
Coverage Preserving Reduction Strategies for Reachability Analysis

Gerard J. Holzmanna, Patrice Godefroidb and Didier Pirottinb

a AT&T Bell Laboratories, Murray Hill, New Jersey 07974, USA
b Universite ´ de Lie ` ge, Institut Montefiore B28, 4000 Lie ` ge Sart−Tilman, Belgium

Abstract
We study the effect of three new reduction strategies for conventional reachability analysis, as used in
automated protocol validation algorithms. The first two strategies are implementations ofpartial
order semantics rulesthat attempt to minimize the number of execution sequences that need to be
explored for a full state space exploration. The third strategy is the implementation of astate com-
pressionscheme that attempts to minimize the amount of memory that is used to built a state space.
The three strategies are shown to have a potential for substantially improving the performance of a
conventional search. The paper discusses the optimal choices for reducing either run time or memory
requirements by four to six times. The strategies can readily be combined with each other and with
alternative state space reduction techniques such as supertrace or state space caching methods.

Keyword Codes: D.1.3; D.2.4
Keywords: Concurrent Programming, Program Verification
Proc. IFIP, Symp. on Protocol Specification, Testing, and Verification. June 1992, Orlando, Florida,
U.S.A.

1. INTRODUCTION
It is sometimes easier to think of new reduction strategies for state space exploration algo-
rithms than it is to prove that they are useful. Reductions can be sought in the run time or in
the memory requirements of large state space searches. Usually, there is a delicate trade−off
to be made. A reduction of the memory requirements typically increases the run time
requirements, and vice versa. In this paper it is assumed that the reader is largely familiar
with the setup of a standard reachability analysis algorithm. In a nutshell, these algorithms
can establish the correctness of systems of interacting concurrent processes by an exhaustive
generation and inspection of all composite states that are reachable from a pre−defined initial
state. If necessary, more details on a range of different reachability analysis algorithms can
be found in [1].
The improvement achieved by a reduction strategy must always outweigh the overhead
incurred by its implementation, where both cost and gains are expressed as run time and
memory requirements on a single reference machine. We discuss three new reduction strate-
gies that can be shown to pass this test. Section 2 gives an overview of the classic search
strategy. Sections 3 and 4 discuss the foundation for a partial order semantics reduction
strategy, and describe the performance of two sample implementations. Section 5 defines
some further refinements of the method. In Section 6 we examine the implementation of a
remarkably simple state compression technique and its potential impact. Figure 3 in that sec-
tion gives an overview of the net effect of all algorithms considered, including the effect of
various combinations.

Background
In a traditional state space exploration, reachable states are generated over all execution paths
in a concurrent system. To generate all these execution paths, the search ‘shuffles,’ or inter-
leaves, the actions of all asynchronously executing processes in every feasible way.

When the actions affect the state of shared objects, for instance by sending or receiving mes-
sages through shared queues, the result of each new interleaving can be different, and may or
may not lead to errors. When two actions are independent, however, the classic shuffling can
be redundant. As an extreme example, consider two non−interacting, completely indepen-
dent processes. A classic reachability analysis of such a system will explore all possible
interleavings of the independent actions, all leading to the same result.
This may seem like overkill, but the problems are subtle. It is fairly hard for an automated
validation system to detect accurately where processes are independent and where interleav-
ings can safely be suppressed. Early methods based on heuristics always carried the risk of
incompleteness of the validation results: they could not guarantee a complete coverage of the
state space.
In 1990, new interest in the study of partial order semantics was triggered by the publication
of two papers in [3], reporting on (independent) work of Patrice Godefroid and Antti Val-
mari. The papers argued that, in certain cases, the number of interleavings that must be
inspected can be reducedprovablywithout loss of coverage. Extensions appeared in [5,6].
In this paper, the method described by Godefroid is generalized and integrated with an effi-
cient automated protocol validation system called SPIN [7]. [The original version of SPIN
can be obtained by anonymous ftp from research.att.com from the /netlib/spin directory.]
The original version of SPIN includes an implementation of a classic search, which we will
use here. It is illustrated with Algorithm 1 in the next section.

2. CLASSIC SEARCH
The details ofPROMELA, the validation language that SPIN accepts, can be found in [7]. For
the following discussion a brief overview of the main features will suffice.
PROMELA defines systems of asynchronously executing concurrent processes that can inter-
act via shared global data objects. Below, we call a definition of such a system amodel. The
correctness criteria for a model can be defined by the addition of formal assertions, special
labels that signify progress – , acceptance – and termination conditions. By default, a SPIN
validation checks for absence of deadlock and the observance of a range of standard com-
pleteness criteria, such as unspecified receptions, and unexecutable code segments. The val-
idator can also detect non−progress cycles, acceptance cycles, the validity of system invari-
ants, and the feasibility of invalid system behaviors specified asPROMELA never claims.
The never claims have the expressive power of linear time temporal logic formulae.
Processes and message channels inPROMELA can be created dynamically, thus producing
systems that can grow or shrink during execution and validation. The validator SPIN imple-
ments several different search strategies. The most important two are a standard exhaustive
state space exploration and a simplified version of supertrace bit−state hashing [7,8].
There are only three distinct types of objects inPROMELA: processes, variables and message
channels. Variables can be declared either global or local to a specific process. A process
executes the behavior that is specified in a so−calledproctype definition (much like a proce-
dure definition). More than one process can execute the sameproctype definition concur-
rently. Of course, the local variables of such processes are distinct.
Interaction via a message channel can be either synchronous (i.e., by rendez−vous) or asyn-
chronous (buffered), depending on what type of channel is declared. The two types of com-
munication can be combined.
Processes, variables, and message channels are always of a finite size inPROMELA. Also the
maximum number of processes and channels that can be created is bounded to a fixed upper
limit. There is a single, user defined, initial system state for each model. This means that the
behavior of any system of interacting processes defined inPROMELA can be explored com-
pletely by an exhaustive enumeration of all system states that are reachable from the initial
system state. All correctness properties are decidable for such a model, with standard state

space exploration algorithms [1]. The classic search algorithm has P−SPACE complexity
[2].
The composite behavior defined by aPROMELA model corresponds to, and could be defined
as, a pure finite state machine. As noted, this global machine has a finite number of states
that can be enumerated exhaustively. Every state in the global machine represents a system
state of the model: a composite of all individual process states, all local and global variable
values, and all message channel contents.
The behavior of the global machine can be represented by a finite graph, where every node
represents a reachable system state and every transition represents the execution of a single
statement in a single process. In effect, a state space exploration algorithm traverses this tar-
get global system graph in all possible ways, starting from the root (the global initial system
state). In SPIN the traversal of the graph is organized as a depth−first search. Of course, the
graph is not necessarily tree−shaped. Any state can be connected to any other state and thus
arbitrarily many cycles can exist. Typically there exists at least one path from any state to
any other state via the initial state, that is, the graph is often strongly connected.

2.1. Algorithm 1
The following simple algorithm performs a depth−first search of the nodes in such an arbi-
trarily connected graph that is rooted in the initial system state. For brevity, we will call the
node that corresponds to the initial system state theroot node of the graph.

ALGORITHM 1 — CLASSIC SEARCH
1. Initialization: Label every node in the graph with a unique ordinal numbern, and assign it a

boolean flag with initial valuetrue (meaning that it remains to be visited). Define an ordered
set of nodesS. Enter the root node of the graph into setS, and set its flag tofalse.

2. Iteration: Select thelast element ofS, call it s . From the set of immediate successors ofs that
have a flag equal totrue, select the one with the lowest ordinal number, set its flag tofalse, and
add it toS. If no such node exists, remove nodes from setS.

3. Termination: Repeat step 2 until setS is empty.

The classic search has the following well known property for finite state systems, which is
readily proven with standard graph theory.
PROPERTY — Algorithm 1 always terminates within a finite number of steps. When it ter-
minates, every node in the graph has been visited.
The execution time and the memory requirements of Algorithm 1 are both linear in the num-
ber of nodes N, and hence linear in the total number of reachable states of a model.
Traditionally, setS is called a ‘search stack,’ and the data base of all nodes in the graph is
called the ‘state space.’ It is also not necessary to first construct the graph before the nodes
can be enumerated, as the version of Algorithm 1 given above suggests. Enumeration, graph
construction, and analysis can all happen simultaneously, on−the−fly. It is not even neces-
sary to store the complete set of nodes, or the complete search stack to implement Algorithm
1. Optimized algorithms that avoid these problem have been used for at least a decade, and
were described in detail elsewhere [e.g. 7,9]. We discuss a simple on−the−fly variant of
Algorithm 1 later in this paper as Algorithm 4. For our current purposes, however, the ver-
sion shown in Algorithm 1 will suffice.
The main flaw of Algorithm 1 is that it ignores where transitions are independent. It will
therefore traverse more transitions than strictly necessary. In the next two sections we con-
sider ways to avoid this problem using the implementation of partial order rules. The imple-
mentation was divided into two separate steps, leading to Algorithms 2 and 3. We study the
simplest variant first.

3. REDUCED SEARCH
We can attempt to reduce the cost of the graph traversal by reducing the number of edges that
is traversed in the state graph, wherever we can do so without loss of information. Consider
the example of two concurrent processes executing mutually independent statements, such as
assignments to local variables.

process X: x1; x2
process Y: y1; y2

The graph of the system state space that can be constructed for this fragment of the model
has 9 nodes and 12 edges. In Figure 1a the nodes are numbered in the order in which they
would be visited by Algorithm 1. To the left of each edge is given the order of traversal for
each edge plus, in braces, the statement that corresponds to that edge.

1

2 8

963

4 7

5

1(x1) 9(y1)

11(y2)10(x1)2(x2) 5(y1)

3(y1) 6(x2) 7(y2) 12(x1)

4(y2) 8(x2)

1

2

3

4

5

1(x1)

2(x2)

3(y1)

4(y2)

Figure 1— Complete (a) and Reduced (b) State Graph
Since the statements in two processes are mutually independent, the outcome of all traversals
of the graph is the same. They all lead from the root node 1 to the leaf node 5. The values of
the local variables at leaf node 5 do not depend in any way on the path that is taken. Of
course, no matter how we change Algorithm 1, we must still at least be able to establish the
following two correctness properties of a model:

A. Each process performs a valid computation, without violating any local assertions.
B. All processes together proceed from a known composite initial state to a known

composite final state (e.g., node 5 in Figure 1).
The method described in [5] was essentially devoted to the verification of deadlock freedom.
It preserved properties of type B, but not of type A. The generalized method we describe
here, however, preserves both types of properties.
We assume here that local properties of any one process can only be verified within that pro-
cess and that they are invisible outside it (using standard scope rules that limit the visibility
of all non−global objects). It is therefore forbidden for a process to assert anything about
objects that are invisible to it, such as the value of variables that are local to another process,
or the current control flow point of another process. It is also not allowed to state anything
about intermediate composite process states that may or may not be reachable in the absence
of any synchronization or interaction between the independent processes. Though this does
restrict the correctness proving capabilities of the original SPIN, in ruling out the usage of
so−called ‘remote referencing of local variables,’ most of these restrictions are easily circum-
vented in any application. Note that local variables can always be lifted to a scope where
they are visible to a remote process, without changing the functionality of the model.

To establish properties A and B for the sample graph from Figure 1a, it would suffice to
select any single one of the 6 edge sequences that lead from node 1 to node 5:

1−2−3−4, 1−5−6−4, 1−5−7−8, 9−10−6−4, 9−10−7−8, 9−11−12−8

If we select the first one of these, the graph traversal of Figure 1b results, and the cost of
traversal is reduced to the inspection of only 5 instead of 9 nodes, while traversing just 4
instead of 12 edges.
The question is now, how do we modify Algorithm 1 so that we can safely decide during the
normal depth first traversal sequence, that, for instance, edges 5 and 7 need not be explored?
Let us first consider only an optimization for purely local transitions and defer the harder
problem of determining when the access to global objects can create dependencies.

3.1. Algorithm 2
For brevity, we will call any edge in the state graph that corresponds to a transition referring
only to objects local to the executing process, a ‘local edge.’ Any other type of edge is called
a ‘global edge.’ We can now revise the search algorithm as follows. The new algorithm
achieves its reduction by blocking selected edges in the graph with the help of booleaneligi-
bility flags.

ALGORITHM 2 — REDUCED SEARCH
1. Initialization: as in Algorithm 1. Also assign aneligibility flag to each edge in the graph, with

an initial value oftrue (meaning that the edge still can be traversed). Group the edges exiting
from each node into separate edge sets, such that only edges that correspond to transitions from
the same process in the model belong to the same edge set. Call an edge with atrue eligibility
flag, atrue edge. Call a node with atrue node flag, atrue node.

2. Iteration: Select thelast element ofS, call it s . Find an edge set for nodes that contains only
local edges, and with at least onetrue edge leading to a successor node not contained inS. If
there is more than one such edge, select the one that leads to the successor node with the lowest
ordinal number. Mark the edges inall other edge sets of nodes false. Mark the edge selected
and its target nodefalse, and add the node to setS. If no such edge exists, select atrue edge
that leads to atrue successor node ofs , taken from any edge set. If there is more than one such
edge, select the one that leads to the successor node with the lowest ordinal number. Mark the
edge selected and its target nodefalse, and add the node to setS. If no such edge exists either,
remove nodes from setS.

3. Termination: as in Algorithm 1.

In Algorithm 1 we did not need the eligibility flags on edges. The eligibility flag of each
edge could have been defined to be equal to the node flag of its target, since an edge only
becomes ineligible in Algorithm 1 if it leads to a node that has previously been visited. The
reduction in Algorithm 2 is achieved by marking edges ineligible for selection in also other
cases. The following proviso, however, must be met explicitly before an edge can be marked
ineligible while its target node is unvisited.

There exists a local edge exiting from the current node leading to a node outside setS.
The proviso says that it is not sufficient that merely atrue local edge exists within a local
edge set; it must also lead to a target state that is not in the depth−first search stack. The
need for a proviso was also recognized by Valmari which contains a different solution [13].
THEOREM — The second half of the proviso is both necessary and sufficient to guarantee
that properties of type A and B can be verified.
Proof of necessity — Consider a modification of the sampleprocess1 from above in which three
statementsx1 , x2 , andx3 are executed infinitely often in that order, in a cycle. Let these three state-
ments further consist of simply the assignment of some constant value to a local variable within the
process. Letprocess2 be defined as before. The complete state graph for this example would be
as shown in Figure 1a, but with the addition of three edges: from nodes 3 to 1, from 4 to 8, and from
5 to 9, each new edge corresponding to an execution of the extra statementx3 in process1 .

Without the second half of the proviso, the reduced graph would be as shown in Figure 2a (left), with
it the graph is as shown in Figure 2b (right). Edges in Figure 2 that do not connect to their target
node represent eligible edges that lead back to previously visited nodes. In Figure 2a, the edges corre-
sponding to the statements ofprocess2 are missing. This means that not all correctness properties
of type A can be verified. Since there is at least one case where the omission of the second half of the
proviso leads to an incorrect result, it is proven to be necessary.

1

2

3

1(x1)

2(x2)

3(x3)

1

2

3

4

8

6

5

9

7

1(x1)

2(x2)

4(y1)

6(x1)

8(y2)

9(x2)

5(x3)

10(x3)

7(x2) 11(x1)

3(x3)

Figure 2— Reduction with (right) and without (left) proviso
Proof of sufficiency (informal) — To prove sufficiency we show that, when both halves of the pro-
viso are enforced, all statements of all processes that are visited in the complete graph traversal are
also visited during the reduced graph traversal. We first prove the following Lemma.
Lemma — When states is removed from setS by Algorithm 2, all transitions enabled ins have
been executed, either at states itself, or at successor states ofs .
Proof of Lemma — The proof is by induction. Consider the first state that is backtracked during the
search, call it s0. It is the last state in the first path of the spanning tree explored by the depth−first
search.

1. Either all enabled transitions are executed at s0. Note that there may be zero such transitions.
2. Or the transitions of only one edge set are executed, and all others are labeled ineligible.

In the first case, the Lemma trivially holds for s0. In the second case, at least one of the true edges in
the edge set selected must lead to a state not currently inS. Such a successor state, however, would
be backtracked before s0, which contradicts the assumption that s0 is the first such state, and proves
the Lemma for s0. Next, we prove that if the Lemma holds for the firstn states that are backtracked,
it must also hold for then+1 th state, sn. There are again two cases:

1. Either all enabled transitions of sn are executed and the Lemma is true.
2. Or all transitions of only one edge setT are executed.

Call T’ the set of all other transitions enabled at state sn. At least one true edge inT leads to a state
s’ not in setS. The set of transitions enabled ins’ must include setT’ . (Since all transitions inT
are independent from the ones ofT’ , they remain enabled.)
State sn is not backtracked until all its successors, includings’ , have been backtracked first. From
the inductive hypothesis, we know that all transitions inT’ then must have been executed during the
search belows’ . Therefore also all enabled transitions ins were executed during the search below
s , which proves the Lemma. The proof of theTheorem follows by the application of the Lemma to
the root node of the graph and recursively to all its successors.

The implementation of Algorithm 2 is straightforward and can be done without adding sig-
nificant overhead to the search. Most of the work can be done at compile time, when a pro-
tocol specific analyzer is generated from a model specification, and need not increase the run
time or the memory requirements of the search itself. The effect of the reduction achieved
by Algorithm 2 can therefore be substantial.

3.2. Measurements
The results of each reduction was measured on five sample protocols. Three of these proto-
cols are fairly standard, though artificial, tests. The two remaining tests are randomly chosen
realistic protocols.

1 N independent processes, each traversing M local states, without cycles.
2 N independent processes, each cycling through M local states.
3 N completely dependent processes, each traversing M states, without cycles.
4 AT&T’s Universal Receiver Protocol (URP), modeled in 419 lines ofPROMELA.
5 A sample data transfer protocol (DTP), modeled in 391 lines ofPROMELA.

The results of all measurements performed in this study are collected in Table II, included in
Section 6. For this first experiment, only the numbers related to Algorithms 1 and 2 are rele-
vant (the rows labeled 1 and 2). Table II lists the numbers of states visited and transitions
traversed for each type of search. All measurements were run on a single 33 MHz SGI
Indigo using a MIPS R3000 processor, comparing the original version of SPIN [7] in classic
search mode against a version in which the classic search was modified in accordance with
Algorithm 2. For each test, both versions of the search were run with the same stack limit
and hash−table size. The only thing changed was the graph traversal discipline itself. Time
is user time plus system time as reported by theUNIX® system time command. The traver-
sal of edges leading back to previously visited states are included in the transitions count.
To correctly interpret these results, a few words of caution are in order. First, to keep the
comparisons fair, the memory usage for each test run reported here includes the overhead of
the (hashed) lookup tables that are required to build the state spaces. The table is kept at a
constant size of 262,144 slots (or roughly 1 Mbyte) throughout all tests. So even when a
very small number of states is stored, the overhead of the lookup table is still present.
One extra state and transition is also counted in each test for the initial system state, just
before all processes are instantiated (giving, for instance, a count of 105 +1 instead of 105

states in the first series of tests). In the first test, the reduced algorithm successfully avoids
the exploration of all redundant transitions and states, which leads to a dramatic improve-
ment in both run time and memory usage. The count for Algorithm 2 is less than the 51
states that might be expected because the reduced algorithm can overlap the executions at the
last state of each process. Included in the count of 47 are 1 initial state, plus 10 states for the
first process explored, plus 9 states for each extra process, i.e., 1+M+(N−1)*(M−1) or
N*(M−1) + 2 states for the run of Algorithm 2, compared to MN +1 states for the run of
Algorithm 1 on the same protocol.
In the second test, because of the cycles, the reduction can only avoid the exploration of
some redundant transitions, but still visits all reachable states. The improvement of the time
efficiency is nevertheless quite notable. The relatively large memory requirements (com-
pared to the first and the third test) are caused by the large stack that is required to explore all
overlapping executions of N cyclic processes. In this test, the stack must be able to accom-
modate all reachable states.
The third test was added to measure the overhead that is incurred by the extra manipulation
of edge labels in Algorithm 2. The test is constructed in such a way that no reduction can
result, by making all statements refer to global variables. For Algorithm 2, the runtime over-
head comes out at roughly 7%. There is no increase of the memory requirements.
The parameter settings in the test for the universal receiver protocol were chosen to produce
a sample state space size that was easily manageable with both versions of the algorithm.
Different state space sizes are easily created with this protocol, though each setting produces
roughly the same relative differences between a run with Algorithm 1 and one with Algo-
rithm 2. In the version tested, 3 asynchronous processes are run, communicating through a
total of 6 different message channels of 5 slots each. A modest overall improvement of
roughly 7% in runtime and 8% in memory requirements is obtained by Algorithm 2.
The last test is for the validation of a fairly typical modem protocol, that runs two processes,

a sender and a receiver, and contains some local computations. This time a significant reduc-
tion of 78% in the run time and 62% in the memory usage is obtained by Algorithm 2.

The tests show that even with a relatively small change in the classic search algorithm,
good improvements can be obtained without reducing the coverage of the search.

It is also clear that by a biased choice of examples (such as the first test protocol) an arbitrar-
ily exaggerated impression of the improvements could be suggested. By setting N to 1000 in
the first test, for instance, we can validate a state space that is equivalent to 101000+1 reach-
able states, by inspecting no more than 9002 states in mere seconds. Since no claim higher
than 1020 states has appeared in print as yet [10], with this result we could claim to outper-
form any validation system in existence to date by no less than 980 orders of magnitude.
Though such claims are popular, they are in essence vacuous.

4. CONFLICT SETS
To exploit a partial order search strategy fully, we must find a way to properly define the
dependencies that may exist between transitions that touch also global objects. We will track
these dependencies with the aid of ‘conflict sets.’ Conflict sets are an efficient version of
‘sleep sets’ [5].
In each running process, a distinct conflict set is assigned to each of the statements it can
execute. If more than one process can execute the same code, the conflict sets for the state-
ments in each process are distinct. To enforce the partial order discipline, the execution of
statements must be blocked under certain conditions. If the conflict set of a statement is
empty, it means that the statement is currently not blocked. If the conflict set contains
entries (‘conflict tags’) the statement is blocked, and the entries represent the minimum con-
ditions that must be satisfied for the statement to remain blocked.
We should be able to distinguish between a local effect of a statement execution and a global
effect, that may have a side−effect on the executions in other processes. We first therefore
define a special tag, calledLocal , that is assigned collectively to alllocal variablesand all
symbolic constantsin the system. References to such objects can always be made without
creating a dependency between process executions.
Next, each distinctglobal variablein the system is assigned a unique Read and Write tag that
can be entered into the conflict set of the statement that refers to it. A simple variable name
in PROMELA, the language of our target validator SPIN, always uniquely identifies a storage
location for a value, and can not be used to indirectly point to other storage locations, as can
be done with pointers in C for instance. For simplicity, we consider a reference to an array
element to be a reference to the array as a whole (i.e., to the array name), so that it can be
treated within the same framework as scalars. Usage of a statement such as

int a, b, c[N];
a = c[b+a+3];

where all variables are global, would involve the creation of the conflict tags

Write_a /* an assignment to global a */
Read_c /* a read of global array c[] */
Read_b /* a read of global b to index c */
Read_a /* a read of global a to index c */
Local /* a reference to the constant 3 */

where the effect of the last tag is canceled by the other four.
For message channels the situation is a little harder. A channel name really serves as a
pointer to an internal buffer where values can be stored. It is valid to say inPROMELA

chan q = [SIZE] of { byte, int }; /* declarations */
chan r = [SIZE] of { byte, int }; /* + initializers */

r = q; /* set r to point to the same chan as q */
r!message; /* now has the same effect as q!message */

that is, to reassign a name to point to another channel. A reference to a message channel is
therefore assigned two pairs of tags: one Read and one Write tag for references to the name
itself, and one Send and one Receive tag for references to its current value (i.e., the actual
channel location). Usage of a statement such as

r!message(3, a+b)

and assuming thatr turns out to be theNth channel in the system, and that all variables are
global, would involve the creation of the conflict tags

Read_r /* a read of the channel name r */
Send_q_ N /* a send to channel location N */
Local /* references to value ’3’ and mtype ‘message’ */
Read_b /* a read of global b */
Read_a /* a read of global a */

where the tagLocal is again canceled by the other four tags.
Now let’s see how the conflict tags are used to update the conflict sets that can enforce the
blocking rules for statements. Each statement is assigned a unique conflict set, that is ini-
tially empty (i.e., non blocking). The tags created for a statement will ultimately be entered
into its conflict set to create conditional blocks in future shufflings explored by the depth
first search. The tag’s name specifies the precise conditions under which that block should
be lifted. If the only entry into a conflict set is the tagLocal , the block is permanent, as in
Algorithm 2. If a conflict set contains, for instance, the tagRead_a , the block on that state-
ment is lifted as soon as any other statement in the system is executed that produces the tag
Write_a , clearly, because reading and writing to the same global variable creates a depen-
dency between two processes.
So, to enforce the partial order strategy, each statement execution should do two things:

1. Enter the appropriate tags into the conflict set of the current statement.
2. Clear the conflict sets of all other statements that contain a dependent tag.

Table I defines when two tags that point to the same global object (variable name, channel
name, or channel location) are dependent.

TABLE I — DEPENDENCY RELATIONS_ __ ___
Local Read Write Send Receive_ ___

Local − − − − −
Read − − + + +
Write − + + + +
Send − + + + x
Receive − + + x +_ ___

A minus means that the two tags are always independent. Two read operations on the same
object are clearly independent and can be shuffled in any order without changing the possible
outcome of the read. A plus means that tags of the corresponding types are dependent when
they refer to the same object. An x in the table means that the two tags may be dependent
under certain extra conditions. A send and a receive operation on the same channel are inde-
pendent whenever that message channel is non−full, or when a send operation on a full chan-
nel would be unexecutable anyway (the default SPIN semantics).
The only thing left to decide is now at what precise point in the depth first traversal should
the conflict sets be updated? This, by no means a trivial point, is discussed next.

4.1. Algorithm 3
The conflict sets help us to determine if the execution of a statement must be repeated in the
depth first search for different interleavings statement executions. This only needs to be
done if another dependent statement could be shuffled ahead of the one considered. Consider
a point in the depth first search where there areN processes and one of those, call it process
I , has a nondeterministic choice between the execution ofMdifferent statements.

ALGORITHM 3 — CONFLICT SET UPDATE RULES
1. Conflict tags are created upon the execution of each statement,before the traversal of the
corresponding edge in the graph. All conflict sets are cleared that contain at least one tag that
conflicts with any tag in the current set. Statements that belong to the same process are always
assumed to be dependent, that is: the execution of any one of the statements in processI clears
minimally the conflict sets of all other statements inI .
2. The conflict tags are entered into the conflict sets of allMstatements simultaneously. This
happensafter all states reachable from thoseMstatements have been explored, and justbefore
the next process is considered.
3. The effect of all conflict set updates (clearings and entries) are reversed (undone)after all
non−blocked transitions in all running processes have been explored, and justbeforethe depth
first search backs up to the previous state.

There are a few special cases that also have to be considered for a full implementation of
these rules. The languagePROMELA, for instance, allows for the definition of atomic
sequences (i.e., sequence of statements that are executed in one indivisible step), rendez−
vous communications etc. The discussion of the treatment of these special cases can safely
be skipped here. In the measurements they did not play a role.

4.2. Measurements
Table II lists the results obtained with Algorithm 3, with and without enabling the reduction
rules from Algorithm 2 (the rows labeled 2 and 2+3).
The test of protocol 3 is again intended to measure the overhead of the implementation of
conflict sets alone, using an example where no optimization would result because all state-
ments touch the same global variable. The comparison of Algorithms 1 and 3 shows that
there is no significant overhead in the memory requirements, but a notable run time overhead
is incurred for the manipulation of conflict sets. [Experiments were done with two indepen-
dently produced implementations of the partial order rules. The figures in the table are for
the most efficient implementation. That is to say, it is easy to do worse; it is probably hard
to achieve a significantly better performance.]
For the second test, withN cycling processes, the combination of Algorithms 2 and 3 brings
the number of states and transitions down to the level achieved in the first test by Algorithm
2 alone: a significant reduction. In this case, neither Algorithm 2 or 3 can achieve this effect
in isolation. The differences in memory requirements are largely caused by the differences
in the longest non−cyclic execution sequences encountered in each type of search (i.e., the
maximum stack size).
In the last two tests the number of transitions traversed is reduced by the conflict sets to
about half that explored in a classic search (or to 13% if Algorithms 2 and 3 are combined).
For protocol 4, the reduction is not sufficient to make up for the additional run time over-
head. For protocol 5, a small improvement does result. The combination of Algorithms 2
and 3 reduces both the number of states and the number of transitions explored and reduces
the memory requirements. The run time requirements, however, are not always decreased.

The simplicity and effectiveness of Algorithm 2 makes it a painless first choice when
partial order reduction strategies are considered. Algorithm 3 can provide an addi-
tional speedup by reducing the traversal of redundant transitions during a search.

In Section 6 we show another application where this effect can prove to be beneficial. First,
however, we discuss some further potential refinements of the method that was implemented,

and a brief comparison to related work.

5. FURTHER EXTENSIONS
We have considered two sets of rules that can be used to reduce the number of states that
have to be explored in reachability analyses: a preferential treatment of local transitions
(Algorithm 2), and the usage of conflict set rules (Algorithm 3). In this section we consider
how the treatment of non−local transitions might be optimized still further.
So far, we have not used any information about which process can access which variables.
For the sake of simplicity, in what follows we will not make a distinction between read and
write access. Consider, then, the following example, with three processes, withx , y , andz
global variables.

A: a0: access(y); B: b0: access(x); C: c0: access(x);
a1: access(z); b1: access(y); c1: access(z);

stop goto b0 goto c0

Assume the system is in state<a0,b0,c0> . The transitions that are enabled in that state
areaccess(y) of processA, access(x) of processB, andaccess(x) of processC.
Since none of these transitions is local, Algorithm 2 will explore them all, to simulate all
possible interleavings.
Starting at this state, however, it is not necessary to explore the transitionaccess(y) in
processA. ProcessA can never access variablex . Consequently, transitionsaccess(x) of
processB andaccess(x) of processCare independent fromall transitions of processA. It
is sufficient to select only the two transitionsaccess(x) in order to explore all relevant
futures of the system starting from state<a0,b0,c0> .
The reasoning we have just described can be automated by the following procedure, that is
close to one that was first described by Overman as one of several alternative reduction algo-
rithms [12]. Call the set of global variables that can be accessed by a process itssupport.
For each global variablev_i , create the setsV_i andP_i and execute the following algo-
rithm.

OVERMAN’s METHOD

1. SetV_i to {v_i} andP_i to empty.
2. For each process whose support intersectsV_i , add the global variables that the next tran-

sitions in this process can touch to setV_i and add the name of the process toP_i .
3. Repeat step 2 until no more variables can be added. Then, choose the setP_i that corre-

sponds to the smallest non−zero number of enabled transitions in the processes that belong
to it.

(In Overman’s original version, step 3 selected the smallest setP_i with at least one non−
blocked process.)
Thesupportsets ofA, B, andC in the example are{y,z} , {x,y} and{x,z} respectively.
If we apply step 2 from Overman’s method to variabley in state<a0,b0,c0> , processesA
andB are added toP_y and sinceB is about to accessx , variablex is added toV_y. The
next step adds processC to setP_y and terminates the procedure. Applying step 2 to vari-
ablex immediately adds processesB andC to P_x but does not add any variables toV_x so
the procedure terminates there. The setP_i that incurs the smallest set of enabled transi-
tions isP_x and only transitionsaccess(x) in processB andaccess(x) in processC
then need to be explored.
Overman’s method can thus also reduce the number of transitions that have to be explored.
The drawback is a still further increased run time overhead. If all global variables can be
accessed by all processes, the overhead is wasted and the application of this method cannot
produce improvements.

The method can be refined still further by using information on the structure of the pro-
cesses, i.e., by representing each process by a directed graph and by performing some analy-
sis on these graphs. Indeed, the support set which was used in the above procedure includes
variables which have been accessed by the process in the past as well as those which can be
accessed by the process in the future. If some variables of the support set cannot be accessed
anymore by the process from its current location, it is not necessary to take them into account
in the support set.
Consider the example again and assume that the current state is<a1,b1,c1> . Applying
step 2 of Overman’s method to variabley adds processesA and B to setP_y. But, from
statea1 , processA cannot access variabley anymore. Hence it is not necessary to addA to
P_y, and the procedure can stop. In this state it is sufficient to explore only transition
access(y) of B since all transitions that could be performed by eitherA or C in the future
are independent from it. Very frequently, however, the local process graphs are strongly
connected, and in those cases the last optimization effort cannot help.
A related generalization of Overman’s method was described and studied independently by
Valmari in hisstubborn setalgorithms [6,13]. Loosely speaking, a stubborn set consists of
transitions whose occurrence cannot be affected by other transitions in competing processes.
Stubborn sets are comparable to Overman’s setP_i . A stubborn set is computed for each
state encountered during the reachability analysis and only enabled transitions that belong to
this set are explored.
Unfortunately, the selection of the smallest set of enabled transitions at each step in these
methods does not necessarily lead to the exploration of the smallest number of reachable
states. A minimal selection can always be computed at an additional run time expense. Val-
mari reported that such a selection can be computed in quadratic time with respect to the
number of transitions in the system, and when this is prohibitively expensive, "fairly good"
stubborn sets can be computed in linear time with respect to the number of transitions [13].
It is an interesting topic for further study to see if these algorithms are competitive with the
ones explored in this paper. At the time of writing, we have not done the experiments.

6. STATE COMPRESSION
Another worth−while attempt to reduce the memory requirements of a reachability analysis
is to test the effect of various encodings of state descriptions before they are stored in a state
space table. The application we have in mind is the standard reachability analysis algorithm,
such as used in SPIN, with an on−the−fly generation and storage of the state space graph.
Storage of states then has only one function: to prevent the repeated analysis of parts of the
graph that are reachable via multiple paths.
The state compression for such an algorithm must, of course, be completely information pre-
serving. Perhaps more relevant: it is important the state compression can be done with mini-
mal time overhead, but there are no strict requirements on the complexity of a de−
compression. Comparison of states, to determine if a state has previously been visited, can
be done in compressed form. Since the compressed version of a state description is naturally
smaller than its uncompressed representation, the memory requirements of a reachability
analysis can be reduced, and in some places the algorithm can even be sped−up, since the
time requirement of a state comparison is linear in its size.
It is virtually unpredictable if the speed gain indicated above can balance out the speed loss
due to the time required for state compression itself. Experiments with state compression
algorithms were therefore conducted on a real−life protocol with a sufficiently large state
space to make a meaningful measurement possible.

6.1. Algorithm 4
The standard algorithm for on−the−fly reachability analysis by depth first search is well
known [1,9,11]. It is the counterpart of the explicit graph traversal algorithm illustrated in
Algorithm 1. This time, we do not need any knowledge of the graph before the search
begins. The graph is constructed, and all verification is done, on the fly. A version that uses
state compression can be summarized as follows. Initially, theStack contains only the ini-
tial system state.

ALGORITHM 4 — DEPTH−FIRST SEARCH WITH COMPRESSION
DFS()
{ while (Stack is nonempty)

{ q = last element of Stack
if (q is error state)
{ report the error

print the backtrace from the Stack
} else
{ for each successor s of q

{ s’ = compress(s)
if (s’ not in State_Space)
{ add s to Stack

add s’ to State_Space
DFS() /* recursion */

} } }
delete q from Stack

} }

As in the previous algorithms, no attempt is made here to describe also the detection of
non−progress cycles or acceptance cycles, but all these are fairly straightforward extensions
of the above basic algorithm. Note in particular that it is not necessary to construct strongly
connected components in a graph to detect non−progress cycles or acceptance cycles (as is
often suggested). The first description of a simple algorithm that performs this type of verifi-
cation is due to Holzmann [7, pg. 235−238].
A requirement on the compression mechanism is that it has to be statically defined for the
duration of a search. The reason is trivially that, to make state comparison possible, a given
state must always be compressed in the same way, whether it is generated at the beginning or
at the end of a search. Dynamic Huffman coding, or Lempel−Zvi & Welch compression are
therefore not directly usable.

6.2. Measurements
Two types of state compression have the required property and were tried as part of Algo-
rithm 4: static Huffman encoding (Algorithm 4 in Table II), and run length encoding (Algo-
rithm 4’ in Table II). For the Huffman encoding [14], the relative frequency of byte values
in state descriptions was measured over a range of protocols, and then hard−coded. Values
close to zero can be expected to occur more frequently than larger values, and the results
confirm that. The two compression schemes were applied to a single test protocol with a suf-
ficiently large number of states (DTP). No other aspect of a protocol, other than the number
of reachable states, is relevant in such an experiment, so a single test−case sufficed.
The results shown in Table II (rows 1+4 and 1+4’) are easy to interpret.

Run length encoding adds a large run time overhead (413%) in return for a modest
(18%) reduction of the memory requirements. Huffman encoding adds a smaller run
time overhead (302%) in return for a more substantial reduction of the memory require-
ments (63%).

Combination with Partial Orders
The state compression technique can easily be combined with partial order reduction tech-
niques. The results are included in Table II, which is presented below.

TABLE II — RELATIVE PERFORMANCE OF ALGORITHMS_ ___ __
Protocol Algorithm States Transitions Time(sec.) Memory (Mb)_ __
1 (N=5,M=10) 1 100,001 450,002 16.8 5.1

2 47 47 (<0.01) 1.0
3 100,001 100,001 9.2 5.1

2+3 47 47 (<0.01) 1.3_ __
2 (N=5,M=10) 1 100,001 500,002 15.6 11.1

2 100,001 111,112 4.0 11.1
3 100,001 111,112 8.3 9.1

2+3 47 52 (<0.01) 1.1_ __
3 (N=5,M=10) 1 100,001 450,002 18.7 5.46

2 100,001 450,002 20.2 5.46
3 100,001 450,002 63.4 5.47

2+3 100,001 450,002 66.4 5.47_ __
4 (URP) 1 19,515 47,836 2.9 3.5

2 17,163 36,239 2.7 3.2
3 19,515 21,236 11.7 3.5

2+3 15,628 17,056 9.0 3.1
2+4 17,163 36,239 5.5 2.0

2+3+4 15,628 17,056 10.2 1.9_ __
5 (DTP) 1 251,409 648,467 40.8 36.6

2 91,343 117,396 8.7 13.9
3 251,409 262,561 59.9 36.6

1+4’ 251,409 648,467 114.4 33.5
1+4 251,409 648,467 83.5 15.1
2+3 65,774 69,611 13.8 10.4
2+4 91,343 117,396 16.3 6.2

2+3+4 65,774 69,611 18.2 4.8_ __

For easier comparison, the run time and memory usage data for the most relevant validations
of the URP and DTP protocols are shown graphically, in ‘lolliplot’ format in Figure 3.

• Time
(Seconds)

Algorithm — Sorted by Memory Usage

0

5

10

15

0

1

2

3

4

1 3 2 2+3 2+4 2+3+4

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

•
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

•

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

•
..
..
..
..
..
..
..
..
..
..
..
..
..
..

•

..

..

..

..

..

..

..

..

..

.

•

..

..

..

..

..

..

..

..

..

•

URP

Algorithm — Sorted by Memory Usage

0

15

50

75

1 3 2 2+3 2+4 2+3+4

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

•

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

•

..

..

..

..

..

..

.

•
..
..
..
..
..•

..

..

..
•

..

..

.
•

DTP

Figure 3— Runtime and Memory Usage for URP and DTP Validations

The main conclusions can be summarized as follows.
The fastest run is obtained with Algorithm 2 used separately. The speed up is 6.8% for
the first protocol, and 78% for the second. The lowest memory requirements result
from a combination of Algorithms 2, 3 and 4. The reduction is 46% for the first proto-
col, and 87% for the second.

The state compression method is sensitive to the number of transitions that is traversed dur-
ing a search. Note that each extra transition requires an extra state compression and a com-
parison to the state table to verify that the newly generated state was previously unvisited.
Since the effect of Algorithm 3 is precisely to reduce the number of transitions it can produce
a more significant reduction of the run time requirements with state compression enabled.

7. SUMMARY
As a starting point for this work we took the familiar implementations of a depth first graph
traversal, illustrated by Algorithm 1, and its counterpart for on−the−fly verification, illus-
trated in Algorithm 4. Both algorithms have appeared in print before [1,7]. We have studied
potential improvements of these classic algorithms with two simple generalizations of
recently developed partial order semantics rules [5] and of a simple state compression
scheme, using SPIN as a testbed for comparisons.
The effort required to upgrade the classic search into the reduced search from Algorithm 2
can be measured in hours, and the addition of no more than twenty lines of code to the source
of SPIN. The implementation of the more sophisticated reduction strategy from Algorithm 3
was much more time consuming. The implementation of the state compression scheme from
Algorithm 4 was, much like Algorithm 2, a matter of hours, and gave good reductions of
state space complexity, though only in return for a non−negligible run time overhead. In
combination with the more complete implementation of partial order reduction rules, how-
ever, the run time increase of the state compression scheme was reduced. The combination
creates a competitive algorithm that can substantially reduce the memory requirements of a
search without too seriously affecting its run time requirements.

Acknowledgements
The work of the last two authors was partially supported by the European Community ESPRIT BRA
project SPEC (3096) and by the Incentive Program ‘Information Technology,’ Computer Science of
the Future, initiated by Belgian State, Prime Minister’s Service, Science Policy Office. The scientific
responsibility is assumed by the authors.

8. REFERENCES
1. Holzmann, G.J., ‘‘Algorithms for automated protocol validation,’’AT&T Techn. Journal,
Special issue on Protocol Testing and Verification. 1990, Vol 69, No 1, pp. 32−44.
2. Cunha, P.R.F., and Maibaum, T.S.E. ‘‘A synchronization calculus for message oriented
programming,’’Proc. Int. Conf. on Distributed Systems, 1981, IEEE, pp. 433−445.
3. Proc. 2nd Workshop on Computer Aided Verification, LNCS 531, Eds. R. Kurshan and E.
Clarke, New Brunswick, New Jersey, June 18−21, 1990.
4. Proc. 3rd Workshop on Computer Aided Verification, Eds. K. Larsen and Arne Skou,
Aalborg, Denmark, July 1−4, 1991.
5. Godefroid, P., and Wolper P., ‘‘Using partial orders for the efficient verification of dead-
lock freedom and safety properties,’’ in [3].
6. Valmari, A., and Tienari, M. ‘‘Improved failure equivalence for finite state systems with
a reduction algorithm,’’Proc. 11−th Symp on Protocol Spec. Testing, and Verif., Sweden,
1991.
7. Holzmann, G.J.,Design and Validation of Computer Protocols, Prentice Hall, 1991.
8. Holzmann, G.J. ‘‘An improved protocol reachability analysis technique,’’Software,
Practice and Experience, Vol 18, No. 2, Feb. 1988, pp. 137−161.
9. Holzmann, G.J., ‘‘Tracing protocols,’’AT&T Techn. J., Vol 64, No. 12, pp. 2413−2434.
10. Burch, J., et al., ‘‘Symbolic model checking, 1020 states and beyond,’’Proc. 5th Symp.
on Logic in Computer Science, Philadelphia, June 1990.
11. Holzmann, G.J. ‘‘Automated protocol validation in Argos — assertion proving and scat-
ter searching,’’ IEEE Trans. on Software Engineering, SE−13, No. 6, June 1987, 683−696.
12. Overman, W.T., ‘‘Verification of concurrent systems: functions and timing,’’ PhD The-
sis, University of California, Los Angeles 1981, 174 pgs.
13. Valmari, A. ‘‘Stubborn sets for reduced state space generation,’’Proc. 10th

International Conference on Application and Theory of Petri Nets − Vol 2, Bonn, 1989, pp.
1−22, also in "Advances in Petri Nets 90", LNCS 483.
14. Knuth, D.E.,The Art of Computer Programming, Vol 1, Addison−Wesley, 1973.

