
A Minimized Automaton Representation of

Reachable States

Gerard J. Holzmann and Anuj Puri

Bell Laboratories
Murray Hill, NJ 07974

To appear in 'Software Tools for Technology Transfer' (Springer Ver-
lag), 1999.

Abstract

We consider the problem of storing a set S � �k as a deterministic �nite
automaton (DFA). We show that inserting a new string � 2 �k or deleting
a string from the set S represented as a minimized DFA can be done in
expected time O(kj�j), while preserving the minimality of the DFA. We
then discuss an application of this work to reduce the memory requirements
of a model checker based on explicit state enumeration.

Keywords: Finite Automata, Veri�cation, OBDDs, Sharing trees,
Data Compression

1 Introduction

In this paper we consider the problem of reducing the memory requirements of model
checkers such as Spin [4], that are based on an explicit state enumeration method.
The memory requirements of such a model checker are dominated by state storage.
Reached states are typically stored in a hash-table, mostly for e�ciency reasons. We
will consider here a di�erent method for storing the states, based on the on-the-
y

1

construction of a deterministic �nite state recognizer, that replaces the hash-table.
Instead of checking for states in the hash-table, we now interrogate the recognizer.
Similarly, instead of updating the hash-table, we update the recognizer if a new state is
to be added to the set of reached states. The update procedure is de�ned in such a way
that the minimality of the recognizer is always preserved. The runtime requirements
of this alternative storage method can be expected to be greater than that for hash-
table storage, but, as we shall see, the reduction in the memory requirements can
make this a worthwhile trade-o�.

A state descriptor, for the system being veri�ed, can be thought of being encoded
as a string � 2 �k of bits or bytes. Each string becomes a member of the reached states
set S. We will discuss how one can construct and update a minimized deterministic
�nite automaton (DFA) that accept all the strings in set S, and none outside it.

Our main result is an algorithm for inserting and deleting strings from a DFA
storing the set S. The algorithm produces a new minimized DFA which accepts ex-
actly the new set obtained from the deletion or the insertion operation. The expected
cost of the insertion and deletion operations in our algorithm is O(kj�j).

We will study the e�ect of using this method in Spin. Earlier, in Visser [10]
an attempt was made to apply a standard BDD package 1 unmodi�ed, to solve this
problem. Similarly, Gregoire [3] experimented with a di�erent data structure, called
a sharing tree, or graph-encoded set, to achieve a similar result. We will compare our
results with theirs in Section 5.

Storing a set S � �k as a minimized DFA is closely related to the problem of
storing a boolean function as an ordered binary decision diagram (OBDD) [1, 8] (see
the discussion in Section 4). The method of inserting a string � into a set S � �k

using a union operation has complexity O(kM j�j) where M is the size of the �nite
automaton representing set S [1]. In contrast, the algorithm for insertion that is
introduced in this paper has complexity O(kj�j).

In Section 2, we de�ne the k-layer DFA we will be using to store a set S � �k.
In Section 3, we present our algorithms for insertion and deletion. In Section 4, we
discuss the relationship of our work with the previous work on OBDDs. In Section 5,
we discuss the application our work to the problem of state space exploration, and
compare our results to those of [3] and [10].

1Available from Carnegie Mellon at emc.cs.cmu.edu (pub/bdd/bddlib.tar.Z)

2

2 k-Layer Deterministic Finite Automata

In this section we discuss the k-layer deterministic �nite automaton (DFA) which
accepts a set S � �k of k-tuples. Each layer in the automaton corresponds to a bit or
byte position in the state descriptor, such that the n-th layer encodes the n-th bit or
byte from the state descriptor. In our implementation we will use bytes. The method
itself, however, does not depend on this choice.

A k-layer DFA is A = (fQigki=0; �;�) where Qi is the set of states at the ith layer,
Q0 = fq0g, Qk = f0; 1g, � is the alphabet, � : Qi � �! Qi+1 for 0 � i � k� 1 is the
transition function and Qi \ Qj = ; for i 6= j. The initial state is q0, the accepting
�nal state is \1" and the rejecting �nal state is \0". Figure 1 shows a 3-layer DFA
accepting the 3-tuples f 000, 001, 101 g.

De�ne �[i; j] = �i�i+1 : : : �j. From a state qi 2 Qi, a string �[i; j � 1] 2 �j�i

generates a run q[i; j] = qiqi+1 : : : qj where �(qm; �m) = qm+1. We de�ne LA(qi) = f
�[i; k � 1] j �[i; k� 1] generates the run q[i; k] where qk = 1g. LA(qi) is the set of all
strings which take qi to the accepting �nal state. We de�ne L(A) = LA(q0). Similarly,
we de�ne EA(qi) = f �[0; i� 1] j �[0; i� 1] generates the run q0[0; i] such that q00 = q0
and q0i = qi g. EA(qi) is the set of strings which take the state q0 to the state qi. When
it is clear that we are talking about the DFA A, we will write L(qi) and E(qi) instead
of LA(qi) and EA(qi). In the DFA of Figure 1, L(d) = f0; 1g and E(d) = f00g.

For a set R � �i and � 2 �, we de�ne � �R = f� �� j � 2 Rg. For a set S � �k,
S = �k n S. A DFA is minimized provided L(qi) = L(qj) i� qi = qj. Equivalently, a
k-layer DFA is minimized provided states which have exactly the same successors are
merged together. That is, in a k-layer DFA if �(qi; �) = �(qj; �) for each � 2 � then
qi = qj.

A set S � �k can be stored as a minimized DFA A such that L(A) = S. Given a
DFA storing a set S � �k and a string �, checking whether � 2 S is straightforward.
One generates the run q[0; k]; � 2 S if qk = 1, otherwise � 62 S. To obtain the
minimized DFA storing S, one just switches the �nal and non-�nal states in A.

From an implementation viewpoint, the DFA can be seen as a graph. Each vertex
v has a �eld v[�] for each � 2 �, and a �eld v[in]. The �eld v[�] stores the vertex
�(v; �) and the �eld v[in] stores the number of incoming edges into vertex v.

Example 2.1 Figure 1 shows a minimized DFA storing the set f 000, 001, 101 g.

3

0

1

0

1
0

q
0

1

0

1

0b

c

d

e

a

0
1

1

0

1

Figure 1: A minimized DFA storing the set f000, 001, 101g. Dashed lines separate
states in di�erent layers.

3 Insertion and Deletion

Given a minimized DFA A storing a set S � �k, we may want to insert a new
string � 2 �k into S, or delete a string � from S. Our main result is an O(kj�j)
algorithm which in case of an insertion operation takes as input the automaton A and
the string � and produces a new minimized DFA A0 such that L(A0) = L(A) [f�g;
and in case of a deletion operation, it produces a new minimized DFA A00 such that
L(A00) = L(A) n f�g.

3.1 Insertion

Given the k-layer minimized DFA A and a string � 2 �k, the insertion procedure
produces a new minimized DFA A0 such that L(A0) = L(A) [f�g.

For a string �, we generate the run q[0; k]. The insertion procedure is based on
the following observation: if � 62 L(A) then in the new DFA A0, we need a state ni
in each layer i such that LA0(ni) = LA(qi) [f�[i; k � 1]g and �[0; i� 1] 2 EA0(ni).

The DFA A0 is constructed from the DFA A by adding some new states and
deleting others. If there is already a state ni in layer i of A so that LA(ni) = LA(qi) [
f�[i; k � 1]g, then in the new DFA A0, LA0(ni) = LA(qi) [f�[i; k � 1]g, EA0(ni) =
EA(ni) [f�[0; i� 1]g and EA0(qi) = EA(qi) n f�[0; i� 1]g. The state qi is deleted in
A0 if EA0(qi) = ;.

4

If there is no state ni in layer i of DFA A such that LA(ni) = LA(qi)[f�[i; k�1]g,
then we need to create such a state. If EA(qi) contains only �[0; i� 1], then in the
new DFA A0 we modify things so that LA0(qi) = LA(qi) [f�[i; k� 1]g. But if
EA(qi) contains more than one element, then in the DFA A0 we create a new state
q0i such that LA0(q0i) = LA(qi) [f�[i; k � 1]g, EA0(q0i) = f�[0; i� 1]g and EA0(qi) =
EA(qi) n f�[0; i� 1]g.

Example 3.1 Consider the DFA A of Figure 1 that is storing f 000, 001, 101 g.
Suppose we want to insert � = 100 into A. The run of � in A is q[0; 3] = (q0; b; e; 0).
Now LA(n2) = LA(e) [f0g for n2 = d and LA(n1) = LA(b) [f00g for n1 = a. Since
EA(b) = f1g and EA(e) = f10g are singletons, these states will be deleted in the
new automaton. Figure 2 shows the new DFA A0. Notice that in the new DFA A0,
EA0(a) = EA(a) [f1g = f0; 1g and EA0(d) = EA(d) [f10g = f00; 10g.

We now describe the algorithm for the insertion operation in detail. The insertion
operation is divided into three phases. The �rst phase generates the run q[0; k] of �
in A. If qk = 1 then � 2 L(A) and we are done; otherwise � 62 L(A) and we go to
Phase 2.

Phase 1
Generate run q[0; k] of �
If qk = 1
then Stop
else Goto Phase 2

As mentioned previously, at each layer i in the new DFA A0, we must have a
state ni such that LA0(ni) = LA(qi) [f�[i; k� 1]g (because after applying �[0; i� 1]
in A0, we must reach a state which accepts exactly LA(qi) [f�[i; k� 1]g). The
purpose of Phase 2 is to check if such states are already present in our original
DFA A. In particular, Phase 2 �nds a state v in layer m + 1 of DFA A such that
LA(v) = LA(qm+1)[f�[m+1; k� 1]g, and there is no state at layer j of DFA A with
this property for j � m.

This is done iteratively. If the state old in layer i + 1 has the property that
LA(old) = LA(qi+1)[f�[i+1; k� 1]g, then we try to �nd a state new in layer i such
that LA(new) = LA(qi)[f�[i; k� 1]g (because A is minimized, there can be at most
one state in layer i with this property). Given old and qi, the key to �nding the state
new is to observe that �(new; �i) = old and �(new; �) = �(qi; �) for � 2 � n f�ig.

5

De�nition 3.1 Given the set K = fhq�; �ij� 2 �g, we de�ne pred(K) = fqj 8� �(q; �) =
q�g.

Notice that if A is a minimized DFA then new = pred(K) contains at most one
element. And if new 6= ;, then �(new; �) = q� for each � 2 �.

Phase 2
i := k
new := f1g
Repeat

i := i - 1
old := new
new := pred (fhqi[�]; �ij� 2 � n f�igg [fhold; �iig)

Until (new = ;)
m := i
v := old
Goto Phase 3

Lemma 3.1 At the end of the \Repeat-Until" loop of Phase 2, the variables new and
i satisfy the following loop invariant: if new 6= ; then jnewj � 1 and LA(new) =
LA(qi)[f�[i; k�1]g; and if new = ; then for each r 2 Qi, LA(r) 6= LA(qi)[f�[i; k�
1]g.

Proof: Suppose LA(new) = LA(qi) [f�[i; k� 1]g at the beginning of the loop. Then
at the end of the loop LA(old) = LA(qi+1) [f�[i + 1; k � 1]g. If new 6= ; at the
end of loop, then from the previous discussion jnewj � 1, �(new; �i) = old and
�(new; �) = �(qi; �) for � 2 � n f�ig. Hence

LA(new) = [�2�nf�igf� � L(�(qi; �))g [f�i � L(old)g

= [�2�nf�igf� � L(�(qi; �))g [f�[i; k � 1]g [f�i � L(qi+1)g

= [�2�f� � L(�(qi; �))g [f�[i; k � 1]g

= L(qi) [f�[i; k � 1]g

But if new = ; then there is no state r 2 Qi such that �(r; �i) = old and �(r; �) =
�(qi; �) for � 2 � n f�ig. Hence for every state r 2 Qi, LA(r) 6= LA(qi)[f�[i; k� 1]g.

6

Phase 3 constructs the new minimized DFA A0 such that L(A0) = L(A) [f�g.
At each layer i of A0 there will be a state ni such that LA0(ni) = LA(qi)[f�[i; k�1]g.
We will construct the new DFA A0 from the DFA A by adding some new states and
deleting others.

For layers i � m+ 1 we already have states in A with this required property, so
we only need to create such states for j � m. We do this by looking at the state qj
at layer j. If qj has more than one incoming edge (i.e., EA(qj) has more than one
element), then in the new DFA A0, we make a duplicate of qj called q0j. Since qj has
more than one incoming edge, LA(qj) is needed in layer j of the DFA A0. So it will be
the new state q0j which will have the property that LA0(q0j) = LA(qj) [f�[j; k � 1]g.
But if qj has at most one incoming edge (i.e., EA(qj) contains only �[0; i� 1]), then
LA(qj) is no longer needed in the DFA A0. So it will be the state qj in A0 which will
have the property that LA0(qj) = LA(qj) [f�[j; k � 1]g.

The function Remove() deletes the state qi for i � m+1 provided EA(qi) contains
only �[0; i� 1].

Phase 3
s := q0
for j = 1 to m f

if qj[in] > 1 then
Create vertex q0j
q0j[�] := qj[�] for each � 2 �
for each � 2 �

(q0j[�])[in] := (q0j[�])[in] + 1
qj[in] := qj[in]� 1
s[�j�1] := q0j
q0j[in] := 1
s := q0j

else
s := qj

g
rem := s[�m]
s[�m] := v
v[in] := v[in] + 1
rem[in] := rem[in] - 1
Remove(rem)

7

Remove (rem):
Starting from rem, delete all vertices
which have no incoming edges

Lemma 3.2 The new DFA A0 is minimized and L(A0) = L(A) [f�g.

Proof: Suppose sj is the value of variable s at the end of the jth iteration of the \for-
loop" in Phase 3. Then it can be checked that if LA0(sj) = LA(qj)[f�[j; k�1]g then
LA0(sj�1) = LA(qj�1)[f�[j� 1; k � 1]g. Because LA0(sm) = LA(qm) [f�[m;k� 1]g,
it follows that for j � m, LA0(sj) = LA(qj) [f�[j; k � 1]g. In particular, LA0(q0) =
L(A0) = L(A) [f�g.

To show that the new DFA A0 is already minimized, we need to observe that
each state except q0 has an incoming edge, and for two di�erent states r and s in A0,
LA0(r) 6= LA0(s).

Notice that the DFA A0 has at most k more states than the DFA A.

Example 3.2 Let us insert the string 100 into the set f000,001,101g represented
by the DFA of Figure 1. We will go through the Phases 1-3 to construct the new
DFA A0. In Phase 1, we generate the run q[0; 3] = (q0; b; e; 0). Since q3 = 0,
we go to Phase 2. At the beginning of the �rst iteration of the \Repeat-Until"
loop, i = 3 and new = f1g. In the next iteration, we get i = 2 and new =
pred(hq2[1]; 1ih1; 0i) = pred(h1; 1ih1; 0i) = fdg. In the next iteration, i = 1 and
new = pred(hq1[1]; 1ihd; 0i) = pred(hc; 1ihd; 0i) = fag. During the next iteration,
i = 0 and new = pred(hq0[0]; 0iha; 1i) = pred(ha; 0iha; 1i) = ;. The \Repeat-Until"
loop terminates, the value ofm = 0 and v = a. Notice L(a) = L(b)[f00g. In Phase 3,
s = q0. The \for-loop" is not executed because m = 0. The value of rem = q0[1] = b.
The new value of q0[1] = a. And we call the procedure Remove(fbg) which deletes the
vertex b, and then the vertex e. The resulting DFA is shown in Figure 2. Notice that
it is already minimized and it accepts exactly the set f000,001,100,101g.

3.2 Deletion

Given a k-layer minimized DFA A and a string � 2 �k, the deletion operation pro-
duces a minimized DFA A00 such that L(A00) = L(A0) n f�g.

8

1

1

0
0

1

0

0

d

ca

1

0

1

0

q

Figure 2: The new minimized DFA storing f000,001,100,101g

To perform the deletion operation, we �rst complement A to obtain the DFA C.
We then insert � into C obtaining the DFA C 0 so that L(C 0) = L(C) [f�g. We

obtain the DFA A00 by complementing C 0. So L(A00) = (L(A) [f�g) = L(A) n f�g.

Deletion
C = Complement of A
Construct C 0 using the insertion operation

so that L(C 0) = L(C) [f�g
A00 = Complement of C 0

Example 3.3 Let us delete the string 100 from the set f000; 001; 100; 101g repre-
sented by the DFA of Figure 2. We �rst complement this DFA to obtain the DFA C

shown in Figure 3.

We next insert the string 100 into the DFA C by going through Phases 1-3 of the
insertion procedure. In Phase 1, we generate the run q[0; 3] = (q0; a; d; 0). Since q3 =
0, we go to Phase 2. At the beginning of the �rst iteration of the \Repeat-Until" loop,
i = 3 and new = f1g. In the next iteration, i = 2 and new = pred(hq2[1]; 1i; h1; 0i) =
pred(h0; 1ih1; 0i) = ;. The \Repeat-Until" loop terminates, the value of m = 2 and
v = 1. In Phase 3, in the beginning of the �rst iteration of the \for-loop" s = q0.
Since q1 = a has more than one incoming edge, we make a duplicate state a0 and
make q0[1] = a0. In the next iteration, s = a0, and since q2 = d now also has more

9

0

0

1

1

0
0

1

0

1

d

ca

1

0

q

Figure 3: The DFA C

0

1

0

0

1

q
0

1

0

0

1

1

0

d

a d

1

0

1
a c

Figure 4: The DFA C 0

10

than one incoming edge, we make a duplicate state d0 and make a0[0] = d0. The new
value of s = d0. The \for-loop" terminates and the new value of d0[0] = 1. The gives
us the DFA C 0 shown in Figure 4.

To obtain the DFA A00, we complement the DFA C 0.

3.3 Complexity

We next analyze the cost of the insertion procedure. Phase 1 takes O(k) time. In
Phase 2, in each iteration of the \Repeat-Until" loop, we need to compute new =
pred(K) for a set K. This is done using a hash table. For each state q, we store q in
the hash table using the keyK = f(q[�]; �)j� 2 �g. In computing new = pred(K), K
is used as the key. Assuming constant-time hashing, pred(K) takes O(j�j) expected
time. So Phase 2 takes O(kj�j) expected time. Phase 3 takes O(kj�j) time. So
the expected cost of an insertion operation is O(kj�j) time. The cost of a deletion
operation is the same as the cost of an insertion operation.

4 Relationship with OBDDs

There is a close relationship between a minimized k-layer DFA storing a set S � �k

and an OBDD representing a boolean function. A boolean function f : f0; 1gk !
f0; 1g is characterized its truth set � = f� 2 f0; 1gkjf(�) = 1g. The truth set � can
then be stored as a minimized k-layer DFA where the alphabet is � = f0; 1g. This is
a canonical representation of the boolean function f . This method of representing a
boolean function is essentially equivalent to representing the boolean function as an
OBDD (see [8]).

In a minimized DFA, a state s is "redundant" when there is a state t such that
t = �(s; 0) = �(s; 1). Such redundant states can be removed by redirecting incoming
edges into s to t. An OBDD for a boolean function is obtained from a minimzed DFA
that is storing its truth set by removing all redundant states.

Example 4.1 Figure 5 shows the OBDD of the boolean function with truth set f000,
001, 101g. It is obtained from the minimized DFA of Figure 1 by removing the
redundant states c and d.

Given the OBDDs for boolean functions f and g, the OBDD for f + g can be

11

1
0

0

0

1

0

0 1

0

1

e

b

a
1

q

Figure 5: An OBDD with truth set f000, 001, 101g

computed in time O(mn) where m is the size of the OBDD for f and n is the size of
the OBDD for g [1, 2]. Givenminimized k-layer DFAsA and B, the same construction
can be used to compute the minimized DFA C such that L(C) = L(A) [L(B).

Theorem 4.1 [1, 2] Given k-layer minimized DFAs A and B, the minimized DFA
C such that L(C) = L(A) [L(B) can be computed in expected time O(mnj�j) where
m is the size of the DFA A, n is the size of the DFA B and � is the alphabet.

It also follows that given the DFAs A and B of size m and n, the minimized DFA
C such that L(C) = L(A) \ L(B) can be computed in expected time O(mnj�j).

5 Application

The Spin veri�cation system uses an on-the-
y LTL model checking procedure based
on explicit state enumeration [6]. Reachable system states are compressed [5], and
stored in a hash-table as simple byte-sequences. The maximum amount of memory
available to the model checker sets a trivial upper bound to the maximum state space
size that can be explored in this way.

The search strategy itself is a modi�ed depth-�rst search, described in more detail
in [7]. To perform the model checking e�ciently, we need to be able to recognize
quickly which reachable system states were explored before in the search, and which
of these states are currently on the depth-�rst search stack.

12

Method States Mem.(Mb) Time(sec.)
0 Reference (no compression) 251409 37.401 60.91
1 Direct DFA implementation 251409 25.113 384.33
2 Intermediate version 251409 15.994 3606.14
3 Final Implementation 251409 6.778 107.08

Table 1: E�ect of implementation choices, a data transfer protocol model.

We �rst consider some of the implementation choices we have made to optimize
the performance of the algorithm, when used within a model checking system. Next
we compare the performance of the algorithm we have described with several others
that have the same objective.

5.1 Implementation in Spin

The algorithm described in the previous sections is used to provide the two central
state maintenance functions in Spin, optionally replacing standard hash-table lookups
of states compressed by more conventional means. The �rst function is to identify
whether a newly generated system state was previously visited in the search. The
second function is to identify whether a previously visited state is currently on the
depth-�rst search stack, implying that not all of its successors have yet been explored.

The performance of the DFA encoding algorithm is sensitive to the particulars
of the implementation. To illustrate this, consider the measurements presented in
Table 1. All measurements reported here are for a 180 MHz SGI Workstation with 64
Megabytes of main memory. Only the relative performance of the various algorithms,
however, will be of interest to us here.

Row 0 in Table 1 gives, for reference, the performance of an exhaustive search
without compression for a reference protocol model that generates 251,409 reachable
states. Memory use, for all measurements, is reported in Megabytes, time is reported
in seconds of CPU time.

Row 1 gives the memory and time requirements for a direct implementation of
the algorithm given in the preceding section, coded in about 300 lines of C.

13

Row 2 shows the results of a �rst attempt to reduce the memory requirements
by changing from a bit-level encoding to a byte-level encoding per layer (more about
this below).

Row 3 shows the performance of the �nal version of the algorithm, with several
other optimizations in place.

The optimizations made in the �nal implementation can be summarized as fol-
lows:

1. Byte level encoding,

2. Range compression on edges,

3. Splay trees with linked lists for backward pointers,

4. Byte tags on the trailing symbol in each word, for special state markings.

5. Edge lists organized with the most recently accessed edge appearing �rst.

Some of these methods have been tried before in di�erent contexts. Speci�cally,
splay trees and byte tags were also used in [3]. We brie
y comment on each point
below.

Byte Level Encoding and Range Compression

The model checker Spin targets software veri�cation problems, that is the ver-
i�cation of the interactions of multiple, asynchronously executing, processes that
communicate either via message bu�ers or shared variables [6]. The data objects in
this type of application can be de�ned at the bit-level, but they are more commonly
de�ned at a higher level of abstraction, e.g., as integer variables, or as user de�ned
data structures. This means that a bit-level encoding, as commonly used in hardware
applications, is not necessarily optimal in this application.

The implementation we have built for the Spin system therefore uses a byte-
level encoding of the algorithm. Every symbol in the word that is stored in the DFA
represents a byte of data from the state descriptor. This implies that every node in
the DFA has not two but up to 256 possible outgoing edges. To capitalize on the fact
that most of the edges of a node typically lead to the same set of successor nodes,
we have implemented range encoding for the edges in the graph. Every consecutive

14

range of edges with a common destination can thus be stored in a single edge data
structure, thus reducing the overall memory requirements.

Splay Trees

In the second phase of the algorithm, the graph structure has to be searched
backwards, from the accepting node towards the root node. As with BDDs, the
number of backward pointers per node can be substantially larger than the number
of forward pointers per node. Therefore, we have adopted an encoding method that is
similar to the one that is often used for BDDs. Instead of hash-table lookup, however,
we have used a variation of splay trees, based on an algorithm from [9].

The reason for using splay tree code is to exploit predictable access patterns to
the graph structure, to improve performance. We compute the keys for the splay
tree storage from the addresses of the predecessor nodes in the DFA. In the worst
case, there can be 256 such addresses to consider in the computation of these keys.
By caching some of the information inside the nodes, however, this can be reduced
to fairly simple constant time computation. The splay tree code from [9] assumes
that no two items with equal keys �can appear within the same tree. This is not
true for the keys that we use, so we adapted the code by adding an optional linked
list on each splay tree node, where equal size keys can be stored and found. The
resulting modi�cation of the splay tree algorithm is minimal, and since equal keys are
su�ciently seldom, the e�ect on the runtime is also minimal.

In the implementation of the graph encoding method for state vector storage
described in [3] a di�erent implementation of splay trees was used to store forward
instead of backward edges in the graph-encoded sets. Equal keys can appear also here,
and in this case the con
icts are resolved without linked lists within the existing tree
structure. This calls for a greater modi�cation of the splay tree algorithm, but also
no signi�cant e�ect on runtime.

Byte Tags

To di�erentiate between states that are on the depth-�rst search stack, and those
that have been removed from it, we use the method given in [3]. Each state carries a
tag as the last byte. The �rst time the state is encountered, the tag is zero, and the
state is encoded as such in the DFA. When a state is removed from the search stack,
the tag becomes non-zero, and the state is stored again, with maximal sharing of
information between the two copies of the state. Checking with the member function

15

Algorithm States Nodes Mem. (Mb) Time (sec.)
1 No Compression [6] 417321 { 63.2 18.61
2 Collapse [5] 417321 { 11.7 43.56
3 DFA 417321 156744 7.6 201.05
4 DFA + Collapse 417321 17486 3.5 200.49
5 GETSs [3] 417321 166833 7.4 225.03
6 OBDDs + Collapse [10] 417321 357247 13.7 3463.72

Table 2: Measurements and Comparison for a �le transfer protocol.

for the presence of the second copy of the state in the DFA can be done e�ciently,
since the previously constructed path through the DFA can be reused, upto, but not
including, the last symbol. We use the same technique to store also a proviso bit,
required for partial order searches as de�ned in [7], without noticeable overhead.

Dynamic Reordering of Edge Lists

The most recently created part of the DFA has the highest probability of being
revisited in subsequent accesses of the structure. Performance is optimized under
these circumstances by dynamically reorganizing the edge lists on each node with the
most recently created or accessed edge appearing �rst.

5.2 Comparisons

Table 2 shows the e�ect on run-time and memory use of replacing the standard hash-
table for explicit state storage in Spin with the DFA based encoder discussed in this
paper for a model of a sliding window
ow control protocol, taken from [4]. The �rst
row gives memory use and run-time when storing all reachable states in a standard
hash-table, without compression. The second row is for a run with Spin's builtin
Collapse compression algorithm, which is discussed in more detail in [5]. The third
row gives the results when the DFA encoding from this paper is used, and the fourth
row shows the results when the state descriptors are �rst compressed with Collapse,
and then stored with the DFA method from this paper.

A few trends are visible. First, as may be expected, applying a compression tech-

16

nique will cause an increases in the run-time requirements. Greater compression in
these cases is paired with greater run-time overhead. A direct application of the DFA
encoding reduces the memory requirements from 63.2 to 7.6 Mb, or by approximately
88 percent. The runtime, however, increases tenfold. Combining the Collapse com-
pression mode with DFA encodings reduces the memory requirements further to 3.5
Mb, giving a reduction of approximately 95 percent, without a�ecting the runtime
requirements much. The reason for the latter is that the pre-compression of the state
descriptor reduces its length from 118 bytes to 11 bytes, which speeds up the DFA
encoder su�ciently to make up for the pre-compression overhead.

Similar studies with graph or BDD-based encoding techniques were reported in
[3] and [10]. It is di�cult to make direct comparisons with the measurements that
were published in this earlier work. The numbers for memory use reported in Table
2 are totals for all memory use consumed in the veri�er, both for the state encoding
itself and for extraneous data structures. In [3] and [10] some of these quantities
were excluded from the data reported, and in di�erent ways in the two papers. In
the measurements reported in [10], memory use was estimated by multiplying the
number of nodes in the BDDs with the average number of bytes consumed per node,
and no measurement was made of physically allocated memory. The memory use in
[3] was also estimated instead of measured on calls to the memory allocator.

Both Visser and Gregoire, however, have generously made their C-code implemen-
tations available, so that a direct comparison could be done on a single workstation
(a 180 MHz SGI system with 64 Mbyte of main memory), reporting runtimes and
overall memory consumptions in the same way for each algorithm, when compiled and
run with matching parameters. Table 2 gives the counts of actual physical memory
allocated for each algorithm.

Each algorithm was run in exhaustive search mode, without partial order re-
duction, with the minimal settings for stack-depth, hash-table size, graph-depth, or
BDD-size, as appropriate.

Row 5 in Table 2 reports the results of a direct application of the graph encoded
sets as described in [3], without other compression methods applied. The result should
be compared with the direct application of the DFA encoding, from row 3.

Row 6 reports the results of the application of vintage BDDs with Collapse

pre-compression, as described in [10]. The result should be compared with row 4.

A small, but mostly insigni�cant, di�erence in run-times, and a similarly small
di�erence in the memory requirements can be noted between the GETS method (row

17

Average Average
Algorithm Mem. (Mb.) Time (sec.)
Uncompressed 24.04 12.61
Collapse 8.48 16.94
DFA+Collapse 4.35 78.17
DFA 3.37 61.82
GETS 3.30 65.44

Table 3: Memory and Time Averaged over Fourteen Typical Applications

5) and the DFA method (row 3). There is a more signi�cant di�erence between the
method based on OBDDs (row 6) and the DFA encoding (row 4), combined with
Collapse compression, both in run-time and in memory use.

Clearly, all methods achieve the goal of memory reduction. Within the context of
the Spin model checker, the classic BDD package, with bit-level instead of byte-level,
encodings, appears not to be competitive. The di�erence in run-times is approxi-
mately a factor of 17, and the di�erence in memory requirements approximately a
factor of four. The graph encoded sets and the DFA encoding method produce closely
competitive results.

Experiments with a range of other models con�rm the trends observed above,
with minor variations. Table 3 shows the results of averaging the memory use and
time requirements of fourteen runs for as many di�erent randomly chosen models,
from a database of Spin applications. The lowest average memory use is reported
for the GETS code. The DFA algorithm described in this paper comes within 2
percent of that result, and lowers the runtime by about 5 percent. The Collapse
method gives a respectable compression for a modest runtime penalty. On average,
the combination of DFA with Collapse does not improve the reduction.

Table 4 compares the performance of the DFA algorithm with or without Col-
lapse pre-compression, and Collapse compression applied separately directly for
the same fourteen applications. The best memory reduction achieved is shown in the
second column, a the linear factor of memory use divided by compressed memory use.
The corresponding time penalty is given in the third column. The last column notes
which algorithm came out best for each of the fourteen applications.

18

Algorithm Memory Reduction Time Increase
1 DFA 5.15 3.99
2 DFA 5.88 11.99
3 DFA 7.72 9.31
4 DFA 9.03 9.75
5 DFA 9.50 9.29
6 DFA 20.03 4.97
7 DFA 35.09 5.79
8 DFA 66.5 8.15
9 DFA 128.50 6.77
10 DFA+Collapse 2.17 8.12
11 DFA+Collapse 3.25 8.98
12 DFA+Collapse 4.62 7.18
13 DFA+Collapse 16.43 8.44
14 DFA+Collapse 17.96 5.57

Table 4: Best Memory Reduction Factor Measured for Each of Fourteen Applications
with the Corresponding Time Increase Factors

19

In most cases, the DFA encoding gave the best memory reduction when applied
alone. In �ve cases the combination with Collapse pre-compression improved the
reduction.

In six cases, the memory reduction was a factor of ten or more, and it was never
less than a factor of two. The worst time penalty was a near a factor of ten, and
never less than a factor of about four.

5.3 An Extension: Checkpointing

Large Spin veri�cation runs typically complete within minutes of CPU time, or in the
worst cases within a few hours. An increase of the run time requirements by an order
of magnitude, however, can turn minutes into hours, and hours into days. Under those
circumstances, it can be important to have a checkpointing option, where a snapshot
of the veri�cation results can be written to disk once in a while. In case a very long
run has to be aborted, the run can then be restarted from the last checkpoint �le
that was written.

With explicit state storage methods, and the speed of in-core on-the-
y methods,
checkpointing algorithms are self-defeating: it takes more time to read the state
descriptors from a disk-�le than it takes to recompute them.

The DFA storage method changes this behavior of the veri�er. Not only does it
make checkpointing more desirable, it also makes it more feasible. Especially for the
higher compression ratios, near two orders of magnitude, writing or reading a disk-�le
representation of the graph can now be done in less time than it takes to recompute
the graph. We have therefore extended the DFA algorithm with a checkpointing
option in Spin.

If the option is selected, a checkpointing �le is written during the veri�cation
process at every multiple of one million states stored in the DFA. The nodes are
identi�ed in the checkpoint �le by their memory address (a convenient wordsize integer
that uniquely identi�es each node). The nodes are written layer by layer, and each
node is followed by a list of its successors, identi�ed again by their address, at the
next layer in the graph.

To reconstruct the graph, when restarting from a checkpoint �le, is relatively
straightforward. There is just one unusual problem to be solved: the graph contains
both the states that are o� the depth-�rst search stack at the moment that the
checkpoint �le was written, and states that are still on it. The stack itself cannot

20

be reconstructed from this information (the depth at which is a state is encountered
is normally not available), therefore, before we can restart the veri�cation run, the
stack states have to be removed from the graph.

The removal of the stack states is done in three steps. Assume that the byte tag
that identi�es o�-stack states has the non-zero value OFF .

Step 1
Find the node r at layer k � 1 with

�(r; 0) = 1 and �(r;OFF) = 0
If there is no such node

then Stop
else Goto Step 2

All paths in the graph between q0 and r, followed by 0, correspond to the words
that should be deleted from the graph. Note that there can be at most one node r
with the desired properties.

Step 2
Make r the root of a tree with successor function �0 de�ned as follows:
i := k - 1
Repeat

i := i - 1
�0(r; �) := r0

for each � 2 � with r0 2 fqj�(r0; �) = rg
r := r'

Until (i = 0)

After Step 2, the tree rooted in r contains all words (state descriptors) correspond-
ing to states that were on the depth-�rst search stack at the time the checkpoint �le
was written. The tree is k � 1 layers deep, and every path from a leaf of the tree to
the root at r is such a word, when su�xed by a zero tag.

Step 3
Generate the paths from each leaf to the root of the new tree,
e.g., with a depth �rst search of the tree.
Append a zero to each path.
Delete the corresponding words from the graph.

21

Note that the information in the tree cannot be corrupted by the modi�cations
of the graph while the words are being deleted. In a �nal step, the memory used
for the tree structure can be reclaimed and the veri�cation can be restarted with the
pruned graph as the initial state space.

6 Conclusion

We have considered a method for representing �nite words in the form of a determin-
istic, minimized, automaton, and have given an algorithm for the insertion of new
words into the automaton, that preserves the automaton's minimality.

The application of this storage technique in a model checking tool causes an
increase of the runtime requirements by about an order of magnitude, but in most
cases it succeeds in reducing the memory requirements by the same amount.

Acknowledgements:

The authors are grateful to W. Visser and J-C. Gregoire for making their software
available for the measurements reported in this paper, and to Mihalis Yannakakis for
insightful comments on an earlier draft of this paper.

References

[1] R.E. Bryant. Graph based algorithms for boolean function manipulation, IEEE
Trans. on Computers, C-35, pp. 677-691, (1986).

[2] R.E. Bryant. Symbolic boolean manipulation with ordered binary decision dia-
grams, Computing Surveys Volume 24, No. 3, September 1992, pp. 293-318.

[3] J-C. Gregoire. State space compression in Spin with GETSs, Proc. Second
Spin Workshop, Rutgers University, New Brunswick, New Jersey, August 1996,
American Mathematical Society, DIMACS/32.

[4] G.J. Holzmann. Design and Validation of Computer Protocols, Prentice Hall
Software Series, 1991.

[5] G.J. Holzmann. State compression in Spin, Proc. Third SpinWorkshop, Twente
University, The Netherlands, April 1997.

22

[6] G.J. Holzmann. The model checker Spin, IEEE Trans. on Software Engineering,
Vol. 23, No. 5, May 1997.

[7] G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth �rst search,
Proc. Second Spin Workshop, Rutgers University, New Brunswick, New Jersey,
August 1996, American Mathematical Society, DIMACS/32.

[8] S. Kimura, and E.M. Clarke. A parallel algorithm for constructing binary deci-
sion diagrams, In 1990 IEEE Int. Conf. on Computer Design, Sept. 1990.

[9] D. Sleator, and R. Tarjan. Self-adjusting Binary Search Trees, JACM Volume
32, No 3, July 1985, pp 652-686.

[10] W. Visser. Memory e�cient storage in Spin, Proc. Second Spin Workshop,
Rutgers University, New Brunswick, New Jersey, August 1996, American Math-
ematical Society, DIMACS/32.

23

