
Model Checking Multitask Applications for OSEK
Compliant Real Time Operating Systems

Mark L. McKelvin, Jr. and Gerard Holzmann
Jet Propulsion Laboratory, Laboratory for Reliable Software

California Institute of Technology
Pasadena, California 91109

Email: {mark.mckelvin, gerard.holzmann}@jpl.nasa.gov

Abstract—In the verification of multitask software in embed-
ded systems, general purpose model checkers do not inherently
consider characteristics of the real time operating system, such
as priority-based scheduling, priority inversion, and protocols for
protecting shared memory resources. Since explicit-statemodel
checkers generally explore all possible execution paths and task
interleaving, this could potentially lead to exploring execution
paths that are redundant, unnecessarily increasing verification
complexity and hampering tractability. Based on this premise, in
this work we investigate how one can improve the performance
of explicit-state model checkers, such as SPIN, for the verification
of multitask applications that target OSEK compliant real t ime
operating systems.

I. I NTRODUCTION

Increasing system complexity and reliance on the correct
operation of embedded systems, motivated the formation of
OSEK, an open standard for the specification of real time op-
erating systems, communications, and network protocols asa
standard software architecture for embedded systems [1]. Sys-
tem complexity and requirements for reliable operation make it
difficult to achieve systems for which designers can justifiably
rely on the service it delivers, a characteristic that is referred
to in this context asdependability. Traditional methods for
achieving dependable software, such as testing, debugging,
and peer reviews, quickly become costly and inefficient as
systems become more complex. Formal software verification
methods such asmodel checking[2], [3] has shown promise
in addressing the problems associated with the verification
of software for complex, dependable embedded systems, for
instance as demonstrated in the detection of five previously
unknown concurrency errors in National Aeronautics Space
Administration (NASA) Deep Space 1 mission [4].

Model checking is a verification technique that utilizes a
model of a system under test to exhaustively explore the set of
all reachable system states. It has been particularly useful for
verifying properties of embedded systems with concurrently
executing tasks through an automatic and exhaustive search
procedure. But, model checking is prone to the problem
of state explosion[7]. Techniques, such as symbolic model
checking, abstraction, and partial order reduction address the
state explosion problem by attempting to reduce the size of
the system model, as summarized in, e.g., [8], [5]. Other
techniques, such as directed model checking [9] and dis-
tributed model checking [10], [6] attempt to improve the

performance of the search algorithm of the model checker.
In this work, we investigate an approach to model checking
multitask applications of an embedded system by modeling
invariants of OSEK compliant real time operating systems.

II. RELATED WORK

Tools such as UPAAL [11] and Kronos [12] are commonly
used to verify timing properties of real time systems, that
are based on timed automata formalisms [13]. A drawback
to these tools and methods is that additional state variables
that characterize explicit timing properties of the systemare
introduced, thus, it increases the size of the search space by
an additional multiplicative factor in the size of discretetime
values. In the literature, the work that most closely relates to
our work includes, Duval and Julliandet. al. [14], Parizeket.
al. [15], and [16] where the authors develop models of the
underlying kernel of specific real time operating systems.

Our work differs from the above work since it abstracts
discrete time into a temporal ordering of concurrent activities,
thereby, focusing on higher levels of abstraction to capture sys-
tem model and properties related to concurrency, as opposed
to capturing discrete timing of system behavior. We focus
on modeling the behavior of an OSEK compliant operating
system where our implementation targets reuse on different
platforms and minimizing the use of data structures that are
unnecessary to verify certain properties.

III. A PPROACH

The approach that is adopted in this work constructs the
behavior of an OSEK compliant real time operating system in
Promela with the purpose of applying SPIN model checking
tool [5] to perform verification of multitask applications.
Promela is a language for constructing verification models,and
SPIN is a verification tool that executes on a Promela model.
The computational model for Promela is based on the concur-
rent execution ofprocessesthat communicate viachannelsand
global variables. Process executions are controlled byblocking
or unblockingprocess execution. Thus, in our implementation
of OSEK specification, the goal is to utilize the service calls as
an interface to signaling the blocking, unblocking of processes
and modifying only relevant state variables to represent the
task management and synchronization mechanisms per the
OSEK specification. This approach allows us to focus only



on relevant state information that is necessary to control
the executability of Promela processes in an effort to limit
that amount of additional state information that must be
captured. Currently, we illustrate our approach by capturing
the specification on task and resource management services in
the OSEK specification.

Fig. 1. An illustration of the task model for OSEK compliant real time
operating systems.

A. Task Management and Scheduling

Task management and scheduling provides the framework
for declaring, defining, and using tasks in a specified order
depending on the state of the task as illustrated in the task
model Figure 1. In our current implementation in Promela,
each OSEK task is defined as a Promela an extension to
SPIN that allows for processes to have a priority. Along with
knowledge of task state, a new routine in SPIN version 6.2,
highest(pid) allows for the execution of Promela processes
in accordance with priority based scheduling rules. This be-
havior can accurately model the behavior of OSEK compliant
schedulers.

B. Resource Management

The OSEK specification manages access to shared resources
in a way such priority inversion and deadlocks are guaranteed
to not occur by specifying a priority ceiling protocol. An
implementation of resource management is supported by two
new additional routines to the SPIN verification and simulation
engine,get priority(pid), which returns the current priority
of the process with process instantiation numberpid and
set priority(pid, N), which sets the priority of the process
with pid to N , whereN ∈ {1, 2, . . . , 255} The additional
routines provide the capability to implement the OSEK priority
ceiling protocol and provide resource protection.

IV. CONCLUSIONS ANDFUTURE WORK

A real time operating system plays an important role in
software intensive computing systems, in particular, embedded
systems that must operate correctly. We have outlined our work
in progress on using model checking for verifying multitask
applications on software intensive embedded systems that
conform to the OSEK specification. We plan to implement the
remaining service calls that are necessary to perform exhaustie
verification of a multitask application for OSEK compliant
systems, and evaluate its application.

ACKNOWLEDGMENT

The authors would like to thank the Ed Gamble, Micah
Clark, Michel D. Ingham, and Mihai Florian for thoughtful
discussions on this work.

REFERENCES

[1] (2005) Osek/vdx operating system specification 2.2.3. [Online].
Available: http://www.osek-vdx.org

[2] E. A. Emerson and E. M. Clarke, “Characterizing correctness properties
of parallel programs using fixpoints,” inInternational Congress of
Mathematicans, 1980, pp. 169–181.

[3] J.-P. Queille and J. Sifakis, “Specification and verification of concurrent
systems in cesar,” inProceedings of the 5th Colloquium on International
Symposium on Programming. London, UK: Springer-Verlag, 1982, pp.
337–351.

[4] K. Havelund, M. Lowry, and J. Penix, “Formal analysis of aspace-craft
controller using spin,”IEEE Trans. Softw. Eng., vol. 27, pp. 749–765,
August 2001.

[5] G.J. Holzmann, “The Spin Model Checker: primer and reference man-
ual,” Addison-Wesley, Reading, MA, USA, 2004.

[6] G.J. Holzmann and D. Bosnacki, “The Design of a multi-core extension
of the Spin Model Checker,”IEEE Transactions on Software Engineer-
ing, vol. 33, No. 10, pp. 659–674, Oct. 2009.

[7] A. Valmari, “The state explosion problem,” inLectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets. London, UK: Springer-Verlag, 1998,
pp. 429–528.

[8] E. M. C. Jr., O. Grumberg, and D. A. Peled,Model Checking. The
MIT Press, 1999.

[9] S. Edelkamp, V. Schuppan, D. Bonaki, A. Wijs, A. Fehnker,and
H. Aljazzar, “Survey on directed model checking,” inModel Checking
and Artificial Intelligence, ser. Lecture Notes in Computer Science,
D. Peled and M. Wooldridge, Eds. Springer Berlin / Heidelberg, 2009,
vol. 5348, pp. 65–89.

[10] R. Kumar and E. G. Mercer, “Load balancing parallel explicit state
model checking,”Electronic Notes in Theoretical Computer Science,
vol. 128, no. 3, pp. 19 – 34, 2005.

[11] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “UP-
PAAL — a Tool Suite for Automatic Verification of Real–Time Systems,”
in Proc. of Workshop on Verification and Control of Hybrid Systems III,
ser. Lecture Notes in Computer Science, no. 1066. Springer–Verlag,
Oct 1995, pp. 232–243.

[12] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, andS. Yovine,
“Kronos: A model-checking tool for real-time systems,” inComputer
Aided Verification, ser. Lecture Notes in Computer Science, A. Hu and
M. Vardi, Eds. Springer Berlin / Heidelberg, 1998, vol. 1427, pp.
546–550.

[13] J. Bengtsson and W. Yi, “Timed automata: Semantics, algorithms and
tools,” in Lectures on Concurrency and Petri Nets, ser. Lecture Notes
in Computer Science, J. Desel, W. Reisig, and G. Rozenberg, Eds.
Springer Berlin / Heidelberg, 2004, vol. 3098, pp. 87–124.

[14] G. Duval and J. Julliand, “Modeling and verification of the rubis -kernel
with spin,” in In SPIN95 Workshop Proceedings, 1995.

[15] P. Parizek, T. Kalibera, and J. Vitek, “Model checking real-time java,”
Department of Distributed and Dependable System, Charles University,
Tech. Rep. Technical Report 1, 2010.

[16] T. Aoki, “Model checking multi-task software on real-time operat-
ing systems,” inObject Oriented Real-Time Distributed Computing
(ISORC), 2008 11th IEEE International Symposium on, may 2008, pp.
551 –555.


