-DMA=N)

10/21/98 57

reducing the size of R

•

example: FIFO queues (buffers)
–

q = number of buffers
–

s = number of slots per buffer
–

m = number of different tokens that can be stored into
the buffer

•

how many unique states can this set of bounded
data objects be in?

answer:

10/21/98 58

exponential effects

•

q = nr of message channels
•

s = capacity of each channel
•

m = nr of distinct messages

10/21/98 59

model reduction: abstraction

•

exponential effects work both ways: up and down
•

they can make simple problems computationally
intractable

•

or they can make hard problems solvable if you know
which parameters to tune….

•

if the problem is too complex:
–

there is no free lunch: you have to find the right design abstraction
–

be suspicious of variables, counters, integer data items
–

think of how you would explain the principles of the design on a

blackboard to a friend

–

use: Generalization, Abstraction, Modularity, Structure, Symmetry,
etc. etc.

10/21/98 60

example: modeling IEEE

802.2 LLC

•

two equivalent models of IEEE

802.2

Logical Link
Control Protocol were constructed (~1987) for
verification

1,851,049 unique reachable states

19,407 unique reachable states

10/21/98 61

why generalization works

•

to prove p, Spin tries to find at least one example where !p

 holds
•

to disprove absence of acceptance or non-progress cycles, it
suffices to prove that at least one

such cycle exists
•

it is not necessary to find all

possible violations of correctness
requirements

•

let E

be the set of runs of the model
•

we must show that E

contains at least one run that
violates/satisfies a property

•

adding execution sequences to E

cannot ever cause us to miss
errors (it preserves all existing errors)

10/21/98 62

reduction and abstraction

•

we can add

runs to a model without affecting the outcome of a
positive verification

•

consider a model of a phone:
–

off-hook, on-hook, dial digits, flash, etc. can only happen in a
specific order

–

generalization: generate off-hook, on-hook, digits, flashes,
etc. randomly, with a one-state model...

–

all runs of the detailed model are contained in the one-state
model --

yet the second model is more tractable than the
first.

•

a less detailed model is often more tractable, and often allows
for an even stronger

verification result
•

it does introduce the possibility of a false negative (i.e., it is
fail-safe) --

which if present would require a softening of the
generalization

10/21/98 63

example: the design of a server

•

consider a server for q

users, with s

slots
reserved per user and just one type of message
per user

•

which is better:
–

1 shared server queue for all users, with qxs

slots, or
–

q separate server queues, 1 per user, each with s slots ?
calculate:

For s=5, q=3:

versus

the

difference:

10/21/98 64

partial order reduction

•

some types of reduction can be automated inside
the model checker

•

the global reachability

graph contains many paths
(runs) that are equivalent

for given requirements

•

some cases of equivalence can be automatically
detected and avoided

•

specifically, this applies to complexity introduced
by the non-determinism

of concurrent process

execution (asynchronous interleaving)

10/21/98 65

definition of independence

•

two actions are independent

at state S if
–

both are enabled at S
–

the execution of one cannot disable the other
–

the combined execution of both has the same effect on S,
independent of the order of execution

•

strong independence
–

two actions are strongly independent

if they are indepenent

 at every reachable state where both are enabled
•

safety

(a static

property…)

–

an action is safe

if it is strongly independent from all

other
actions in the system

–

an action is conditionally safe

for condition C

if it is safe
when C

holds

10/21/98 66

Peled’s

reduction theorem

10/21/98 67

effect of partial order reduction

10/21/98 68

reducing the size of S:
 state compression

•

the default compression in SPIN omits fields from the
state vector that hold redundant data (padding, rendez-

 vous

channels, etc.)

•

static Huffman coding can reduce the size of a state by
60-70% more, but adds a run-time penalty of approx.
300% [PSTV92]

•

state space caching methods are not well-behaved
•

index-compression

(-DCOLLAPSE) reduces states by 60-

 70% more, and adds a 10-20% runtime penalty
•

DFA-compression (-DMA=N) reduces memory used by
10x-100x but adds a 10x-100x runtime penalty

10/21/98 69

example of index compression

The Main Components of the State Vector
Are Separated and Numbered. Only the Index
Numbers are Stored in the Global State Vector.

(Go-Back-N Sliding Window Protocol)

10/21/98 70

state space caching [H85, HG92]

State Caching
methods are
not well-behaved:

10/21/98 71

bit-state hashing (1987)

•

not lossless --

only useful as a last resort
•

uses CRC-polynomials to compute checksums of
state descriptors

•

the checksum values are used as bit-addresses
 in a large bit-array in memory

•

effectively this stores about. 28..30 bits of
information in 1

single bit of memory….

•

runs extremely fast (replaces state
comparison and copying with CRC
computations), and can

significantly increase

search coverage for large problems

10/21/98 72

effect of bitstate

hashing

Problem
Coverage
(%)

Available Memory (bits)

‘‘Exhaustive’’

bitstate

hash

(Data: Data Transfer Protocol)

10/21/98 73

in numbers

•

with 64 Mbyte

of available memory
•

and 64 bytes per reachable state

•

and 64 Million reachable states...
–

exhaustive search runs exhausts memory at 1 million states;
the effective coverage is 1.5%

–

bitstate

hashing can store up to 8x64 = 512 Million states -

 -> it can realize 100%

coverage…
–

but….., it cannot guarantee this
–

bitstate

hashing can increase the confidence

when
exhaustive proof is impossible

10/21/98 74

two nasa

applications

•

Generic dual control software verification
–

completed: August 1997
•

Deep Space 1, verification of new controller
software
–

to be launched: 22 October 1998
–

flyby of Mars, a comet, and an asteroid

10/21/98 75

mark-rollback procedures

•

a dual controller design
–

verification of mark-rollback procedure
•

Spin model checking effort:
–

3 people, 1 from NASA, 1 from JPL, 1 from Bell Labs
•

4 weeks to build model (642 lines in Spin)
•

1 week to perform and document the model checking
•

approx. 150K states, 4 seconds/run
•

3 serious design errors found

10/21/98 76

requirements checked

‘‘When a fault is seen by an SFP monitor in the prime a response is
triggered by the SFP manager. The SFP manager in the prime
deactivates all sequences when it sees a response request flag for
a response which is enabled and freezes the mark-point aging
function. The SFP manager sets the appropriate STM flags to
show that the SFP is active and that a response will be executed.
These flags are updated in the STM at the end of the current
second. An STP fault triggered in second N+1 becomes visible in
the STB in RTI-5 of second N+2.’’

Translation:
If a fault occurs during a critical sequence, both
Prime and Online system must roll-back to the last
valid mark-point, and resume operation.

In Propositional Temporal Logic:
[] (p ->

<>

q)
where:
p = (Tprime

< 3) && SFP && !CS && CM && (Mark == 6)
q = (PC == 1) && !SFP && CS && CM

10/21/98 77

loss of sync on roll-back

[] (p -> <> q)

counter-example

10/21/98 78

finding the error
the default Spin model checking run:
•

S = 92 byte/state
•

R = 123,718 states
•

219,009 transitions
•

1,312 error scenarios

computational expense:
•

11.698 Mb memory
•

4.96 CPU seconds time

squeezing memory:
•

using a DFA recognizer for states:
–

4.50 Mb
–

39.08 seconds

10/21/98 79

DS1 --

deep space 1

–

“new millenium

remote agent”

design
•

verification of a new experimental distributed controller design
•

maintaining database consistency
–

2 people from NASA/Ames Research Center
•

8 weeks to build model (354 lines in Spin)
•

1 week to run and document verification
•

approx. 300K states, 10 seconds/run
•

4 critical properties checked, all failed:
•

4 serious errors found

I thought that formal methods advocates wanted to
`prove correctness’

of software, which I believe is impossible.

However, what you have been doing is finding places
where the software violates design assumptions, which
is different. You guys have discovered things that we
almost certainly would never have caught any other way

To me you have demonstrated the utility of this
approach beyond any question.

Developer’s
reaction:

10/21/98 80

some references

•

[Sistla&Clark85]

A.P. Sistla

and E.M. Clarke, The complexity of
propositional linear temporal logic. J.ACM, 32, 1985, 733-749.
–

PSPACE-completeness result
•

[Vardi&Wolper86] M.Y. Vardi

and P. Wolper, An automata-
 theoretic approach to automatic program verification. Proc. 1st

IEEE Symp. on Logic in Computer Science. 1986. 322-331.
–

Introduced model checking by language intersection.
•

[Holz97] G.J. Holzmann, The model checker Spin. IEEE Trans. on
Software Eng. 23, 5, 1997, 279-295.
–

Generic overview paper for Spin with extensive references.
•

[Holz98] G.J. Holzmann, An analysis of bitstate hashing. Formal
Methods in Systems Design, 13, 3, 1998, 287-305.
–

A review of the hashing method from 1987.
•

url:

http://netlib.bell-labs.com/netlib/spin/whatispin.html

	Automata-based Model Checking
	outline
	1. introduction
	designing systems
	principles of design
	model checking
	state implosion
	�modeling = abstracting
	basic sequence for data-bus access
	enforcing the priority rule
	model checking run (e.g., []<> (i,i,f))
	synopsis
	2. the automata theoretic method
	finite automata (labeled transition systems)
	a sample fsa
	the notion of acceptance
	stuttering
	a sample buchi automaton
	automata theoretic verification
	application challenges
	spin’s on-the-fly verification procedure
	computational cost
	practice: two ways to build a verifier
	correctness:�reasoning about behavior
	from logic to automata
	temporal operators in ltl
	spin’s LTL grammar
	ltl formulae
	logic -> automata
	deriving automata from ltl formulae
	step 1: construct a�generalized buchi automaton
	step 2: map the result to a�standard Buchi automaton
	spin’s syntax for w-automata
	�
	3. spin: core algorithms�for ltl model checking
	choices, choices...
	spin’s focus
	spin’s graphical user interface
	spin’s origin (and automata-based verification)
	spin’s structure
	on-the-fly cycle detection
	non-progress and acceptance
	depth-first search
	detecting non-progress
	the nested depth-first search
	state storage options
	4. model checking in practice
	modeling and verification:�the bottom line
	an example: pots (plain old telephone service)
	pots model (phone handler in switch)
	POTS subscriber x handler
	original model checking run�(reachable states, with p.o. reduction)
	checking the revised model
	model checking method�when used for design verification
	reducing complexity
	computational cost revisted
	reducing the size of R
	exponential effects
	model reduction: abstraction
	example: modeling IEEE 802.2 LLC
	why generalization works
	reduction and abstraction
	example: the design of a server
	partial order reduction
	definition of independence
	Peled’s reduction theorem
	effect of partial order reduction
	reducing the size of S:�state compression
	example of index compression
	state space caching [H85, HG92]
	bit-state hashing (1987)
	effect of bitstate hashing
	in numbers
	two nasa applications
	mark-rollback procedures
	requirements checked
	Slide Number 77
	finding the error
	DS1 -- deep space 1
	some references

