
PDMC 2007 Preliminary Version

A Stack-Slicing Algorithm for Multi-Core
Model Checking

Gerard J. Holzmann 1,2

NASA/JPL Laboratory for Reliable Software
4800 Oak Grove Drive, Pasadena, CA 91109, USA

Abstract

The broad availability of multi-core chips on standard desktop PCs provides strong
motivation for the development of new algorithms for logic model checkers that can
take advantage of the additional processing power. With a steady increase in the
number of available processing cores, we would like the performance of a model
checker to increase as well – ideally linearly. The new trend implies a change of
focus away from cluster computers towards shared memory systems. In this paper
we discuss the multi-core algorithms that are in development for the SPIN model
checker.

Key words: Multi-core systems. Distributed systems.
Multi-threaded programming. Software verification. Logic model
checking. Cluster computers.

1 Introduction

A new set of algorithms [7,8] is currently in development to support multi-core
verifications with the SPIN model checker [5]. A guiding principle in the design
of these new algorithms has been to interfere as little as possible with the
existing algorithms for the verification of safety and liveness properties. The
extensions are designed to preserve most of the existing verification modes and
optimization choices, including, for example, partial order reduction, bitstate
hashing, and hashcompact state storage. The basic computational complexity
of the verification procedure also remains unchanged. This means that the
verification of all correctness properties remains linear in the size of the state
graph, when parts of the search are done in parallel. The SPIN algorithms

1 The work described in this paper was carried out at the Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology, under a contract with the National Aeronautics and Space
Administration, as part of NASA’s ESAS Project 6G on Reliable Software Engineering.
2 Email: gerard@spinroot.com

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Holzmann

are known to be efficient, and we would like to preserve this advantage. As
many have found, it can be hard to outperform a single-core run of SPIN with
standard optimizations enabled, even when using large numbers of processing
cores with multi-core algorithms.

In this paper we explore one of the new algorithms we are considering in
a little more detail. We focus on the algorithm for the verification of safety
properties, which is based on a stack slicing method that has some unexpected
benefits beyond the intended purpose of scaling performance up to linearly
with the number of available CPU cores. We will first summarize this stack
slicing algorithm, show some performance results, and then discuss some of
the more surprising features of this algorithm.

2 The Stack Slicing Algorithm

A distributed algorithm tries to achieve a number of different objectives. Some
of the more important ones are to achieve:

• an even distribution of the work across the available CPUs, so that all CPUs
do roughly the same amount of work (load balancing),

• maximal independence between the work done on the different CPUs, so
that most of the work can be done concurrently, and

• minimal communication overhead.

Some amount of overhead is inevitable, for instance to allow for the transfer
of work from one CPU to another, but clearly any time lost to the maintenance
of the multi-core infrastructure must be regained through the performance of
work done in parallel. Less overhead means less pressure to makeup for the
lost time. The reverse of this is that at some point the overhead can become so
large that we are better off doing a single-core instead of a multi-core search.

Figure 1 shows the pseudo-code for a standard depth-first search process,
as it is used for the verification of safety properties in the SPIN model checker.
The search starts by pushing the initial system state onto the search stack,
and entering the state in the global state table. It then proceeds by recursively
exploring successor states until all reachable states have been visited. Within
the Add_Statespace routine, basic safety checks on newly reached system
states can be performed, and correctness violations can be reported. A point
in favor of the depth-first search procedure is that when an error is found,
a complete step-by-step counter-example of all actions that lead up to the
violation is easily generated by reading off the execution steps stored on the
depth-first search stack D.

A modified depth-first search for the verification of safety properties, as
implemented in SPIN version 5.0, is illustrated in Figure 2. The CPUs are
connected in a logical ring, where each CPU can hand off work only to its right
neighbor (rn), counting modulo the number of available CPU cores (NCORE),
as illustrated in Figure 3. To connect the CPUs, we introduce one work queue

2



Holzmann

1 Stack D = {}

2 Statespace V = {}

3

4 Start()

5 {

6 Add_Statespace(V, s0)

7 Push_Stack(D, s0)

8 Search()

9 }

10

11 Search()

12 {

13 s = Top_Stack(D)

14 for each (s,l,s’) in T

15 { if (In_Statespace(V, s’) == false)

16 { Add_Statespace(V, s’)

17 Push_Stack(D, s’)

18 Search()

19 } }

20 Pop_Stack(D)

21 }

Fig. 1. Standard Depth-First Search.

per CPU, in shared memory, to store the handoff states. By using a logical
ring, we can ensure that each work queue has only one reader and one writer,
which means that we can implement the associated data structures without
any locks for maximal efficiency. In the modified algorithm we also added two
integer variables, one to count the number of execution steps from the local
root of the search (called Depth) and one to set a default depth at which a
state transfer to another CPU core will be attempted (called Handoff).

The Start() routine is initiated on each CPU, with a different core_id

number in the range 0..(NCORE-1) passed to each one. The CPU with core_id

0 starts the search in the usual way by pushing the initial system state onto its
search stack and calling its recursive search procedure. The main difference in
the depth-first search procedure itself can be found on lines 28-30, where we
check if the preset Handoff depth has been exceeded. If it has, we check if the
target work queue has slots available and if so we hand off the state to that
CPU by copying it (in shared memory) into the target queue. The search now
immediately backtracks and starts exploring other reachable system states,
without waiting for the subtree below the handoff state to be fully explored.
Note that the handoff is suppressed if the target work queue is full, in which
case the neighbor CPU already has a sufficient amount of pending work so
nothing more can be gained from passing it still more work to do. In this case
the CPU considered will continue the search locally, while remaining prepared

3



Holzmann

1 Stack D = {} /* in local memory */

2 Statespace V = {} /* in shared memory */

3 Queue wq[NCORE] /* in shared memory */

4 int Depth = 0, Handoff = 20 /* in local memory */

5

6 Start(int core_id)

7 {

8 if (core_id == 0)

9 { Add_Statespace(V, s0)

10 Push_Stack(D, s0)

11 Search(core_id)

12 }

13 while (NotTerminated)

14 { if (NotEmpty(wq[core_id]))

15 { s = First_State(wq[core_id])

16 Push_Stack(D, s)

17 Search(core_id)

18 } }

19 }

20

21 Search(int core_id) /* rn: right neighbor in logical ring */

22 { int rn = (core_id + 1) % NCORE;

23 Depth++
24 s = Top_Stack(D[core_id])

25 for each (s,l,s’) in T

26 { if (In_Statespace(V, s’) == false)

27 { Add_Statespace(V, s’)

28 if (Depth > HandOff && NotFull(wq[rn]))

29 { Handoff_State(wq[rn], s’)

30 } else

31 { Push_Stack(D, s’)

32 Search(core_id)

33 } } }

34 Pop_Stack(D)

35 Depth--

36 }

Fig. 2. Modified Depth-First Search: Stack-Slicing Algorithm.

to hand off any future successor to this state at a later point in the search as
soon as slots open up in the target work queue.

Once the search process has been completed, the search returns to the
Start() routine and the next step is to check in the work queue for the CPU
to see if any states were handed off to it, which are then explored in the

4



Holzmann

Fig. 3. Logical Ring Structure for the CPUs in a Multi-Core System.

same manner. Of course, the input work queue being empty is not a suffi-
cient condition to terminate the search, so a distributed termination detection
algorithm must be added to this basic design to make sure that the search
process can terminate correctly. Termination detection can be done with any
of the standard algorithms that have been developed for this purpose, so we
will not discuss this further here. The implementation in SPIN 5.0 is based
on a variant of Dijkstra’s treatment of Safra’s algorithm [1]. A verification
model of this algorithm can be proven correct with SPIN itself, providing a
curious example of a case where a verification tool can be used to prove the
correctness of part of its own implementation.

Although we focus on shared memory systems here, the stack slicing algo-
rithm and the logical ring structure used, can easily be extended further for the
use on cluster computers. The modification to the ring structure that makes
this possible, supported as an option in SPIN 5.0, is illustrated in Figure 4. To
form a logical ring that spans more than one PC in a cluster arrangement, we
replace one node in the ring on each PC with a proxy. The proxies on neigh-
boring machines collaborate by mirroring the contents of the work queues they
are connected to between the PCs. The remaining “worker” nodes in each PC
remain unchanged, and can be completely unaware that part of the computa-
tion is done on a distant system. Clearly, it would be inefficient to force all
PCs to update states in a single shared statespace, so in this case each PC will
maintain a separate state space that is only shared among the workers that
execute on the same PC. This can lead to some redundancy, but in most cases
the overhead of additional traffic across the network that would be necessary
to maintain a single state space would introduce greater inefficiencies.

Startup and termination of the search process works as before, without
any change. To facilitate the transfer of states without separate encoding and
decoding of state information, the simplest method is to use binary compatible

5



Holzmann

Fig. 4. Extended Ring Structure for Distributed Model Checking on a Compute
Cluster.

systems that can execute precisely the same model checking code, and use the
same memory layout for states. In our implementation, therefore, the binary
of the model checker itself is send from the PC that starts the search to each
participating PC as part of the search initialization. Another consideration
in this setup is the speed of the network that connects the PCs. The best
guarantee for adequate performance is to use a fast network with 1 to 10 Gbps
bandwidth, to minimize the time lost to transfer states between PCs. The time
required should be close to the time required for in-memory state transfers.
Needless to say, on a standard 100 Mbps network optimal performance is not
easily realized.

3 Generating Counter-Examples

One feature of the classic depth-first search procedure, illustrated in Figure 1,
needs extra attention for the modified search procedure. This is the ability
to generate counter-examples when an error state is found. Since each CPU
only retains a small portion of the stack, it can no longer trace a path back
to the original initial system state by reading off the steps contained in its
local search stack. By default, the new algorithm therefore only retains the
ability to recreate part of the counter-example, and in particular the final few
steps leading to the error state, which fortunately is often sufficient for the
diagnosis of errors.

It is possible to recreate the ability to generate also full counter-examples
by adding an extra data structure, at the price of increasing memory use and
the average runtime. If the search is performed in this mode, each CPU main-
tains a pointer into a data structure, which is best described as a stack tree.
The stack tree is maintained in shared memory. When a state is handed off to
another CPU, the corresponding pointer into the stack tree is passed as well.
Each CPU adds a frame to the stack tree when executing a forward step in the
depth-first search. When the search backtracks, the frames are not necessarily
removed, though, but only a pointer is updated to keep track of the frame that

6



Holzmann

Table 1
Performance of Stack Slicing Algorithm (runtimes in seconds)

#Cores: 1 2 3 4 5 6 7 8

Leader 364.0 222.0 158.0 129.0 112.0 102.0 103.0 102.0

Tpc 99.4 73.6 58.0 50.4 45.3 41.2 39.4 36.1

RefModel 376.0 189.0 128.0 96.7 77.0 64.2 56.1 50.4

corresponds to the current point in the search. When an error state is reached,
a path through the global stack tree back to the original initial system state
can now be found to produce a full counter-example. Note that a stack frame
can only safely be removed if none of the CPUs could need the frame anymore
to generate a counter-example at any point during the search, including CPUs
to which successor states were transferred either directly or indirectly. Each
stack frame in the tree needs to contain only minimal information about the
search path: the id of the process performing an execution step (one byte)
and the id of the transition that was executed (typically a short integer). On
a cluster system, the construction of full counterexamples requires a few more
steps, to handle the case where the error trail crosses PC boundaries, but the
basic procedure remains the same.

Stack frames that become redundant as the search progresses can be recy-
cled with a garbage collection process, e.g., by maintaining a reference count
in each frame that records how many successors may still be relying on it.
When the count drops to zero, the frame can be recycled. Garbage collection
introduces the need for locking, though, which can negatively impact overall
runtime performance.

4 Properties of the Stack Slicing Algorithm

The performance of the slice stack algorithm is often surprisingly good (sur-
prising for a relatively simple load balancing method and its minimal intrusion
on the existing depth-first search process implemented in SPIN ). The handoff
depth simultaneously provides locality and independence between cores, and
trivial load balancing across cores. There are interesting engineering tradeoffs
to be made. Note for instance that larger values for the handoff depth can
give more independence in the search, and lower the overhead of state transfers
between CPU cores, while shorter values can provide better load balancing.

Scaling with Available Cores: A representative result for the performance
of the stack slicing algorithm in the verification of safety properties is shown
in Figure 5 and Table 1. Figure 5 shows the percentage of time of a single-core
run that is used when the number of cores is increased to 2, 4, and 8, for three
different models. The top curve (solid) is for a small model of a phone switch
(tpc), with 32.9 million reachable system states. The next curve (dashed)

7



Holzmann

Fig. 5. Multi-core safety verification with SPIN 5.0 stack slicing algorithm. The
curves show the percentage of runtime used by the stack slicing algorithm on mul-
tiple cores, compared with a single-core run (i.e., of a standard SPIN verification)
for three different models.

is for the standard leader election model from the SPIN distribution, with
9 processes, which (without partial order reduction) generates a state space
of 33.6 million reachable system states. The bottom curve is for a reference
model [8] that allows us to control key structural parameters of the state space
generated, such as the size of a state, the transition delay, and the average
number of successors per state. The parameters for this reference model were
chosen to produce near optimal performance of the multi-core algorithm. The
state size chosen was 200 bytes, the average number of successor states was
8, and the transition delay was approximately 16 µseconds. The number of
states generated by the reference model is 500,0000. The raw performance
numbers for these tests, in seconds of runtime, are given in Table 1. Note
that for the reference model, scaling is close to linear. On 4 cores, the optimal
runtime would be 376/4 = 94 seconds, and we measure 96.7 seconds; on 8
cores, the optimum would be 47 seconds, and we measure 50.4 seconds.

Stern-Dill Approximation: The minimal handoff depth is 1, and can be
used to reproduce a search strategy similar to the original Stern-Dill algorithm
[10]. This type of immediate handoff strategy, though, gives the least amount
of locality and induces the greatest overhead and is therefore unattractive in
this setting. There is also a maximal handoff depth. If we have N processing
cores and the depth of the reachability graph of all system states is D execution
steps, then we cannot hope to achieve proper load balancing if the handoff
depth is set larger than D/N . Typically, especially for larger verification
problems where a distributed verification algorithm can be most beneficial, D
is in the order of 105 to 107 steps. This means that for a number of processing
cores in the range of 102 to 103 cores, a handoff depth in the range of 101..102

will be effective. Experiments show that the performance of the stack slicing

8



Holzmann

algorithm [8] is not very sensitive to the precise value chosen, which means
that in most cases a fixed default value (the SPIN implementation uses the
value 20) will suffice to realize a performance speedup. In more exceptional
cases, the user can provide a different value for the handoff depth to optimize
performance.

Short Counter-Examples: The stack slicing algorithm can be understood
as an interesting combination of a depth-first and a breadth-first search proce-
dure. Note that when a CPU hands off a state to another CPU, it immediately
backtracks and starts the exploration of other states that lie within the hand-
off depth limit of the local stack. This means that the search of all states
reachable within H steps from the initial system states can be completed be-
fore all states have been explored that lie deeper in the search tree. An error
state reachable within H steps, therefore, can be found faster than in a regular
depth-first search, leading to shorter counter-examples being generated.

Short Stacks: Another unexpected benefit of the stack slicing method is
that local stacks that must be maintained within each processing core can be
quite small, and become independent of the depth of the global state graph
itself. This decoupling can mean the difference between a tractable verifica-
tion and one that is intractable. In large verification models, especially those
with embedded C code with large amounts of matched and unmatched ex-
ternal state data [6], the regular depth-first search stack can contain tens of
kilobytes of data. For deeper search trees, the amount of memory necessary to
perform the basic search process can quickly exceed any amount of memory
necessary to build the global state graph, especially when using aggressive
state compression techniques such as bitstate hashing or hashcompact com-
pression. Note that the data on the search stack cannot easily be compressed
(and in no case with lossy techniques). This means that a single-core search
for some of these models will quickly exhaust all available memory and fail to
complete, while a multi-core search completes easily, using only a fraction of
the amount of memory. Despite the fact of using only short local stacks, the
multi-core search can retain the ability to construct full counter-examples, as
described earlier. The data that needs to be preserved in the frames of the
stack tree is comparatively small and typically restricted to just 2 words of
memory, one word to store the process and transitionids, and one pointer to
record the immediate predecessor stackframe along the current search path.

This extra capability of the stack slicing algorithm to handle verification
models with large amounts of embedded code and data is unexpected, but it
leads to the idea that the implementation of this type of algorithm could also
be of interest even on a single core system. Nothing in the search algorithm
needs changing to run the algorithm in this mode. The logical “ring” of CPU
cores in this case contains just a single CPU, and the CPU is its own right
neighbor. When the CPU ”hands off” a state, it merely places it in its own
work queue for later exploration. In effect, this means that the algorithm now
maintains both a depth-first stack and a breadth-first queue that are used

9



Holzmann

jointly to perform the search, and that combine some of the benefits of each
search mode.

5 Liveness Verification

So far, we have only discussed the verification of safety properties, for which
the stack slicing algorithm was designed. In [8] we outlined a very similar dual-
core algorithm that can be used for liveness verification. The method is simply
to perform the first and nested part of SPIN’s depth first search procedure
[4] in parallel on two separate cores. The performance of this algorithm is
unavoidably application dependent, but it typically offers a speedup over the
single-core algorithm. Optimally, of course, it could cut the verification time
for large verification problems in half. As has correctly been pointed out in
[2], this liveness verification algorithm does not have the desired property of
scaling with the number of available processing cores beyond two. Both the
multi-core safety and liveness algorithm were designed to satisfy two important
design criteria:

• First, we require that the algorithm, like all other algorithms in SPIN, can
work on-the-fly. If the amount of available memory on our system is insuf-
ficient, we still want to be able to complete the best possible verification
within the available resource limits. This eliminates any algorithm that first
requires a global reachability graph to be generated in memory before an
analysis phase can be initiated.

• Second, we require that the computational complexity of the verification
problem is not increased by a non-linear factor. Clearly, any overhead intro-
duced due to a switch to an algorithm with higher computational complexity
will have to be regained elsewhere if we want to realize an overall perfor-
mance improvement. With larger numbers of available processing cores, it
may be acceptable to increase the verification cost by a small constant fac-
tor (say 2 or 3), in the knowledge that the available parallelism will be able
to make up for the loss. It would, however, be a significant setback if the
verification cost could increase by a non-linear factor, e.g. quadratically.
In performance measurements, we should of course also always compare re-
sults with the best available single-core version of an algorithm, not with
single-core runs of the algorithm with higher complexity.

Several algorithms have been studied that do incur a higher verification
cost than the nested depth-first search. In [2] an implementation of a few of
the more promising candidates is discussed, and detailed performance results
are presented, which makes it possible to compare the performance of the
current SPIN multi-core LTL verification algorithm with that of these alter-
natives. The research group in Brno has made a significant effort to build a
large database of model checking problems that can be used as benchmark
problems to compare the performance of different model checking algorithms.

10



Holzmann

Table 2
Performance Comparison Liveness (runtimes in seconds)

DiVinE Spin 5.0

Nr Cores Used: 1 4 8 16 1 2

elevator2.3a.prop4 98.70 66.10 35.20 26.80 19.37 19.20

leader-filters.5.prop2 26.60 13.90 9.70 7.90 0.51 0.58

peterson.4.prop4 42.50 22.10 12.30 9.20 6.82 6.82

rether.5.prop5 90.00 52.70 37.50 27.20 2.61 2.55

The collection contains 57 separately models. 3 Each model is parameterized
to give between 3 and 8 different problem instances, which brings the total
number of models in the database to 298. For each instance a wealth of in-
formation is provided. For most models, a translation from the native DVE
format to PROMELA (SPIN’s specification language) is also provided.

A difficulty in performing unbiased comparisons between model check-
ers has always been that different model checkers use different specification
languages. Although it is often possible to convert a specification from one
format to another, such translations almost always benefit the model checker
for which the original specification was written. Each model checker supports
constructs that it can exploit to optimize its search process. It is very hard
for a translator to produce models for each target tool that use the same op-
timizations. Instead, the translated model is typically inefficient. This effects
holds for the models in the BEEM database, in the sense that for each model
provided in PROMELA , it is readily possible to rewrite that model by hand,
without any change to the model semantics, to achieve very significant per-
formance improvements. If we are interested in demonstrating the capability
of a model checker to solve a given verification problem, then we would have
to do so to achieve a fair comparison. In this case, though, the situation is
different. As long as we can show that each model checker explores roughly
the same number of reachable states, we can achieve a fair comparison of the
performance of the multi-core algorithms, irrespective of which verification
problem is being represented. The models in a sense merely serve to define a
reachable statespace, and all we need to do is to explore this same statespace.

6 Comparison

Figure 6 and Table 2 show results reported in [2] for the best reported alter-
native algorithm for LTL verification, reporting significantly improved results
over an earlier implementation of the same algorithm (the OWCTY algo-

3 See http://anna.fi.muni.cz/models/ and http://spinroot.com/spin/beem.html

11



Holzmann

Fig. 6. Performance results for multi-core LTL verification of four verification prob-
lems from the BEEM database reported in Fig. 7 of [2] (1 to 16 cores, curves on
the left-hand side), compared with performance results for the same problems with
SPIN 5.0 on 1 and 2 cores (curves on the right-hand side).

rithm). The performance results for four separate models, for up to 16 pro-
cessing cores, are shown in the curves on the left-hand side in Figure 6 and
Table 2. On the right-hand side in Figure 6, we have plotted the performance
results for the conservatively designed liveness algorithm in SPIN 5.0, proving
the same properties for the same statespaces. The runtimes themselves are
shown in the two right-most columns in Table 2. The measurements on the
left were made on a 2.6 GHz Linux system (Red Hat 4.1.1-1), and compiled
with gcc version 4.1.2, using -O3 optimization in 32-bit mode. Our measure-
ments were made on a 2.3 GHz Linux system (Ubuntu 7.0.4, 64-bits) with
32 GB of memory and using the same version of gcc, also compiling in 32-bit
mode. The results were normalized by multiplying our performance numbers
with 2.3/2.6 to match the clockspeed of the computer used for the Brno re-
sults. All verifications were performed in the same way that they were done
in [2], which means that we disabled statement merging (using spin -o3 to
generate the verifiers), and we disabled partial order reduction (adding the
compile-time directive -DNOREDUCE to the compilations).

In all four cases, the performance of the liveness algorithm from SPIN 5.0
using two processing cores is better than the performance reported in [2] for
runs using twelve or sixteen processing cores. Curiously, the performance of
SPIN running on one single core also outperforms the performance of the al-
ternative algorithm running on sixteen cores. The largest difference is seen
for the BEEM leader election model, where SPIN performs the liveness verifi-
cation 15 times faster on one processing cores than the alternative algorithm
on 16 cores. We believe that the explanation for this phenomenon is the in-
creased verification complexity that is incurred by the alternative algorithms,
only some of which can be made up with the use of larger numbers of cores.

12



Holzmann

Fig. 7. Performance results for multi-core safety verification of four verification
problems from the BEEM database reported in Fig. 8 of [2] (solid lines) compared
with performance results for the same problems with SPIN 5.0 on 1 through 8 cores
(dotted lines).

The improvements seen in the alternative algorithms are in these cases limited
to roughly 12 cores, and no further improvement is seen by adding more.

The results are not exclusively positive for SPIN though. As it turns out,
for these particular problem instances, the dual-core liveness verification al-
gorithm in SPIN 5.0 does not succeed in delivering further improvements, as
shown in Table 2. It would be tempting to say that the search is already
optimal and cannot be improved further in these cases, but that would be far
from the truth. There are several factors that can explain the effect better,
as explored more fully in [8]. One potential explanation is that the state sizes
for these problem instances are all relatively small (ranging from 56 to 272
bytes), where our measurements indicate that SPIN’s algorithms perform best
for larger state sizes (corresponding to larger verification problems). Another
reason is that for relatively short runtimes, the overhead of setting up shared
memory segments and work queues, and for performing termination detec-
tion, becomes more noticeable and starts to reduce overall performance; that
is, some of the problem instances are too small to see a benefit of multi-core
algorithms.

Also reported in [2] are results for safety verification using a different multi-
core verification algorithm named MT-BFS. Figure 7 shows the MT-BFS re-
sults (solid lines) together with the results for the same models using SPIN’s
stack slicing algorithm (dotted lines). The system available to us for these
measurements was limited to 8 cores, so we could not repeat the measure-
ments in [2] with 12 or 16 cores. The same effects as observed in Figure 6 are

13



Holzmann

visible. In this case we cannot explain the differences in performance based
on the computational complexity of the algorithms that are used (they should
match). The difference could merely be that the SPIN implementation is more
efficient. For the models used in Figure 7, the stack slicing algorithms shows
little improvement with increasing numbers of cores, which is certainly within
the range of possible behaviors, but not typical. (Cf. Figure 5).

Reflecting on the graphs in Figure 7 we can also observe that many im-
plementation inefficiencies, which hide in all verification tools, often add only
a linear cost to the verification process, which can be overcome with the use
of multi-core processing. We may be seeing this effect in the comparisons in
Figure 7, where the performance of the alternative algorithms converges near
8 cores. Still for these models, a single-core run with SPIN already seems
to produce a verification process that the best currently available algorithms
cannot seem to improve upon. This is of course not the result we were after. It
merely means that there is much work that remains to be done in this domain
of application.

7 Conclusion

It has been argued that the classic depth-first search procedure is inherently
sequential and therefore cannot be parallelized [9]. The stack slicing algo-
rithm shows that this is not necessarily the case. At least in the domain of
logic model checking we have found an application where we can parallelize
the depth-first search procedure and can in some cases achieve even near linear
speedups in the verification of safety properties on multi-core systems. Much
more work remains to be done in this domain to more fully explore the options
that are available to use to improve the search process further. Not explored
here, but equally important, are the impact of partial order reduction strate-
gies and of compiler optimization techniques on search performance. More
details on these aspects can be found in [8].

It is as yet an open problem how a liveness verification algorithm could be
generalized to the use of more than two processing cores while retaining a low
search complexity. It would be easy to conclude that no such generalization
is possible, but as we have seen there often are special cases where significant
improvements can be achieved. In retrospect such findings often seem obvious.
Finding a simple extension of the liveness algorithm, however, will for the time
being have to remain non-obvious.

Acknowledgement

The author is grateful to Dragan Bosnacki from Eindhoven University and
to Rajeev Joshi and the other members of the JPL Laboratory for Reliable
Software for many comments and key insights provided on the work that is
presented here.

14



Holzmann

References

[1] Dijkstra, E.W., Shmuel Safra’s version of termination detection, EWD998, 15
Jan. 1987.

[2] Barnat, J., L. Brim, and P. Rockai, Scalable multi-core LTL model-checking,
Proc. 14th SPIN Workshop 2007, Berlin, Germany, Springer Verlag, LNCS.

[3] Geldenhuys J., State caching reconsidered. In Susanne Graf and Laurent
Mounier, Proc. 11th SPIN Workshop 2004, Barcelona, Spain, Springer Verlag,
LNCS 2989.

[4] Holzmann, G.J., D. Peled, and M. Yannakakis, On Nested Depth-First Search,
The SPIN Verification System, American Mathematical Society, (1996), 23–32.

[5] Holzmann, G.J., “The SPIN Model Checker - Primer and Reference Manual,”
Addison-Wesley, 2004.

[6] Holzmann, G.J., R. Joshi, Model-driven software verification, Proc. 11th SPIN
Workshop 2004, Barcelona, Spain, April 2004, Springer Verlag, LNCS 2989,
77–92.

[7] Holzmann, G.J., The design of a distributed model checking algorithm for SPIN,
Conf. on Formal Methods in Computer Aided Design (FMCAD), San Jose, CA,
USA, (November 2006), invited talk.

[8] Holzmann, G.J., and D. Bosnacki, The design of a multi-core extension of the
SPIN model checker, IEEE Trans. On Software Engineering, to appear.

[9] Reif, J.H., Depth First Search is inherently sequential, Information Processing
Letters, Vol. 20, Nr. 5, (1985), 229–234.

[10] Stern, U., and D. Dill. Parallelizing the Murphi verifier, Proc. 9th Int. Conf. on
Computer Aided Verification, Haifa, Israel, Springer Verlag, LNCS 1254, (June
1997), 256–278.

15


	Introduction
	The Stack Slicing Algorithm
	Generating Counter-Examples
	Properties of the Stack Slicing Algorithm
	Liveness Verification
	Comparison
	Conclusion
	Acknowledgement 
	References

