
	10	 computer	 Published by the IEEE Computer Society	 0018-9162/13/$31.00 © 2013 IEEE

Column Section TitleSof t ware Technology

Following a three-step program can help software developers rely less
on users to catch their bugs.

M any of us learned
to write software
in simpler times,
and have perhaps

grown a little too comfortable
with a relaxed style of software
development. We write the code,
check that it can do what we
intended, and move on. Except,
somehow, we never really seem to
be done with the code. Our users
have a nasty habit of focusing on
the weak spots and then peppering
us with bug reports. If you’re of a
sunny disposition, you can take
the number of reports as a positive
indication that people are using
your code, but your boss might
have a less favorable interpretation.
You might catch yourself giving
long explanations about the
thoroughness of your design and
how the users are just confused
about how it works. If so, then you
are in the denial phase. At some
point, though, the weaknesses in
your code will come into sharper
focus, and you might get annoyed:
anger. You might toy with the idea
of telling your boss that the user
manuals need improvement or
that you need a faster workstation:

bargaining. It’s difficult to come to
terms with the notion that perhaps
your own workmanship needs
improvement. However, slowly
but surely, maybe after navigating
a mild depression phase, you get
to where you need to be to move
forward: acceptance. This column
describes what you can do next.

 Most software applications have
bugs. Many of those that show
up after testing (often referred
to more cheerfully as residual
defects) are merely annoying, but
occasionally a bug can turn out to be
a showstopper. But the showstopper
bugs aren’t the only ones that can do
harm: an unusually large number
of bugs that fall into the “mere
annoyance” category can impact
your reputation. Let’s go over some
simple steps that recovering hackers
can use to improve their code’s
quality. Our recovery program starts
with three simple, but habit-forming,
steps: tally, target, and track.

STEP ONE: TALLY ME
WHERE IT HURTS

The recovery process begins
by making a general assessment
of the quality of your work. This

means tallying up some simple code
metrics. You can start by measuring
five specific numbers that will tell
you something about your code.

First, measure the number of
lines of code you have, but don’t
count blank lines or comments.
You want to count every line that
could in principle contain a bug
(for a suitable code counter, see for
instance http://spinroot.com/gerard/
ncsl.tar.gz).

Second, count the number of
assertions in your code: a simple
“grep –c assert *.c” might do.
You aren’t using assertions? That’s
simple: your number on this metric
will be zero.

For the next measurement
you want to look at the results of
a standard compilation of your
code, just like you always do for
production, but with one small
change: use the most up-to-date
version of your compiler. If the
compiler you’re using doesn’t have
a version that dates within the past
12 months, switch to one that does.
The best compilers are actively
being worked on, and they tend
to get a lot better with every new
release. Use, for example, gcc or

A Three-Step
Program for
Recovering Hackers
Gerard J. Holzmann
Laboratory for Reliable Software

	 JUNE 2013	 11

g++ compilers: they aren’t just free,
they have very large numbers of
users, and they’re very good. Your
code should, of course, be language-
compliant, and it shouldn’t rely on
any one compiler’s special quirks or
peculiarities. Yes, this rule applies
even if you’re developing embedded
software for a specific hardware
device.

For the third metric, measure the
number of warnings the compiler
issues when it compiles your code.
For this measurement, you should
tell the compiler which specific
language standard you intend to
comply with, for instance, by adding
the compiler flag –std=c99 to gcc.

For the fourth metric, add two
additional compilation flags, –Wall
and –pedantic, and repeat the
build. Again, count the number of
warnings issued.

And finally, for the fifth and last
number, use any commercially
available static source code
analyzers (http://spinroot.com/
static/) and run it on your code. For
the most part, static analyzers work
just like a compiler, issuing warnings
on the code. Count the number of
warnings generated.

To complete the tally steps,
normalize the number in each
category by the line count, to get
the numbers per one thousand lines
of noncomment source code, or
KNCSL.

We could, of course, add many
other quality-related metrics
here, but gathering these first few
numbers will be a good start.

STEP TWO: TARGET
IMPROVEMENT

Now that you’ve tallied some
metrics, it’s time to set a target for
improving the code.

A first target will be to reach
the point where you have zero
warnings when compiling your code
for the third metric. Zero compiler
warnings are both a mark of good
workmanship and an important

benchmark to improve your code’s
maintainability.

If adding or modifying any
part of the code generates new
warnings, you want them to stand
out prominently so that you can
give them careful attention. If a
build routinely generates hundreds
or thousands of warnings, the new
warnings that show up are virtually
unnoticeable and almost certainly
escape attention.

If your initial metrics tell you
that you’re far removed from this
target, you might want to set a
series of subgoals. Depending on
your starting point, a good first
target might be to reach 20 or fewer
warnings per KNCSL on the third
metric, then 10, and then 5, on the
way to reaching zero.

The next target is to reach zero
compiler warnings in pedantic mode
with all the warnings turned on—the
fourth metric tallied. This is a much
higher bar to meet, and therefore
may also require setting a series of
intermediate subgoals. Meeting this
standard implies meeting a solid
standard of workmanship. Many
developers regard reaching this
goal simply as a matter of pride. In
a sense, there probably isn’t much
point in looking at stronger types of
code checking if you can’t meet this
target.

Once you get this far—it could
take several months—the next
goal will not be too surprising: you
should now reach zero warnings
generated from static source code
analyzers. Even though the leading
static source code analyzers aren’t
cheap, using them routinely can
make a very real difference in the
quality of the code you produce.

At this point, you may be thinking
that we’ve forgotten about the
assertion count, but not to worry—
it’s next. We don’t need to dwell
much on the benefits of using
assertions. Just think of an assertion
as the canary in a coal mine: it can
tell you at the earliest possible point

in an execution that something
might be off and that your code can
no longer be expected to function
correctly.

There’s actually a statistically
significant correlation between the
number of assertions in code and
the number of residual defects
(G. Kudrjavets, N. Nagappan, and
T. Ball, “Assessing the Relationship
between Software Assertions
and Code Quality: An Empirical
Investigation,” tech. report MSR-
TR-2006-54, Microsoft Research,
2006). Increasing the number of
assertions reduces the number of
residual defects—it’s that simple.
As a target, we recommend
reaching an assertion density of
2 to 5 percent. You do, of course,
want the assertions in your code
to be meaningful, so simply using
“assert(true)” to boost the
numbers won’t help much.

You’ve now reached the end
of the improvement phase, but
you aren’t done yet. You’ll need to
address one more issue here, and
it’s related to the adherence to a
sensible coding standard. Most
of the existing coding standards
tend to be long and detailed, with
hundreds of rules that are often
only marginally related to code
quality—for example, regulating the
use of white space. Select a small
number of coding rules, no more

Metrics for Success
1.	 Measure the number of lines of code you

have.
2.	 Count the number of assertions in your

code.
3.	 Measure the number of compiler warn-

ings generated in a standard build.
4.	 Add -Wall and -pedantic, and again

count the number of warnings.
5.	 Run a good static source code analyzer

over the code, and count the number of
warnings.

6.	 Use a good coding standard, and heed
the rules.

	12	 computer

SOFTWARE TECHNOLOGY

than 10 or 20, that are clearly risk
related, and make sure you follow
them.

The best way to do this is to use
a tool to check compliance. Static
source code analyzers are very good
at doing this. For example, you can
use Codesonar or Semmle/Odasa to
check compliance with the Power
of Ten coding rules (http://spinroot.
com/p10/) or with the coding
standard that NASA’s Jet Propulsion
Laboratory uses for flight software
development (http://lars-lab.jpl.nasa.
gov/). Several analyzers can also
check compliance with more bulky
standards, such as the Joint Strike
Fighter Coding Standard for C++
(www2.research.att.com/~bs/JSF-
AV-rules.pdf).

STEP THREE: TRACK
YOUR PROGRESS

 Set a time schedule with specific
dates for reaching each of the targets
listed here. If you have a lot of work
to do to reach a target, you should
set subgoals, no more than three

months apart, to help you track your
overall progress. It’s important to
avoid biting off too much too soon.
For example, take on the third,
fourth, and fifth metrics one at a
time, in that specific order, and don’t
try to handle the fifth metric while
you’re still battling the third.

You can phase in the second
metric more gently, in parallel
with the others: slowly but steadily
increase the assertion density in
your code. Pay special attention to
those parts of the code that score
particularly poorly on this metric.
And slowly but surely, start the
process of converging toward full
compliance with the coding rules
you selected. You chose only a small
set, so you can assume that they are
important, and therefore you must
make every effort to follow them.

I f you’ve reached your goals,
you should see your residual
defect rates decrease, and

perhaps even see your boss smile

just a little bit more. Notice that I
haven’t said anything about changes
you could make in the way you test
your software. Clearly, there’s also
likely to be room for improvement
there. Although the part of the
recovery process that I’ve described
is typically ignored, it’s critically
important if you want to rely less on
users to catch your bugs.

Acknowledgments
This research was carried out at the
Jet propulsion Laboratory, California
Institute of Technology, under a con-
tract with the National Aeronautics
and Space Administration.

Gerard Holzmann is the lead scien-
tist in the NASA/JPL Laboratory for
Reliable Software. Contact him at
gholzmann@acm.org.

Editor: Mike Hinchey, Lero—the Irish
Software Engineering Research Centre; mike.
hinchey@lero.ie

