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RELIABLE CODE

Software Components
Gerard J. Holzmann

AT THE 1968 Conference on Soft-
ware Engineering, mathematician 
and software engineer Doug McIlroy,  
alarmed by the sorry state of soft-
ware development, made a strong 
pitch for the industrial production of 
software components.1 Software sys-
tems, like bridges, houses, and cars, 
are built from parts. McIlroy noted 
that it didn’t make much sense for 
every organization and developer to 
keep having to reinvent what’s basi-
cally a common set of core compo-
nents for software design. McIlroy 
envisioned an industry that could 
provide programmers a selection of 
mass-produced software parts, dif-
fering in accuracy, performance, and 
cost, to fit a broad range of possible 
applications.

An inspiration for McIlroy’s pre-
sentation was the way in which the 
electronics industry had evolved. 
Electronics were commonly designed 
as sets of circuit boards populated 
with standardized components. There 
were, and still are, catalogs of resis-
tors, capacitors, diodes, and transis-
tors, with each item documented 
and marked with the intended range 
of use. For instance, resistors are 
marked with a standard color code 
that indicates their nominal value 
and the percentage by which their  
actual value can differ from that 
nominal value. The user can then 
make the tradeoff between paying 
somewhat more for greater preci-
sion or less when the highest level of 

accuracy isn’t required. Why couldn’t 
the same thing work in software?

Bricks and Bolts
Resistors, capacitors, and transistors 
can all be mass produced, like nuts 
and bolts and bricks, because they’re 
typically used in large quantities.  
Every device built does, of course, 
have to use its own copy of all the 
components it uses, although all 
those copies are expected to have 
been produced to the same stan-
dards. Just about all circuit board 
components are standard. Rarely 
will a circuit designer have to develop 
an entirely new type of component 
that’s not available in any catalog.

The situation is different in soft-
ware. The developer needs only one 
encoding of each standard function, 
even if the software application that 
contains it is sold by the millions. 
The way to achieve accuracy in com-
ponent design is also different. For 
instance, to get highly accurate resis-
tors, we can measure the resistance 
of millions of items and select the 
ones that deviate by no more than the 
desired amount to achieve any level 
of accuracy. If we want to achieve 
greater accuracy for a software func-
tion, the best method is probably not 
to have large numbers of developers 
design a version and then select the 
best one, although in practice it does 
sometimes seem to work that way. It 
can be time consuming to rigorously 
prove the correctness of a software 

component, but once that work 
is done, the result should hold for  
every copy that’s used later.

Another difference is that the 
large majority of the code writ-
ten for a new application is usually 
unique to that application. In one of 
the larger programs I’ve maintained 
for a couple of decades, less than  
15 percent of the functions originate 
in standard libraries. The remain-
ing 85 percent are special-purpose 
functions unique to the application, 
starting with the main function  
itself. I suspect that the same is true 
for most software applications.

Libraries
The mass production in McIlroy’s 
proposal referred to the creation of 
a larger-than-usual range of special-
ized features, target execution plat-
forms, and environments that could 
be created for each basic routine. A 
good case can be made for this, but 
there doesn’t appear to be a market 
for this type of software component 
industry. Pretty much all languages 
come freely with extensive librar-
ies that encode everything from the 
most standard to the most exotic 
types of applications. Today, almost 
no one would consider writing his 
or her own library of trigonometric 
functions or regular-expression pat-
tern matching.

Can we trust the reliability of 
all those libraries? Is the standard 
implementation of a sine routine in 
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Java identical to the one that’s avail-
able for C or Go? Who exactly takes 
responsibility for the accuracy of 
these functions, and how can you 
get bugs repaired quickly? After all, 
if you’re not a paying customer, you 
no longer get to decide what’s a bug 
and what’s a feature, so you might 
just have to live with whatever the 
anonymous provider of the library 
decides. Unless, of course, you do 
decide to build everything from 
scratch.

Modules and Subsystems
Something else that might have 
changed since 1968 is the notion of 
what a software component actually 
is. To a carmaker, a component is 
the entire entertainment subsystem,  
the navigation module, the airbag 
unit, or the engine control unit. To-
day, no carmaker designs, builds, 
and programs its own versions of 
these modules: it purchases them 
from contractors that specialize in 
building them and that are respon-
sible for fixing them if they’re in-
adequate. Each of these modules 
typically comes with substantial 
amounts of embedded software to 
bring the hardware to life and give 
it its desired functionality. If there’s 
a problem, your favorite repair place 
will not go hunting for any bugs,  
locate that burned-out transistor, or 
even try to upload new software into 
one of these modules. The repair 
shop will simply replace the entire 
module. Problem solved. In all these 
cases, a component is a subsystem, 
software included.

In the last 50 years, an industry 
has also been created for the de-
velopment of specialized software 
tools. So, here we might need to 
consider specialized tools such as 
Photoshop or TurboTax to be identi-
fiable software “components.” Who  

would try to develop his or her 
own image-editing software, text 
editor, logic-model checker, or 
static-source-code-analysis tool to-
day? Well, okay, that would be peo-
ple like me, but we know we’re a 
very small minority.

Software Tools
The notion of a software tool for 
solving problems was exemplified 
best in the design of Unix. If you’re 
used to developing code on a Unix or 
Unix-like system, you’ll have come to 
rely on standard tools such as make, 
grep, sed, awk, sort, diff, and tr. Each of 
these specialized tools can be used as 
a component part for solving larger 
problems. Each tool aims to solve 
one specific problem as efficiently as 
possible. And each tool is designed 
to support a standard I/O format, so 
that the output from one tool can be 
fed into any of the others.

We needn’t be surprised that 
the design of Unix, spearheaded by 
Ken Thompson, originated in the 
group at Bell Labs that was created 
by Doug McIlroy. In this group, 
which I was fortunate to be part of, 
Doug McIlroy was a gentle force of 
inspiration behind a lot of the re-
search that came out in subsequent 
years. As is well known, McIlroy 
also contributed the key concept 
of a Unix pipe as a simple nota-
tion to connect the standard output 
of one tool to the standard input  
of another. The pipe was the glue 
that was needed to let us build 
larger software systems from soft-
ware components.

The Perpetual Crisis
The rapidly increasing size and com-
plexity of software applications was 
discussed at length at the 1968 Con-
ference on Software Engineering,  
famously leading to the first recorded 

use of the term “software crisis.”1 As 
noted in the discussion transcripts,

Particularly alarming is the seem-
ingly unavoidable fallibility of large 
software, since a malfunction in 
an advanced hardware-software 
system can be a matter of life and 
death.1

You probably would have believed 
me if I said that quote was from last 
year instead of 50 years ago.

An example of a large software 
system that was discussed at the 1968 
conference was the OS for the IBM 
System/360. A chart (see Figure 1)  
illustrated the trend. The chart 
showed the size of IBM OS/360 in-
creasing from around 1 million to 
around 7 million lines of assembly 
code, or the equivalent of about 1.4 
million lines of C code today. The 
chart also illustrated the general 
trend of software size increasing by 
about a factor of 100 from 1958 to 
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FIGURE 1. The growth in software 

requirements.1 The growth continues, 

although the pace has slowed.
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1968. Luckily, that pace of growth 
didn’t continue, or we would be see-
ing software applications with tens 
of billions of lines of code.

But clearly, the growth trend 
hasn’t stopped, and we still feel we’re 
nearing the point at which we’ll lose 
all intellectual control over the soft-
ware systems we’re routinely creat-
ing. Of course, a well-designed large 
system isn’t a single homogenous 
blob of intertwined code. It consists 
of many parts with, hopefully, well-
designed interfaces and a limited 
number of functional dependencies 
so that all these components can be 
designed and checked independently. 
Anyhow, we can always hope.

Speed
One thing that has changed dramati-
cally since 1968 is the speed and size 
of the machines we can use to execute 
our code. Even a humble Raspberry  
Pi C executes about 2,000 times 
faster than the fastest IBM System/ 
360 model, the Model 75, did in 
1965. For that matter, that Raspberry  
Pi is also more than 10 times faster 
than a Cray-1 supercomputer from 
1975.2–4

Looking on the bright side again, 
these phenomenal gains in speed 
not only make our code run faster 
but also make it possible to analyze 
our code more thoroughly than ever 

before. In early compilers, for in-
stance, many checks for consistency 
and correctness that could in princi-
ple have been included were left out 
to avoid slowing down compilation 
too much. Even so, in the ’60s and 
’70s you could often literally take a 
coffee or lunch break before a larger 
application would finish compiling. 
Today’s compilers can execute fast 
enough that they can routinely per-
form far more sophisticated types of 
checks of our code, without anyone 
noticing a difference in performance. 
And we now also have a range of  
dedicated static-source-code-analysis  
tools for even more rigorous types 
of checks. These tools are good 
enough that they’ve pretty much be-
come standard in industrial software 
development.

Indeed, many application do-
mains have a well-defined process 
for building larger software systems 
from reusable modules with well-
defined interfaces. For instance, if 
you build spacecraft, the mission 
of the system generally differs from 
one vehicle to the next, but all the 
missions need certain specific types 
of functionality. Standard software 
modules needed on every interplan-
etary mission include the code for 
navigation (getting from Florida to 
Mars without too many course cor-
rections), telemetry (getting mission 

data back to the ground controllers), 
resource arbitration (don’t start driv-
ing your rover when it’s busy drilling 
into a rock), and data handling (com-
pression, packetization, and so on).

In the long run, it pays to develop 
generic software components for all 
these functions as robustly as pos-
sible, and to put them in the arsenal 
of software components on which 
mission designers can rely. With time 
and experience, these modules can 
be expected to get better and better, 
and handle more and more cases.

I t should go without saying that 
this approach to the develop-
ment of software components is 

well worth using, even if your job is 
not to fly the occasional mission to 
Mars.
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