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outline

•
 

introduction
–

 

what is model checking all about
–

 

what are the central issues
•

 
the automata theoretic method
–

 

finite automata and omega automata
–

 

relation with propositional linear temporal logic
•

 
spin’s core algorithms for ltl

 
model checking

–

 

depth first search, nested depth first search
–

 

state storage, memory/time trade-offs
•

 
practical considerations
–

 

complexity and abstraction
–

 

some applications
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1. introduction
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designing systems

•
 

“a design without requirements cannot be right 
or wrong, it can only be surprising”

•
 

the designer’s first task is to find out what the 
requirements are, and then to build a system 
that meets those requirements

Design = Specification + Requirements

•
 

design verification = showing that the 
specification logically implies the requirements
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principles of design

•
 

principles
 

of design used in most disciplines:
–

 

abstraction
•

 

‘‘modeling”

 

(constructing mathematical models, and/or 
executable models/design prototypes)

–

 

analysis
•

 

‘‘model checking’’

 

(manual or automated)

•
 

principles
 

used in software engineering:
–

 

trial and error
•

 

running it until it appears to work...
–

 

duplication
•

 

adjusting trusted earlier designs by peers

•
 

model checking allows the first set of principles to be 
applied in the design of distributed systems software
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model checking

•
 

to prove that a system implies its specification:

1

 

construct a model of the system (an abstraction)
2

 

formalize its essential properties (e.g., in PLTL)
3

 

run the model checking algorithm
4

 

if answer is inconclusive, revise 1 or 2 and repeat 3 and 4

•
 

the possible answers provided by a model checker
–

 

ok --

 

if the model definitely satisfies the property
–

 

not ok --

 

if not, illustrated by a counter-example
–

 

inconclusive --
 

if resource-limits (time/space) prohibit 
the algorithm from running to completion
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state implosion

•
 

model checkers work by the grace of the fact 
that logical properties of bounded models are 
decidable
–

 

more about the complexity bounds later
•

 
time and space are also bounded
–

 

time:  a hard upper-bound is somewhere around 
76x364x24x60x60 CPU seconds (~ 10  )

–

 

space: today, somewhere around 10 Gbyte

 

(~ 10   )
•

 
the bounds of the model can easily exceed the 
bounds imposed by physical reality….

•
 

in practice, the art of model checking is the art of 
building executable abstractions

9
10
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modeling = abstracting

a small example:
The requirements for NASA’s Mars Pathfinder 

control software included:

•
 

mutual exclusion rules
–

 

a process cannot access the databus

 

unless it owns a 
mutual exclusion lock

•
 

scheduling priority rules
–

 

a lower priority process cannot execute when a 
higher priority process is ready to execute

–

 

saving data to memory, for instance, has  higher 
priority than processing data
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basic sequence for data-bus access

idle

waiting

running

obtain lock

release lock

wait for mutex lock

execute critical sequence
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enforcing the priority rule

Low priority process
(processing data)

i = idle
w = waiting
r = running

f = mutex

 

lock free
H

 

= high owns lock
L

 

= low owns lock

cannot run unless: i,-,-

High priority process
(dumping measurements)
restricted by lock

i,i,f

i,w,f

i,r,L

obtain lock

w,i,f

r,i,H

obtain lock

release lock release lock

?

?
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model checking run  (e.g., []<> (i,i,f) )

i = idle
w = waiting
r = running

f = mutex

 

lock free
H

 

= high owns lock
L

 

= low owns lock

the hangup

 

problem
from July 1997

i,i,f

w,i,f i,w,f

r,i,H i,r,L

obtain lock

release lock

w,w,f

r,w,H

w,r,L

release lock

obtain lock

release lock
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synopsis

‘‘Entities should not be multiplied
unnecessarily’’

William of Occam

 

(c. 1285-1349)

‘‘Seek simplicity --

 

and distrust it’’
Alfred North Whitehead (1861-1947)

the model checking challenge is to find
a model that is as simple as possible, 
but no simpler...
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2.  the automata theoretic method
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finite automata  (labeled transition systems)

•
 

a classic FSA
 

is a tuple
 

{S, s0, L, T, F} with
–

 

S  --

 

a finite set of states
–

 

s0 --

 

a distinguished initial state
–

 

L  --

 

a finite set of labels

 

/ symbols
–

 

T  --

 

a set of transitions

 

from SxLxS
–

 

F

 

--

 

a set of final states

 

from S

•
 

a run
 

of an FSA is an ordered set of transitions 
from T …, {si,li,si+1}, {si+1,li+1,si+2}, ...

 

such that
–

 

for all i >= 0:  {si,li,si+1} is in T

•
 

an accepting
 

run of an FSA is a finite run in which 
the final state is in F
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a sample fsa

s0s1

s2 s3 s4

s5

not “,
 

not /

“

*

/ *

“

not

 

/
not

 

*

not

 

*/

not

 

*
not

 

/
\.

“

/

not

 

“, not

 

\ *

(FSA for checking C-style comments /* ... */ )
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the notion of acceptance

•
 

an ω-run
 

of an FSA is a run that is infinitely long
–

 

an acyclic FSA does not permit ω-runs
•

 
an ω-run is accepting

 
if at least one state in F

 appears infinitely often within the run
–

 

this is called Buchi

 

Acceptance 
–

 

automata with this acceptance rule are Buchi

 

Automata
•

 
some decidable properties of Buchi

 
automata :

–

 

intersection (given two Buchi

 

automata, find one automaton 
that accepts only runs accepted by both)

–

 

union (given two Buchi

 

automata, find one automaton that 
accepts all runs accepted by either)

–

 

non-emptiness (does a Buchi

 

automaton accept any ω-runs 
at all?)
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stuttering

•
 

Problem:  if an FSA has both finite and infinite 
runs --

 
can we apply a notion of ω-acceptance to 

both?
•

 
Stutter extension

 
rule:

–

 

the final state of a finite run is considered to be 
repeated ad infinitem

 

on a dummy self-loop
ω-acceptance is applied as before

•
 

Stutter invariance:
–

 

a property is stutter invariant if it is insensitive to the 
introduction or removal of stuttering steps at any

 

point 
in the execution
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a sample buchi
 

automaton

s1

s2

awaiting access to
shared resource

accessing shared
resource

normal
execution

s0

(only runs that do not get stuck in
states s1

 

or s2

 

are to be accepted)
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automata theoretic verification

vardi/wolper
 

[vw86], given:
•

 

a system modeled by ω-automaton

 

R
•

 

a correctness requirement given as PLTL formula f
then
•

 

convert

 

f

 

into an ω-automaton P

 

that satisfies !f

 (the negation

 

of f)
•

 

compute the language intersection V = PvR
result
•

 

if V

 

is empty,

 

f

 

is satisfied
•

 

if not, V contains the violations of f
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application challenges

•
 

conversion from a program-like notation into 
formal automata

•
 

computation of a global automaton from local 
automata, given
–

 

asynchronous process components
–

 

dynamic creation and deletion of processes
–

 

message passing and rendezvous semantics
•

 
it turned out to be a natural fit for Spin
–

 

a general-purpose verification system based on automata
–

 

using an on-the-fly verification paradigm (1980)
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spin’s on-the-fly verification procedure

Counter-Examples

Global Graph is
Never Explicitly
Built!

A Distributed System

Buchi
Automaton

LTL

A Correctness
Requirement

x

1 2 n

1 2 n

Automata Model

Abstraction

convert

language
intersection

!LTL
negation
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computational cost

•
 

complexity bounds:
–

 

LTL model checking is PSPACE-complete [Sistla&Clark85]
•

 
verifying safety

 
properties (states):

–

 

linear in the number of reachable states R

•
 

verifying liveness
 

properties (cycles):
–

 

at most 2xR

 

time, and R

 

space (memory)

·

 

verifying ω−properties (including ltl):
–

 

with property automaton of N

 

states:
–

 

2xRxN

 

time, and RxN

 

space
–

 

for LTL, N

 

may be exponentially larger than the number of 
operators in the formula: 1 <=  N  <=  2   

–

 

in practice N

 

is typically in the range 1..10
|f|
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practice: two ways to build a verifier

•
 

Given
L

 

= language of the system
P

 

= language of the requirement
•

 
First

 
Method

prove:  P includes

 

L
assuming P

 

holds, minimal cost to prove this by language

 

inclusion

 is

 

P + L
•

 
Second

 
Method

construct

 

!P
prove:  P excludes

 

L
assuming P

 

holds, minimal cost to prove it by language intersection

 is  zero
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correctness:
 reasoning about behavior

s0 s1 s2 s3
t0 t1 t3

x = 13 x = x/2 + 1 x > 0

x  = x/2

t2
x <= 0

t4

3 views of an execution:

a sequence of states:

a sequence of events:

a sequence of properties:

s0 s1 s2 s3 s2 s2 s2s3 s3

t0 t1 t3 t4 t3 t4 t3 t4 t2

F T T T T T T F F
(x%2 > 0)
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from logic to automata

•

 

The truth of an LTL formula is defined over execution sequences
–

 

the 3rd view

 

of an execution applies: a sequence of propositional 
values

•

 

For any LTL formula f there exists an automaton that accepts 
precisely those executions for which f

 

is true
•

 

If the automaton is insensitive to stuttering, it can be very small
•

 

The acceptance conditions of the automaton are defined over 
infinite

 

sequences (Buchi

 

acceptance)
•

 

Example:  the LTL formula <>[] P corresponds to the Buchi

 automaton:

s1
P Ptrue s0
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temporal operators in ltl
the until operator:
•

 

(p U q)  --

 

p holds at least until q holds
•

 

defined over ω-runs --

 

there are two variants:
σ[i]  |=  (p U

 

q) weak until
<=>
σ[i] |= q  or
σ[i] |= p and σ[i+1] |= (p U

 

q)

σ[i]  |=  (p U

 

q) strong until
<=>
(p U

 

q)  and

 

∃j, j >= i, σ[i] |= q

always, eventually:
σ[i]  |= ( [] p )  <=>  (p U

 

false)
σ[i]  |= ( <> p )  <=>  (true U

 

p)

spin
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spin’s  LTL grammar

•

 

ltl

 

formula

 

f ::=
–

 

true, false
–

 

propositional symbols p, q, r, …
–

 

( f )
–

 

unary_operator

 

f,   f binary_operator

 

f
•

 

unary_operators:
[]      ---

 

always, henceforth (box)
<> ---

 

eventually (diamond)
!       ---

 

logical negation (not)
•

 

binary_operators:
U ---

 

strong until
&&   ---

 

logical and
||     ---

 

logical or
->     ---

 

implication
<->    ---

 

equivalence
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ltl
 

formulae

•
 

two useful equivalences:
![]  p <=> <> !p
!<> p <=> [] !p

•
 

a deliberate omission (to secure stutter invariance):
–

 

X  ---

 

the next operator

•
 

often used properties:
–

 

[] p             ---

 

invariance
–

 

<> p             ---

 

guarantee
–

 

p -> (<> q)    ---

 

response
–

 

p -> (q U r)  ---

 

precedence
–

 

[]<> p           ---

 

recurrence (progress)
–

 

<>[] p           ---

 

stability (non-progress)
–

 

<> p -> <> q   ---

 

correlation
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logic -> automata

manual conversion:
! [] ( p  −>

 

<> q)

! [] ( !p \/  <> q)

 

the definition of ->
<> ! ( !p \/  <> q)             equivalence
<>  (p  /\

 

!<> q)              De Morgan’s law
<>  (p  /\

 

[] !q)              equivalence

the corresponding Buchi
 

Automaton:

(don’t worry, there’s an easier way…)

p && !q
true !q

s0 s1
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deriving automata from ltl
 

formulae

•
 

define the Closure of f:
–

 

Cl(f) = the set of all sub-formulae of f

 

and their 
negations

•
 

example:
– Cl ( <> [] P

 

)  =
<> [] P
<> P
P
!<> [] P
!<> P
!P
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step 1: construct a
 generalized buchi

 
automaton

•

 

A = {S, s0, L, T, F }
–

 

States:          S = 2
–

 

Initial state: s0, with formula f

 

ε

 

s0
–

 

Labels (alphabet):      L = 2 
–

 

Transition relation: T from S x L x S
–

 

Acceptance: n

 

sets Fi, subsets of S
•

 

Define the transition relation as:
–

 

(s, p, s’) ε

 

T  iff
–

 

(p) satisfies s
–

 

(q U r) ε

 

s  implies
•

 

r ε

 

s    or

 

q ε

 

s and (q U r) ε

 

s’
(i.e., (qUr) is satisfied at s or it persists)

•

 

For each subformula

 

(q U r):
–

 

Fi = {s :  (q U r) ε

 

s   or  r ε

 

s}

Prop

Cl(f)
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step 2:  map the result to a
 standard Buchi

 
automaton

•
 

generalized Buchi
 

acceptance defines:
–

 

k sets F: F1, …, Fk and
–

 

For each set i, require infinitely many visits in Fi.
•

 
Choueka’s

 
flag construction can be used to 

translate generalized into standard Buchi
 acceptance [Choueka,1974]

–

 

Add counter n, with initial value 0
–

 

Upon reaching any state in Fi, increment n = (n+1) % k   
(with k the number of acceptance sets Fi)

–

 

Select any one of the sets Fi as the new single 
acceptance set F
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spin’s syntax for ω-automata

•

 

Other types of acceptance can 
also be expressed in never claims

p && !q
true !q

never {
do
:: true
:: p && !q -> break
od;

accept:
do
:: !q
od

}

ω-automaton: corrresponding

 

never-claim:



10/21/98 34

•

 

Define n pairs of set of states {Li,Ui}
•

 

for at least one i, detect any infinite execution sequence with
–

 

infinitely many visits in Ui
–

 

but only finitely many visits in Li
•

 

Propositional symbols ui, li

 

formalize the corresponding sets
never {

do
:: true                               /* allows li

 

*/
:: u1 && !l1 -> goto

 

set1      /* choice   */
:: u2 && !l2 -> goto

 

set2
:: ...
od;

set1:

 

do
:: !l1
:: u1 && !l1 -> accept1: skip
od;

set2:

 

...
}

Rabin acceptance [Rabin72]
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3.  spin: core algorithms
 for ltl

 
model checking
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choices, choices...

•

 

the focus of the exisiting

 

model checkers differs 
significantly
–

 

they are optimized for different domains of application 
and different logics

–

 

making it hard to do head-to-head comparisons
–

 

each model checker can soundly beat the others within 
its own domain of application...

•

 

model checkers are intended to be applied to bounded 
models, not directly to implementations
–

 

a model is a design abstraction
–

 

properties of bounded models are decidable
–

 

models and ltl

 

properties can be converted mechanically 
into finite automata and can be analyzed in that domain
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spin’s focus

•

 

Spin models describe distributed, not sequential, systems
–

 

they focus on coordination

 

not computation
•

 

Spin targets asynchronous, not synchronous, systems:  
–

 

Spin targets software, not hardware, verification 
problems

–

 

it uses primitives for message-channels, rv-ports, etc.
–

 

not gates, clocks, signal wires, flip-flops, etc.
•

 

Spin is optimized for the verification of omega regular 
properties,

 

with LTL as its most significant subset.
–

 

It cannot handle branching-time properties.
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spin’s graphical user interface
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(Petri Net Token Machines)

(PAN)

Trace

Supertrace
SdlValid
VfsmValid
SPIN

spin’s origin (and automata-based verification)

(Approver, DMA)
Reachability

 

Analysis
Depth First Search

On-The-Fly Verification

Automata-Theoretic
Framework (Vardi/Wolper83-86)

Partial Order Reduction 
(Peled95)
LTL -> Automata

BDD-Like Storage (Puri97)

1970s

1980

1987

1990

1983

1995

1998 logic
based

automata
based

(Xesar/EMC)

(SMV)
(BDD’s)
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spin’s structure

Tcl/Tk: LTL
property

Parser

Model Checker
Generator

SimulatorYacc, C

Behavior
Spec.

Sequence
Diagrams

-

 

Exhaustive Search
-

 

Partial Order Search
-

 

Supertrace

 

Search
-

 

Safety/Liveness/LTL

source: pan.c Model
Checker

panexecutable: errors

sp
in

xs
pi
n

pa
n
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on-the-fly cycle detection

•
 

violations of ω−properties correspond to executions 
that contain infinitely many

 
accepting states

•
 

in a finite graph, these correspond to reachable 
strongly connected components (scc’s) with one or 
more accepting states

•
 

Tarjan’s
 

classic depth-first-search algorithm could 
be used
–

 

cost: linear in the size of the graph
•

 
but, it suffices to prove or disprove that:
–

 

no reachable accepting state is reachable from itself…
–

 

has the same complexity, but a lower memory overhead
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non-progress and acceptance

•
 

non-progress:
–

 

an ω−run, containing only finitely many progress states
–

 

in ltl, using buchi

 

acceptance:  <>[] np_
•

 
buchi

 
acceptance:

–

 

an

 

ω−run, containing at least one accepting state 
infinitely many times

p

a
non-progress acceptance
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depth-first search

•
 

recursive expansion of global graph
•

 
asynchronous interleaving of concurrent actions

•
 

storing as little data as possible about previously 
visited states
–

 

need only detailed info for counter-examples, not for 
global graph

–

 

no need to store edges of graph
–

 

one-way compression of states
–

 

avoid revisiting states
revisits
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detecting non-progress

•
 

prove absence or existence of non-progress cycles

progress state p
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the nested depth-first search

•

 

memory overhead:  2 bits

 

per state
–

 

Tarjan’s

 

dfs

 

requires 2x32 bits

 

per state
•

 

worst-case time overhead:  2x

 

dfs
•

 

compatible with bitstate

 

storage / hash-compact, etc.
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state storage options

•
 

exhaustive storage
–

 

very fast, but consumes most memory
•

 
lossless one-way compression
–

 

huffman

 

compression, runlength

 

encoding
–

 

hierarchical indexing (Collapse)
•

 
lossy

 
compression

–

 

bitstate

 

hashing (compress down to 2 bit positions/state)
–

 

hash-compact (compress down to 40 bits/state, stored in 
regular hashtable)

•
 

minimized automaton representation
–

 

[HolzmannPuri98], STTT98, in Spin since 1/98
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4. model checking in practice
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modeling and verification:
 the bottom line

•
 

model checking is an exercise in abstraction: 
formalizing the interfaces between modules, without 
formalizing the details of the modules themselves

•
 

the right abstraction can make seemingly intractable 
problems tractable

•
 

Spin doesn’t verify implementations, but it can 
thoroughly check a range of interesting properties 
of bounded models
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an example: pots (plain old telephone service)

on-hook

phone phone
handler

Global
Network

Local
Switch:

interfaces

off-hookring

dialtoneoff-hook

digitsanswer

busy

on-hook

on-hook

idle

... waiting

talking dialing

... ringing
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busy

pots model  (phone handler in switch)

idle
off-hook

onhook

dialtone

digits

!connect

?reject ?accept

answer

?connect

ringtone

off-hook

!disconnect

?disconnect

?disconnect

onhook

onhook

!disconnect

talking

!accept

onhook

?connect

!reject

! send
? recv
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POTS subscriber x handler

•

 

40 x 113 = 4520 states per user
•

 

with N users: (4520)  system states
•

 

feasibility of model checking for 10, 100, 1000 subscribers?
•

 

this model omits a crucial abstraction!
•

 

abstraction of the network, as seen by each handler:

N

approx. 6 visible

 

states

?connect !connect

?reject!reject

!accept ?accept

!disconnect?disconnect
?disconnect !disconnect

idle

talking
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original model checking run
 (reachable states, with p.o. reduction)

1 2 3 4
nr of full subscriber/handlers

7

1620

3,219,300

~200 X

~2000 X
?

minimum
needed
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checking the revised model 

1+1 1+2 1+3 1+4
subscriber/handlers
+ environment handlers

7

1,620

3,219,300

223

3,419

42,083

448,135

minimum
needed
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1 formalize all relevant design assumptions in 
an executable design abstraction (a model)

2 in a distributed system: processes
define the elements of the model.
the model details interface behavior
(coordination) not internal behavior 
(computation)

3 make the design abstraction refutable
by adding explicit and falsifiable requirements

4 the abstraction enables and empowers the
analysis

5 the refinement of the model and of the
properties proceed together --

 
start simple

model checking method
 when used for design verification
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reducing complexity
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computational cost revisted

verification of

 

ω−properties:
–

 

property automaton of N

 

states:
–

 

R

 

nr reachable states,  S

 

nr bytes used per state
–

 

cost is roughly:  2xRxNxS

 

time  and  RxNxS

 

in memory

reduction strategies:
–

 

try to reduce the size of N:
•

 

avoid LTL, or use a simpler property (separable properties)
–

 

try to reduce the size of R:
•

 

model reduction (abstraction), symmetry reduction, etc.
•

 

partial order reduction (default)
•

 

state space caching, etc.
–

 

try to reduce the size of S:
•

 

use compression (-DCOLLAPSE)
•

 

compute a DFA recognizer for RxS

 

(-DMA=N)
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reducing the size of R 

•
 

example: FIFO queues (buffers)
–

 

q = number of buffers
–

 

s = number of slots per buffer
–

 

m = number of different tokens that can be stored into 
the buffer

•
 

how many unique states can this set of bounded 
data objects be in?

answer:
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exponential effects

•

 

q = nr of message channels
•

 

s = capacity of each channel
•

 

m = nr of distinct messages
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model reduction:  abstraction

•
 

exponential effects work both ways:  up and down
•

 
they can make simple problems computationally 
intractable

•
 

or they can make hard problems solvable if you know 
which parameters to tune….

•
 

if the problem is too complex:
–

 

there is no free lunch:  you have to find the right design abstraction
–

 

be suspicious of variables, counters, integer data items
–

 

think of how you would explain the principles of the design on a

 
blackboard to a friend

–

 

use: Generalization, Abstraction, Modularity, Structure, Symmetry, 
etc. etc.
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example: modeling IEEE
 

802.2 LLC

•
 

two equivalent models of IEEE

 

802.2

 

Logical Link 
Control Protocol were constructed (~1987) for 
verification

1,851,049 unique reachable states

19,407 unique reachable states
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why generalization works

•

 

to prove p, Spin tries to find at least one example where !p

 holds
•

 

to disprove absence of acceptance or non-progress cycles, it 
suffices to prove that at least one

 

such cycle exists
•

 

it is not necessary to find all

 

possible violations of correctness 
requirements

•

 

let E

 

be the set of runs of the model
•

 

we must show that E

 

contains at least one run that 
violates/satisfies a property

•

 

adding execution sequences to E

 

cannot ever cause us to miss 
errors (it preserves all existing errors)
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reduction and abstraction

•

 

we can add

 

runs to a model without affecting the outcome of a 
positive verification

•

 

consider a model of a phone:
–

 

off-hook, on-hook, dial digits, flash, etc. can only happen in a 
specific order

–

 

generalization:  generate off-hook, on-hook, digits, flashes, 
etc. randomly, with a one-state model...

–

 

all runs of the detailed model are contained in the one-state 
model --

 

yet the second model is more tractable than the 
first.

•

 

a less detailed model is often more tractable, and often allows 
for an even stronger

 

verification result
•

 

it does introduce the possibility of a false negative (i.e., it is 
fail-safe) --

 

which if present would require a softening of the 
generalization
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example: the design of a server

•
 

consider a server for q
 

users, with s
 

slots 
reserved per user and just one type of message 
per user

•
 

which is better:
–

 

1 shared server queue for all users, with qxs

 

slots, or
–

 

q separate server queues, 1 per user, each with s slots ?
calculate:

For s=5, q=3:

versus

the

 

difference:
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partial order reduction

•
 

some types of reduction can be automated inside 
the model checker

•
 

the global reachability
 

graph contains many paths 
(runs) that are equivalent

 
for given requirements

•
 

some cases of equivalence can be automatically 
detected and avoided

•
 

specifically, this applies to complexity introduced 
by the non-determinism

 
of concurrent process 

execution (asynchronous interleaving)
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definition of independence

•
 

two actions are independent
 

at state S if
–

 

both are enabled at S
–

 

the execution of one cannot disable the other
–

 

the combined execution of both has the same effect on S, 
independent of the order of execution

•
 

strong independence
–

 

two actions are strongly independent

 

if they are indepenent

 at every reachable state where both are enabled
•

 
safety

 
(a static

 
property…)

–

 

an action is safe

 

if it is strongly independent from all

 

other 
actions in the system

–

 

an action is conditionally safe

 

for condition C

 

if it is safe 
when C

 

holds
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Peled’s
 

reduction theorem
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effect of partial order reduction
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reducing the size of S:
 state compression

•

 

the default compression in SPIN omits fields from the 
state vector that hold redundant data (padding, rendez-

 vous

 

channels, etc.)

•

 

static Huffman coding can reduce the size of a state by 
60-70% more, but adds a run-time penalty of approx. 
300% [PSTV92]

•

 

state space caching methods are not well-behaved
•

 

index-compression

 

(-DCOLLAPSE) reduces states by 60-

 70% more, and adds a 10-20% runtime penalty
•

 

DFA-compression (-DMA=N) reduces memory used by 
10x-100x but adds a 10x-100x runtime penalty
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example of index compression

The Main Components of the State Vector
Are Separated and Numbered.   Only the Index
Numbers are Stored in the Global State Vector.

(Go-Back-N Sliding Window Protocol)
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state space caching [H85, HG92]

State Caching
methods are
not well-behaved:
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bit-state hashing (1987)

•
 

not lossless --
 

only useful as a last resort
•

 
uses CRC-polynomials to compute checksums of 
state descriptors

•
 

the checksum values are used as bit-addresses
 in a large bit-array in memory

•
 

effectively this stores about.  28..30 bits of 
information in 1

 
single bit of memory….

•
 

runs extremely fast (replaces state 
comparison and copying with CRC 
computations), and can

 
significantly increase 

search coverage for large problems
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effect of bitstate
 

hashing

Problem 
Coverage
(%)

Available Memory (bits)

‘‘Exhaustive’’

bitstate

 

hash

(Data: Data Transfer Protocol)
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in numbers

•
 

with 64 Mbyte
 

of available memory
•

 
and 64 bytes per reachable state

•
 

and 64 Million reachable states...
–

 

exhaustive search runs exhausts memory at 1 million states;  
the effective coverage is 1.5%

–

 

bitstate

 

hashing can store up to 8x64 = 512 Million states -

 ->  it can realize 100%

 

coverage…
–

 

but….., it cannot guarantee this
–

 

bitstate

 

hashing can increase the confidence

 

when 
exhaustive proof is impossible
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two nasa
 

applications

•
 

Generic dual control software verification
–

 

completed: August 1997
•

 
Deep Space 1, verification of new controller 
software
–

 

to be launched: 22 October 1998
–

 

flyby of Mars, a comet, and an asteroid
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mark-rollback procedures

•

 

a dual controller design
–

 

verification of mark-rollback procedure
•

 

Spin model checking effort:
–

 

3 people, 1 from NASA, 1 from JPL, 1 from Bell Labs
•

 

4 weeks to build model (642 lines in Spin)
•

 

1 week to perform and document the model checking
•

 

approx. 150K states, 4 seconds/run
•

 

3 serious design errors found
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requirements checked

‘‘When a fault is seen by an SFP monitor in the prime a response is
triggered by the SFP manager.  The SFP manager in the prime
deactivates all sequences when it sees a response request flag for
a response which is enabled and freezes the mark-point aging
function.  The SFP manager sets the appropriate STM flags to
show that the SFP is active and that a response will be executed.
These flags are updated in the STM at the end of the current
second.  An STP fault triggered in second N+1 becomes visible in
the STB in RTI-5 of second N+2.’’

Translation:
If a fault occurs during a critical sequence, both
Prime and Online system must roll-back to the last
valid mark-point, and resume operation.

In Propositional Temporal Logic:
[] (p ->

 

<>

 

q)
where:
p = (Tprime

 

< 3) && SFP && !CS && CM && (Mark == 6)
q = (PC == 1) && !SFP && CS && CM



10/21/98 77

loss of sync on roll-back

[] (p -> <> q)

counter-example
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finding the error
the default Spin model checking run:
•

 

S = 92 byte/state
•

 

R = 123,718 states
•

 

219,009 transitions
•

 

1,312 error scenarios

computational expense:
•

 

11.698 Mb memory
•

 

4.96 CPU seconds time

squeezing memory:
•

 

using a DFA recognizer for states:
–

 

4.50 Mb
–

 

39.08 seconds
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DS1 --
 

deep space 1

–

 

“new millenium

 

remote agent”

 

design
•

 

verification of a new experimental distributed controller design
•

 

maintaining database consistency
–

 

2 people from NASA/Ames Research Center
•

 

8 weeks to build model (354 lines in Spin)
•

 

1 week to run and document verification
•

 

approx. 300K states, 10 seconds/run
•

 

4 critical properties checked, all failed:
•

 

4 serious errors found

I thought that formal methods advocates wanted to
`prove correctness’

 

of software, which I believe is impossible.

However, what you have been doing is finding places
where the software violates design assumptions, which
is different. You guys have discovered things that we
almost certainly would never have caught any other way

To me you have demonstrated the utility of this
approach beyond any question.

Developer’s
reaction:
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•
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–
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•
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and P. Wolper, An automata-
 theoretic approach to automatic program verification. Proc. 1st 

IEEE Symp. on Logic in Computer Science. 1986. 322-331.
–

 

Introduced model checking by language intersection.
•

 

[Holz97] G.J. Holzmann, The model checker Spin. IEEE Trans. on 
Software Eng. 23, 5, 1997, 279-295.
–

 

Generic overview paper for Spin with extensive references.
•

 

[Holz98] G.J. Holzmann, An analysis of bitstate hashing. Formal 
Methods in Systems Design, 13, 3, 1998, 287-305.
–

 

A review of the hashing method from 1987.
•

 
url:
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