
Economics of Software Verification
Gerard J. Holzmann

Bell Laboratories MH 2C-521
600 Mountain Avenue
Murray Hill, NJ 07974

gerard@research.bell-labs.com

ABSTRACT
How can we determine the added value of software verification
techniques over the more readily available conventional testing
techniques? Formal verification techniques introduce both added
costs and potential benefits. Can we show objectively when the
benefits will outweigh the cost?

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal methods,
validation F.3.1 [Specifying, Verifying, and Reasoning about
Programs]: Mechanical verification.

General Terms
Algorithms, Measurement, Design, Reliability, Verification.

Keywords
Model checking, software verification, testing, Spin.

1. INTRODUCTION
No single system of metrics for measuring software quality is
universally accepted [4,5]. Intuitively, software quality is related
to the ratio of the perceived usefulness of a product and its
perceived buggyness. The usefulness of a product is related to its
functionality, which is in turn related to code size. More
functionality often implies more code. As a metric for buggyness
one often uses the elusive standard of ‘residual defect density.’
The residual defect density is meant to measure the number of
defects that remain in a software artifact after delivery to the end-
user (the customer), weighted by code size. A typical target in
software development is to achieve a residual defect density of
less than one defect per one thousand lines of non-comment
source code [4,10].

Though most programming teams strive for zero residual defect
density, it would be unrealistic to assume that product testing can
proceed until this goal is fully reached. It can already be very hard
to determine if the goal is ever reached. As Edsger Dijkstra noted,
the inability to locate further defects does not necessarily imply
the absence of defects. Residual defects almost always exist, even
for the most vigorously tested code [1,9,10,12].

The residual defect density of a software product can often only
be estimated, based on the number of user complaints. The
number of complaints does not just depend on the residual defect
density, it also depends on the number of users, and the amount
and duration of actual usage.

Different metrics can be used to determine when a product is
ready to ship. Not surprisingly, the most commonly used metric is
not related to zero defect density but to the cost that is associated
with the search for residual defects, and the relative effectiveness
of that search.

Finding bugs can be likened to finding randomly distributed
Easter eggs in a large meadow. Figure 1 can be interpreted as a
plot of the cumulative number of eggs found, as a function of
time. After an initial orientation phase, the rate at which eggs are
found will tend to be a linear function of the amount of time spent
searching. The area that can be searched per unit of time will
roughly be constant, and if eggs are distributed uniformly, the rate
at which they are found will also be constant. But the search
process is not perfect, and some areas may need to be searched
again, presumably more carefully than at first. As the number of
residual eggs drops, the amount of time that has to be spent to
locate them increases. The search becomes less effective and at
some point it will have to be called off, even if it is known that
not all eggs were found. Due to its characteristic shape, this curve
is often referred to as the S-curve of software testing, cf. [11].

time spent testing

cumulative
number of
defects found

cutoff
point

Figure 1. The characteristic S-curve for defect removal.

To measure the effectiveness of the search process, let us assume
a fixed search cost of n dollars per minute. Let us further assume
that there is a fixed reward of m dollars for each egg found. If we
are finding r eggs per minute, it will pay to continue searching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PASTE’01, June 18-19, 2001, Snowbird, Utah, USA.

Copyright 2001 ACM 1-58113-413-4/01/0006…$5.00.

only as long as r× m > n. The only thing worthwhile observing in
this is that there is indeed a cutoff point where the cost of
searching will start exceeding the expected benefit.

In software testing there is of course no direct reward for every
bug found, but only a potential penalty for every bug missed by
the tester and found by the customer. The trade-off remains as
before. If the probability that a customer finds a bug is p and the
average associated penalty is q dollars, then the estimated cost of
a missed bug is p×q dollars, and our metric for continuing the
search becomes p×q > n, in line with the earlier formula. At some
point it is no longer practical to continue the search for residual
software defects. This, at least, is the conventional wisdom.

2. THE PRICE OF DEFECTS
Not every defect is equally damaging, and it may be a bit too
simplistic to consider only the average cost associated with bugs,
as we have done so far. There is no real hard data to fall back on
here for an assessment of how the severity of bugs correlates with
bug density, but we can formulate a hypothesis.

West [13] classifies defects into levels based on the number of
independent factors that are jointly required to cause their
occurrence. In this classification, a defect triggered by a single
cause is called a defect of level one. A defect of level two has two
independent causes that must occur in a particular combination.
The first cause could be the failure of a standard routine (“cannot
write – disk full”), and the second cause could be the failure of the
exception handling routine that is invoked to recover from the
first failure. Similarly, a defect of level ten would require ten
independent failures to occur in a specific combination. Clearly,
the higher the level of a defect, the less likely its occurrence will
be [2,4,6,13].

We can now formulate the hypothesis that the defect level of
potentially catastrophic failures, say the ones that can cause a
complete system failure, is relatively high, requiring multiple
things to fail in combination. If true, high impact failures will tend
to have a lower than average probability of occurrence, and are
more likely to survive traditional testing. The predicted effect is
illustrated in Figure 2.

number of
defects

cutoff
point

less likely /
more impact

Figure 2. Risk and damage: low-impact defects tend to occur
more frequently than high-impact defects.

The tail of the curve, corresponding to software defects with small
probabilities but large potential impact, can in principle reach
arbitrarily far. There is no simple bound here that could be
derived from product specifics. After all, also a ten-dollar product
can conceivably cause a million dollars in damages, if
catastrophically faulty

We now return to the S-curve from Figure 1. The cutoff point in
Figure 1 is reached when a particular number of software defects
has been found. As noted, this point is reached when the rate at
which defects are detected drops below a pre-determined limit. If
our assumption is valid that bugs are found approximately in
order of their probability of occurrence, we can indicate the cutoff
point also in Figure 2. The less likely bugs take longer and longer
to detect. It therefore seems plausible that the rate at which bugs
are detected in conventional testing is correlated with their
probability of occurrence.

If this is indeed the case, we should expect the population of
residual software defects to be skewed towards the higher-impact
defects with a lower probability of occurrence.

We can find some further support for these observations in the
literature. Studies have been done, for instance, in which the
defect densities for frequently used code are compared with that
for rarely user code. Presumably rarely used code (e.g., exception
handling code) contributes defects with a lower probability of
occurrence and frequently used code contributes more towards the
high probability flaws. One study reported the following results
for a telephone switching system.

“The fault density computed from test results indicated
that the rarely executed segments had fewer faults than
frequently executed ones, but in operation the order
reversed, even though the frequently executed segments
experienced very much more execution time. As might
be expected, the failures in the frequently executed code
occurred earlier during the operational period; rarely
executed code took much longer to get debugged and
probably still contained many residual faults at the end
of the first year.” [6]

Elsewhere the same report notes that the rarely executed code was
a significant factor in determining product quality as perceived by
the end-user:

“The size of the [rarely used] code was 20% less than
the [frequently used code], but it contributed 2.5 times
more to the post-release failures that brought the system
down.”

There is also a relation between perceived defect density and the
average number of users of a product. Here the irony of successful
product development comes into play. The more successful a
product is, the more users it has, and the more likely it is that even
unlikely defects will eventually be noticed. Since estimates of
residual defect density are typically based on the number of
customer complaints post-release, successful products would
appear to have a higher residual defect density than unsuccessful
products.

Statistics on product recalls for non-software products can
illustrate the existence of this phenomenon. The New York Times,
for instance, reported data from the Consumer Product Safety
Commission on recalls for nine different brands of a particular
type of baby seats [14]. The data, reproduced graphically in

Figure 3, includes the number of units that were sold for each
brand of baby seat at the time of the recall, the number of
complaints received and the number of injuries reported. Injuries
can result from rare, though no less dramatic, sequences of events.
(For instance, a baby falling from the seat on a hard surface, when
the handle breaks and the child restraint fails.) At first sight it
would appear that Figure 3 shows that the most popular products
are of the poorest quality: they have the largest number of
reported defects. In reality though, the likelihood of rare
combinations of events occurring increases with the number of
users of the product, whatever the product may be. The four
million users of product brand 9 will collectively encounter far
more problems than the six thousand users of brand 1, also if the
two brands are of comparable quality. This is as true for software
products as it apparently is for baby seats.

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9

Users

Complaints

Injuries

Figure 3. Correlation between the number of users and the
number of reported defects for nine brands of baby seats

subject to recalls [14]. (Connecting lines not part of the data.)

The conclusion is not that the amount of testing that is required
for a product should depend on an estimate of the eventual
number of users. Even a small number of users will eventually
stumble upon the problems that remain in the code. If one is
interested in building healthy long-term relations with users, it is
worth avoiding also the long-term disappointments.

It has been said that:

“A high fault density is more likely to be an indicator of
extensive testing than of poor quality.” [3]

The corollary, based on Figure 3, would be:

“A low residual defect density is more likely to be an
indicator of a small user population than of high product
quality.”

Perhaps more to the point, we can conclude that the often-used
metric of residual fault density is a relatively poor estimator of
product quality and of the adequacy of a testing effort. The
relations are more subtle.

3. CUSTOMER SATISFACTION
The search for bugs gradually becomes less effective and more
expensive with time. But, we have not yet taken into account the
end-user’s resilience to bugs. The user is willing to accept a mild
level of defects, as long as they can easily be worked around and
are fixed when reported. We can speculate a little on the relation
between customer ‘satisfaction’ and residual software defects. We

can expect, for instance, that if the residual software defect
density increases, customer satisfaction decreases. If the number
of defects encountered by the customer increases beyond a certain
level, we can expect that customer satisfaction will drop so low
that the users will avoid using the product.

The above assumes that our starting point is complete customer
satisfaction, with the target customer unaware of any defects in
the product. If the starting point is different, for instance if the
target customer assumes a buggy product, based on past
experience, it will be harder to re-establish customer satisfaction.
A curve that plots customer satisfaction against residual defect
density, therefore, will likely exhibit hysteresis (capturing the
notion that customers have memory and are affected by past
experiences).

An attempt to capture these notions is shown in Figure 4. If we
start at the point labeled 1 on the upper curve in Figure 4, and
slowly move towards point 2, small changes in the residual defect
density do not seem to affect customer satisfaction all that much.
When we pass 2, though, the effect will become very noticeable.
Similarly, is we start on the lower curve at 3 and move towards 5,
small changes in residual defect density do not cause easily
observable effects, not even if we pass 4, restoring the same
residual defect density we had before we started losing users at
point 2. Any improvement in defect density will now have to be
considerably greater, before it can restore customer confidence
that the product is worth using. (It might explain why many
companies often decide to abandon a product at this point, rather
than attempt to restore lost customer confidence.)

defects found
by customer

customer
satisfaction

satisfied
customers

unsatisfied
customers
(lost sales)

1

2

34

5

Figure 4. Changes in customer satisfaction as a function of
changes in residual defect density.

4. DEFECTS AND FEATURES
So far we have conveniently assumed that there is only one
tradeoff to be considered: the cost of fixing bugs versus the cost
of not fixing them. In industrial software development the
tradeoffs are often far more complex. If one extra person is added
to a product development team, for instance, is the person best
assigned to new feature development or to increased testing of
existing functionality? New functionality may make the product
more attractive to users, but not at the expense of an increase in
residual defect density.

An attempt to capture these types of trade-offs is illustrated in
Figure 5.

Each point in the coordinate system shown here indicates a
particular ratio of defects versus features. The gray area is the area
to be avoided, where customer satisfaction decreases. If we
increase the number of defects, we move to the right, into the
forbidden zone. If we increase the number of features, we move
upward. Customer resilience to bugs may increase slightly with
attractive new functionality, but only to a limited extent.
Decreasing functionality is not attractive, unless it is paired with a
considerable gain in reliability.

more
features

fewer
defects

more
defects

fewer
features

α

Figure 5. Trading feature development against defect removal.

The origin of this figure indicates the critical point where the
product has just enough functionality to attract users and few
enough defects to keep them satisfied. If more features are added,
the tolerance for defects may increase slightly, and if features are
taken away the tolerance is likely to decrease somewhat.

The dashed arrow in Figure 5 indicates an optimal development
trajectory, where we combine an increase in functionality with a
decrease in defect density. The distance to the gray area is
increased. The same arrow rotated right, skirting the edge of the
gray zone, represents a more typical trajectory.

The angle α is the factor to control: trading new functionality
against product reliability and defect density. There would be no
point in increasing functionality if it leads to a simultaneous
decrease in customer satisfaction. If we are in the gray area, the
first priority should be to decrease defect density (following the
shortest path out of the gray area). If we are already safely outside
the gray area, our best strategy is to increase the distance to that
area as much as possible, and the same principle applies. As
before, we can stop the defect reduction effort when the rate of
change drops below a pre-determined cutoff point (cf. Figure 1).

5. THE CASE FOR FORMAL METHODS
If for convenience we assume that the above argument is
somewhat plausible, can it justify the need for the application of
more rigorous software verification techniques, e.g. based on
model checking techniques [7,8]?

We can take it to be the objective of software testing to maintain a
safe distance from the gray area in Figure 5, from the transition
point 2 in Figure 4, and from the cutoff points in Figures 1 and 2.

Economic factors may dictate that it is increasingly expensive and
ineffective to pursue lower residual defect density with
conventional testing techniques. If Figure 2 holds, it means that
no matter how long we continue the standard approach to testing,
we will never reliably uncover the rare defects with potentially
catastrophic effects.

Another way to illustrate these effects is shown in Figure 6. Here
we classify software defects into two categories: their frequency
of occurrence and their potential impact.

low
probability

high
probability

harmless catastrophic

A B

C D

Figure 6. Types of software defects. A+B is adequately covered
by conventional software testing techniques. C+D can be

covered with model checking techniques. Of these D is critical.

Conventional testing techniques excel in intercepting defects in
categories A and B. They slowly run out of steam, though, when
attempting to approach the lower probability defects in categories
C and D. Software verification techniques are, by design, less
sensitive to the probability of occurrence of a defect, since they
look for possible behaviors, and not for probable behaviors, e.g.
[7]. They can offer an advantage over conventional testing
techniques in categories C and D.

We speculated in Figure 2 that lower probability defects are more
likely to be high impact than higher probability defects. If so, then
software defects will tend to collect in categories A and D, and are
less likely to be found in categories B and C. Most software
development efforts work on the basis that conventional testing
can adequately intercept the defects in category A. The defects in
category D, however, are often not adequately covered, as
evidenced by a series of well publicized software failures in recent
years. It is our thesis that software verification techniques have a
better chance of intercepting the defects in category D.

Software verification techniques avoid sensitivity to defect
probability, and therefore they can directly affect the placement of
the cutoff point of a restricted verification effort, cf. Figure 2.
They do remain subject to the economic considerations that are
illustrated in Figure 1, but we can expect the effect of their
application to be an overall reduction in defects across all
probabilities.

number of
defects

progress of
testing

found not yet found

less likely /
more impact

Figure 7. Conventional testing tends to intercept software
defects in order of their probability of occurrence.

An attempt to illustrate these effects graphically is given in
Figures 7 and 8.

Figure 7 illustrates which fraction of the residual defects at any
point during conventional system testing is most likely to be
removed first. In conventional testing higher probability defects
are intercepted first. Lower probability defects remain,
irrespective of their potential impact. We have speculated though
that high impact is correlated with low probability, which if true
would mean that a comparatively large fraction of the high-impact
defects would remain.

number of
defects

progress of
verification

found

not yet
found

less likely /
more impact

Figure 8. Verification techniques based on model checking, are
insensitive to the probability of occurrence of defects and can

intercept defects more uniformly across the range of
probabilities.

Figure 8 illustrates the effect of applying software verification
techniques based on model checking. This time, the reduction in
residual defects is largely independent of the probability of
occurrence of a defect in an average system execution. Defects are
removed all across the curve, comparatively capturing a larger
fraction of the high-impact defects (and a smaller fraction of the
low-impact defects).

What fraction of the residual defects will be encountered by the
end-users of the software? As illustrated in Figure 3, the size of
the customer base will have an effect on how quickly these defects
may be encountered. Let’s assume that a defect has probability p
of occurring during a run of the software, the average user runs
the software n times each year, and continues to use the software
for m years. The average user will encounter the defect at least
once if p× n× m>1. If there are c users, then we can expect that
one or more of the users will encounter the defect at least once if
p× n× m× c > 1.

To make this a little more specific, let us consider what this means
for software products that are likely to be used on a large scale
(such as telephone switching software, web-browsers, office
software). The software typically is used thousands to millions of
times each year by potentially millions of users. If n is in the order
of 105, c is in the order of 106, and m is 10 years, then p will have
to be smaller than 10–12 to avoid a bug from occurring. That is an
extraordinarily small probability.

6. IN CONCLUSION
The observations from this paper are based on a small number of
hypotheses. The most suspect of these is likely the supposition
that there is a correlation between the degree of damage that a
defect can cause and its probability of occurrence (Figures 2, 7,
and 8). This hypothesis can of course be tested, and proven to be
either valid or invalid. It could be of considerable interest if such
an experiment would be conducted.

The question: “what is the cost saved by detecting a defect during
testing?” can be compared to the question “what is the cost saved
by adding a small amount of fuel into the tank of your car?”
Clearly, if the tank is empty and the small amount of fuel can help
you reach a gas station, the benefit is large. If the tank is almost
full, the benefit is small. If we don’t know if the tank is full or
empty, it might be wise to add some fuel whenever possible.

In the case of software testing, we indeed do not have a reliable
fuel gauge, because of the difficulties of measuring residual defect
density. A further complicating factor, illustrated in Figure 4, is
that once our car runs out of fuel it may be extremely hard to get it
restarted. Without a fuel gauge and without realistic hope of
restarting a stalled engine, the wise course of action would indeed
be to refuel the tank whenever possible, by any means available.

In our own work we have shown that the application of software
verification techniques in the commercial development of call
processing code can increase the number of software defects
intercepted during system testing ten-fold, when compared with
conventional testing [8].

The question is perhaps not “what is the justification for using
software verification techniques in software development,” but
“what would be the justification for not doing so?”

7. ACKNOWLEDGEMENTS
Many thanks to Al Aho, Jon Bentley, and Margaret Smith for
inspiring discussions of the material that is presented here.

8. REFERENCES
[1] Cavano, J.P., and LaMonica, F.S., Quality assurance in

future development environments. IEEE Software, Sept.
1987, pp. 26-34.

[2] Eckhardt, D.E., Caglayan, A.K., Kelly, J.P.J., Knight, J.C.,
Lee, L.D., McAllister, D.F., and Vouk, M.A. An
experimental evaluation of software redundancy as a strategy
for improving reliability, IEEE Transactions on Software
Engineering, Vol. 17, No. 7, 1991, pp. 692-702.

[3] Fenton, N., and Neil, M., New directions in software metrics.
http://www.agena.co.uk/new_directions_metrics/start.h
tm

[4] Fenton, N., and Neil, M., A critique of software prediction
models. IEEE Trans. On Software Engineering, Vol., 25, No.
5, 1999, pp. 675-689.

[5] Fenton, N., and Ohlsson, N., Quantitative analysis of faults
and failures in a complex software system. IEEE Trans. On
Software Engineering, Vol. 26, No. 8, 2000, pp. 797-814.

[6] Hecht, H., and Wallace, D., Towards more effective testing
for high assurance systems. Proc. High Assurance Systems
Engineering Conf., Washington, DC, August 1997.
http://hissa.ncsl.nist.gov/project/hase.html

[7] Holzmann, G.J., The model checker Spin. IEEE Trans. on
Software Engineering, Vol 23, No. 5, May 1997, pp. 279-
295.

[8] Holzmann, G.J., and Smith, M.H., Automating software
feature verification, Bell Labs Technical Journal, Vol. 5, No.
2, April-June 2000, pp. 72-87.

[9] Jones, C., Applied software measurement. McGraw-Hill,
1991, p. 177.

[10] Joyce, E., Is error-free software possible? Datamation, Feb.
18, 1989.

[11] Kan, S.H., Parrish, J., and Manlove, D., In-process metrics
for software testing, IBM Systems Journal, Vol. 40, No. 1,
2001, p. 220.

[12] Musa, J.D., Iannino, A., and Kazuhira, O., Software
reliability: measurement, prediction, application. McGraw-
Hill, 1990, p. 116.

[13] West, C.H., Protocol validation in complex systems. Proc. 8th

ACM Symposium on Principles of Distributed Computing,
1989, pp. 303-312.

[14] New York Times, Tuesday May 1, 2001, Section C, pp. 1-2.

