
2	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

RELIABLE CODE

Software Components
Gerard J. Holzmann

AT THE 1968 Conference on Soft-
ware Engineering, mathematician
and software engineer Doug McIlroy,
alarmed by the sorry state of soft-
ware development, made a strong
pitch for the industrial production of
software components.1 Software sys-
tems, like bridges, houses, and cars,
are built from parts. McIlroy noted
that it didn’t make much sense for
every organization and developer to
keep having to reinvent what’s basi-
cally a common set of core compo-
nents for software design. McIlroy
envisioned an industry that could
provide programmers a selection of
mass-produced software parts, dif-
fering in accuracy, performance, and
cost, to fit a broad range of possible
applications.

An inspiration for McIlroy’s pre-
sentation was the way in which the
electronics industry had evolved.
Electronics were commonly designed
as sets of circuit boards populated
with standardized components. There
were, and still are, catalogs of resis-
tors, capacitors, diodes, and transis-
tors, with each item documented
and marked with the intended range
of use. For instance, resistors are
marked with a standard color code
that indicates their nominal value
and the percentage by which their
actual value can differ from that
nominal value. The user can then
make the tradeoff between paying
somewhat more for greater preci-
sion or less when the highest level of

accuracy isn’t required. Why couldn’t
the same thing work in software?

Bricks and Bolts
Resistors, capacitors, and transistors
can all be mass produced, like nuts
and bolts and bricks, because they’re
typically used in large quantities.
Every device built does, of course,
have to use its own copy of all the
components it uses, although all
those copies are expected to have
been produced to the same stan-
dards. Just about all circuit board
components are standard. Rarely
will a circuit designer have to develop
an entirely new type of component
that’s not available in any catalog.

The situation is different in soft-
ware. The developer needs only one
encoding of each standard function,
even if the software application that
contains it is sold by the millions.
The way to achieve accuracy in com-
ponent design is also different. For
instance, to get highly accurate resis-
tors, we can measure the resistance
of millions of items and select the
ones that deviate by no more than the
desired amount to achieve any level
of accuracy. If we want to achieve
greater accuracy for a software func-
tion, the best method is probably not
to have large numbers of developers
design a version and then select the
best one, although in practice it does
sometimes seem to work that way. It
can be time consuming to rigorously
prove the correctness of a software

component, but once that work
is done, the result should hold for
every copy that’s used later.

Another difference is that the
large majority of the code writ-
ten for a new application is usually
unique to that application. In one of
the larger programs I’ve maintained
for a couple of decades, less than
15 percent of the functions originate
in standard libraries. The remain-
ing 85 percent are special-purpose
functions unique to the application,
starting with the main function
itself. I suspect that the same is true
for most software applications.

Libraries
The mass production in McIlroy’s
proposal referred to the creation of
a larger-than-usual range of special-
ized features, target execution plat-
forms, and environments that could
be created for each basic routine. A
good case can be made for this, but
there doesn’t appear to be a market
for this type of software component
industry. Pretty much all languages
come freely with extensive librar-
ies that encode everything from the
most standard to the most exotic
types of applications. Today, almost
no one would consider writing his
or her own library of trigonometric
functions or regular-expression pat-
tern matching.

Can we trust the reliability of
all those libraries? Is the standard
implementation of a sine routine in

RELIABLE CODE

	 MAY/JUNE 2018 | IEEE SOFTWARE � 3

Java identical to the one that’s avail-
able for C or Go? Who exactly takes
responsibility for the accuracy of
these functions, and how can you
get bugs repaired quickly? After all,
if you’re not a paying customer, you
no longer get to decide what’s a bug
and what’s a feature, so you might
just have to live with whatever the
anonymous provider of the library
decides. Unless, of course, you do
decide to build everything from
scratch.

Modules and Subsystems
Something else that might have
changed since 1968 is the notion of
what a software component actually
is. To a carmaker, a component is
the entire entertainment subsystem,
the navigation module, the airbag
unit, or the engine control unit. To-
day, no carmaker designs, builds,
and programs its own versions of
these modules: it purchases them
from contractors that specialize in
building them and that are respon-
sible for fixing them if they’re in-
adequate. Each of these modules
typically comes with substantial
amounts of embedded software to
bring the hardware to life and give
it its desired functionality. If there’s
a problem, your favorite repair place
will not go hunting for any bugs,
locate that burned-out transistor, or
even try to upload new software into
one of these modules. The repair
shop will simply replace the entire
module. Problem solved. In all these
cases, a component is a subsystem,
software included.

In the last 50 years, an industry
has also been created for the de-
velopment of specialized software
tools. So, here we might need to
consider specialized tools such as
Photoshop or TurboTax to be identi-
fiable software “components.” Who

would try to develop his or her
own image-editing software, text
editor, logic-model checker, or
static-source-code-analysis tool to-
day? Well, okay, that would be peo-
ple like me, but we know we’re a
very small minority.

Software Tools
The notion of a software tool for
solving problems was exemplified
best in the design of Unix. If you’re
used to developing code on a Unix or
Unix-like system, you’ll have come to
rely on standard tools such as make,
grep, sed, awk, sort, diff, and tr. Each of
these specialized tools can be used as
a component part for solving larger
problems. Each tool aims to solve
one specific problem as efficiently as
possible. And each tool is designed
to support a standard I/O format, so
that the output from one tool can be
fed into any of the others.

We needn’t be surprised that
the design of Unix, spearheaded by
Ken Thompson, originated in the
group at Bell Labs that was created
by Doug McIlroy. In this group,
which I was fortunate to be part of,
Doug McIlroy was a gentle force of
inspiration behind a lot of the re-
search that came out in subsequent
years. As is well known, McIlroy
also contributed the key concept
of a Unix pipe as a simple nota-
tion to connect the standard output
of one tool to the standard input
of another. The pipe was the glue
that was needed to let us build
larger software systems from soft-
ware components.

The Perpetual Crisis
The rapidly increasing size and com-
plexity of software applications was
discussed at length at the 1968 Con-
ference on Software Engineering,
famously leading to the first recorded

use of the term “software crisis.”1 As
noted in the discussion transcripts,

Particularly alarming is the seem-
ingly unavoidable fallibility of large
software, since a malfunction in
an advanced hardware-software
system can be a matter of life and
death.1

You probably would have believed
me if I said that quote was from last
year instead of 50 years ago.

An example of a large software
system that was discussed at the 1968
conference was the OS for the IBM
System/360. A chart (see Figure 1)
illustrated the trend. The chart
showed the size of IBM OS/360 in-
creasing from around 1 million to
around 7 million lines of assembly
code, or the equivalent of about 1.4
million lines of C code today. The
chart also illustrated the general
trend of software size increasing by
about a factor of 100 from 1958 to

10M

5M

2M

1M

500K

200K

100KLi
ne

s
of

 c
od

e

50K

20K

10K

5K 650

7070

1604

7090

? {

56

Datatron

Year
58 60 62 64 66 68

709

1401

7040

704

360

FIGURE 1. The growth in software

requirements.1 The growth continues,

although the pace has slowed.

RELIABLE CODE

4	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

1968. Luckily, that pace of growth
didn’t continue, or we would be see-
ing software applications with tens
of billions of lines of code.

But clearly, the growth trend
hasn’t stopped, and we still feel we’re
nearing the point at which we’ll lose
all intellectual control over the soft-
ware systems we’re routinely creat-
ing. Of course, a well-designed large
system isn’t a single homogenous
blob of intertwined code. It consists
of many parts with, hopefully, well-
designed interfaces and a limited
number of functional dependencies
so that all these components can be
designed and checked independently.
Anyhow, we can always hope.

Speed
One thing that has changed dramati-
cally since 1968 is the speed and size
of the machines we can use to execute
our code. Even a humble Raspberry
Pi C executes about 2,000 times
faster than the fastest IBM System/
360 model, the Model 75, did in
1965. For that matter, that Raspberry
Pi is also more than 10 times faster
than a Cray-1 supercomputer from
1975.2–4

Looking on the bright side again,
these phenomenal gains in speed
not only make our code run faster
but also make it possible to analyze
our code more thoroughly than ever

before. In early compilers, for in-
stance, many checks for consistency
and correctness that could in princi-
ple have been included were left out
to avoid slowing down compilation
too much. Even so, in the ’60s and
’70s you could often literally take a
coffee or lunch break before a larger
application would finish compiling.
Today’s compilers can execute fast
enough that they can routinely per-
form far more sophisticated types of
checks of our code, without anyone
noticing a difference in performance.
And we now also have a range of
dedicated static-source-code-analysis
tools for even more rigorous types
of checks. These tools are good
enough that they’ve pretty much be-
come standard in industrial software
development.

Indeed, many application do-
mains have a well-defined process
for building larger software systems
from reusable modules with well-
defined interfaces. For instance, if
you build spacecraft, the mission
of the system generally differs from
one vehicle to the next, but all the
missions need certain specific types
of functionality. Standard software
modules needed on every interplan-
etary mission include the code for
navigation (getting from Florida to
Mars without too many course cor-
rections), telemetry (getting mission

data back to the ground controllers),
resource arbitration (don’t start driv-
ing your rover when it’s busy drilling
into a rock), and data handling (com-
pression, packetization, and so on).

In the long run, it pays to develop
generic software components for all
these functions as robustly as pos-
sible, and to put them in the arsenal
of software components on which
mission designers can rely. With time
and experience, these modules can
be expected to get better and better,
and handle more and more cases.

I t should go without saying that
this approach to the develop-
ment of software components is

well worth using, even if your job is
not to fly the occasional mission to
Mars.

References
	 1.	Software Engineering, P. Naur and B.

Randell, eds., Scientific Affairs Divi-

sion, NATO, 1968; homepages.cs.ncl

.ac.uk/brian.randell/NATO/nato1968

.PDF.

	 2.	L. Poulsen, “IBM 360/370/3090/390

Model Numbers”; www.beagle-ears

.com/lars/engineer/comphist/model360

.htm.

	 3.	J. Armstrong, tweet, 17 Jan. 2018;

twitter.com/joeerl/status

/953711344783691777.

	 4.	R. Longbottom, “Roy Longbottom’s

Raspberry Pi, Pi 2 and Pi 3 Bench-

marks”; www.roylongbottom.org.uk

/Raspberry percent20Pi percent-

20Benchmarks.htm.

ABOUT THE AUTHOR

GERARD J. HOLZMANN works on developing stronger methods for

the design and analysis of safety-critical software as a consultant and

researcher at Nimble Research. Contact him at gholzmann@acm.org.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

