
Exhaustive Analysis of a Mutual Exclusion Algorithm
Gerard J. Holzmann

MH 11271 Phone 6335 Room 2C-521
research!gerard

9 June 1987

Abstract

With minor modifications a reachability analysis technique that was developed for tracing design
errors in formalized descriptions of communication protocols, can be used to verify properties of
mutual exclusion algorithms. The paper gives an example of a mutual exclusion algorithm,
proven correct by its author with an informal argument, and shown to be erroneous with relatively
little effort by an exhaustive symbolic execution. For a three process model, the longest execution
run performed, took 13 seconds of CPU time on a VAX-11/750, and produced 13 error
sequences. The 13 sequences revealed three different types of error in the algorithm.

1. Introduction

A mutual exclusion algorithm is meant to provide concurrent processes a mutually exclusive access to
a common critical region in their code, while relying only on the atomicity of individual read and write
operations. A first solution to this problem, for 2 processes, is attributed to the Dutch mathematician
Dekker (1962). The solution was generalized forN processes by Dijkstra, and published in 1968
[Dijkstra ’68]. Every few years since then, an improvement or an alternative solution is published,
accompanied by a correctness argument that is not always more understandable than the algorithm it
describes. For a recent overview see e.g. [Lamport ’86].

One such improved algorithm was submitted to a journal and then to me for review. Because a valida-
tion of the algorithm seemed easier than a validation of its proof, I constructed the following model in
the validation languageArgos [Holz ’87a].

#define N 3 /* the number of concurrent processes */

pvar time, someone_in, critical;
pvar req[N];
pvar cand[N];

mutex(id)
{ pvar n, m;

req[id] = time;
n = (id+1)%N;
m = 0;
do
:: (m < N-1) -> (req[n] >= req[id]) -> m++; n = (n+1)%N
:: (m == N-1) -> break
od;

- 2 -

L2: (someone_in == 0);
cand[id] = 1;
if
:: (someone_in == 1) -> cand[id] = 0; goto L2
:: (someone_in == 0) -> someone_in = 1
fi;
n = id+1;
do
:: (n < N) -> cand[n] = 0; n++
:: (n >= N) -> break
od;

L3: if
:: (cand[id] == 0) -> goto L2
:: (cand[id] == 1) -> skip
fi;
n = 0;

do
:: (n < id) ->

if
:: (cand[n] == 1) -> goto L3
:: (cand[n] == 0) -> n++
fi

:: (n >= id) -> break
od;

critical++; (critical == 1); critical--;

cand[id] = 0;
req[id] = 100;
time++;
someone_in = 0

}

proc P[N] /* an array of N processes */
{

mutex(_PROCID)
}

2. Intended working

The Argos program above contains a procedure declarationmutex(id) and a declaration for an array of
N processesP[N]. N is a constant defined in the first line of the program. There are three global
variables, namedtime, someone_in, andcritical, and two global arrays ofN variables each, named
req[N] and cand[N]. Each process has a unique identity between 0 andN − 1. The identity is avail-
able as a predefined variable _PROCID, which is passed by each process to proceduremutex.

In the first line ofmutex, the process makes a request for access to the critical region by setting its slot
in arrayreq to the value of a variabletime. This variable is incremented each time a process leaves its
critical region. The next six lines inmutex are meant give priority to competing processes that
selected a lower value oftime, i.e. to processes that arrived earlier than the current process. Thedo
loop lists two options (preceded by double colons). An option within such a loop can only be selected

- 3 -

for execution if its first statement (immediately following the double colon) is ‘executable,’ or in this
case: if the condition evaluates totrue. The loop terminates when thebreak statement is executed.

At label L2 a single condition is listed. InArgos statements a small set of rules determines if state-
ments are executable or not. Assignments, for instance, are always executable, but conditions are only
executable if they are true. If a non-executable statement is the only option that a process has to con-
tinue, that process will block. In this case, the executing process will block until (someone_in ≡ 0). It
will then announce itself as a candidate for entering the critical region, and will have to compete for
access with those processes (if any) that selected the same value oftime.

A second check for the value ofsomeone_in is performed, and if the value has changed, the announce-
ment viacand[id] is undone and the wait at labelL2 is resumed. If the second test is passed success-
fully, someone_in is now set to 1, thus blocking further attempts to pass to this part of the algorithm,
and a check is done on the presence of competing processes with ahigher id number that succeeded in
announcing their candidacy for entry throughcand. If any of these processes is found, their entry in
cand is reset. Another test follows to see if no other process has reset the current process’s candidacy.
Then a final check is done on competing processes with alower id number. These processes take
precedence in entering their critical section, and should succeed in turning the current process’ entry in
cand off.

Once the critical section is entered, a count is incremented. The count should never hav e any other
value than 1 once the process has obtained exclusive access to this portion of the code. A test (criti-
cal ≡ 1) will block, and cause a deadlock, if this assertion is violated.

Upon exit from the critical section, the variables used are reset to their initial values, and for the pur-
poses of this test, the entry inreq is set to a non-competing value.

3. Analysis

The algorithm is complex enough to make it not entirely obvious that it either will or will not work as
advertised. The version above can be compiled into an extended FSM model, and analyzed for the
absence of deadlocks by a conventional protocol analyzer such as ‘trace’ [Holz ’87b] if some of its
search heuristics are turned off. Trace is optimized for synchronization via message passing. Access
to a variable can then always be interpreted as an internal step, that cannot affect the progress of com-
peting processes. Here, variables are global, and deliberately used to enforce the synchronization. A
purely exhaustive search mode was added to ‘trace’ to allow for an analysis of this specific problem.
For N = 2, trace finds a violation of the mutual exclusion requirement in 12 seconds of CPU time on a
VAX-8550, or in 134 seconds on a VAX-11/750 (see also below). Though this first test already proves
the inadequacy of the algorithm, it is interesting to test the behavior also for larger numbers of pro-
cesses. ForN > 2, the number of cases to analyze in an exhaustive symbolic execution, however,
grows very rapidly.

The algorithm can also be rewritten without procedure calls and arrays, so that it can be translated into
a state vector model and validated more efficiently withsupertrace [Holz ’87c]. For N = 2 the rewrit-
ten algorithm is analyzed exhaustively withsupertrace in 0.1 seconds of CPU time on a VAX-8550, or
in 1.4 seconds on a VAX-11/750, producing the same deadlock revealed bytrace before. ForN = 3
the algorithm becomes:

pvar time, someone_in, critical;
pvar req_0, req_1, req_2;
pvar cand_0, cand_1, cand_2;

proc P0
{

req_0 = time;
(req_0 <= req_1 && req_0 <= req_2);

- 4 -

L2: (someone_in == 0);
cand_0 = 1;
if
:: (someone_in == 1) -> cand_0 = 0; goto L2
:: (someone_in == 0) -> someone_in = 1
fi;
cand_1 = 0; /* cand_n n > i */
cand_2 = 0;
if
:: (cand_0 == 0) -> goto L2
:: (cand_0 == 1) -> skip
fi;

/* if cand_n -> goto L3 n < i */
critical++;
(critical == 1);
critical--;

cand_0 = 0;
req_0 = 100;
time++;
someone_in = 0;

end0: skip
}

proc P1
{

req_1 = time;
(req_1 <= req_0 && req_1 <= req_2);

L2: (someone_in == 0);
cand_1 = 1;
if
:: (someone_in == 1) -> cand_1 = 0; goto L2
:: (someone_in == 0) -> someone_in = 1
fi;

cand_2 = 0;
L3: if

:: (cand_1 == 0) -> goto L2
:: (cand_1 == 1) -> skip
fi;
if
:: (cand_0 == 1) -> goto L3 /* n < i */
:: (cand_0 == 0) -> skip
fi;

critical++;
(critical == 1);
critical--;

- 5 -

cand_1 = 0;
req_1 = 100;
time++;
someone_in = 0;

end1: skip
}

proc P2
{

req_2 = time;
(req_2 <= req_0 && req_2 <= req_1);

L2: (someone_in == 0);
cand_2 = 1;
if
:: (someone_in == 1) -> cand_2 = 0; goto L2
:: (someone_in == 0) -> someone_in = 1
fi;

L3: if
:: (cand_2 == 0) -> goto L2
:: (cand_2 == 1) -> skip
fi;
if
:: (cand_0 == 1 || cand_1 == 1) -> goto L3 /* n < i */
:: (cand_0 == 0 && cand_1 == 0) -> skip
fi;

critical++;
(critical == 1);
critical--;

cand_2 = 0;
req_2 = 100;
time++;
someone_in = 0;

end2: skip
}

This 3-process specification is analyzed exhaustively bysupertrace in 1.2 seconds on a VAX-8550,
(12.9 seconds on the VAX-11/750), generating 6,184 unique states of which 13 are flagged as dead-
locks. The longest unique execution path is 55 steps long (one step is a single assignment or boolean
condition).

4. Types of Error

In four cases, the mutual exclusion requirement is violated, and the lock occurs on condition (criti-
cal ≡ 1). In four other cases, two processes succeed in reaching their endstates, while the third process
gets stuck in an infinite wait at labelL2. In the remaining fiv e error sequences just one process
reaches its end state, leaving the two other process blocked. The complete error sequences, as reported
by supertrace are listed in the appendix. Each error is preceded by a line that prints the value of all

- 6 -

variables at the time of the lock. The variables are given in the following order:

G{time,someone_in,req_0,req_1,req_2,cand_0,cand_1,cand_2,critical,}

The error itself is given as a sequence of events. The first number followed by a colon is the step num-
ber. The second number is the identity of the process executing the step (0, 1 or 2). The remainder of
the line is the source text of the event executed. Braces have no particular significance.

5. A Working Algorithm

Out of curiosity, the following algorithm, presented in [Lamport ’86], was also validated with an
exhaustive search. The algorithm is called "the one-bit algorithm". InArgos the specification looks as
follows.

#define N 3

#define false 0
#define true 1

pvar x[N];
pvar critical = 0;

mutex(id)
{ pvar j;

again: x[id] = true;
j = 0;
do
:: (j < id) -> if

:: (x[j] == true) -> x[id] = false;
(x[j] == false);
goto again

:: (x[j] == false) -> skip
fi;
j++

:: (j >= id) -> break
od;
j = id+1;
do
:: (j < N) -> (x[j] == false)
:: (j >= N) -> break
od;
critical++;
(critical == 1);
critical--;
x[id] = false;
goto again

}

proc compete[N]
{

mutex(_PROCID)
}

For two processes the exhaustive validation (with the conventional validator) takes 6.12 seconds on a
VAX-11/750. For three processes the validation takes approximately 17 minutes. As expected, for this
algorithm no errors are reported.

- 7 -

References

[Dijkstra ’65] Dijkstra, E.W. (1965), "Solution of a problem in concurrent programming control,"
CACM, Vol. 8, No. 9, Sept. 1965, p. 569.

[Holz ’87a] Holzmann, G.J., "Manual for the protocol analyzer ‘trace,’ AT&T Bell Laboratories, Com-
puting Science Technical Report No. 134, February 1987, 27 pgs.

[Holz ’87b] Holzmann, G.J., "Automated Protocol Validation in Argos: Assertion Proving ans Scatter
Searching," IEEE Trans. on Software Engineering, Vol. 13, No. 6, June 1987.

[Holz ’87c] Holzmann, G.J., "An improved protocol reachability analysis technique," AT&T Bell
Labs, TM 11271-870527-07, May 27, 1987, 18 pgs.

[Lamport ’86] Lamport, L. (1986), "The Mutual Exclusion Problem − parts I and II", Journal of the
ACM, Vol. 33, No. 2, April 1986, pp. 313-347.

- 8 -

APPENDIX
The 13 Error Sequences

G{2,1,4,4,1,0,0,0,0,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 0: (someone_in = 1)
6: 0: (cand_1 = 0)
7: 0: (cand_2 = 0)
8: 0: (cand_0 == 1)
9: 0: critical = critical + 1
10: 0: (critical == 1)
11: 0: critical = critical - 1
12: 0: (cand_0 = 0)
13: 0: (req_0 = 100)
14: 0: time = time + 1
15: 0: (someone_in = 0)
16: 1: (req_1 = time)
17: 2: (req_2 = time)
18: 1: ((req_1 <= req_0) && (req_1 <= req_2))
19: 1: (someone_in == 0)
20: 1: (cand_1 = 1)
21: 1: (someone_in == 0)
22: 2: ((req_2 <= req_0) && (req_2 <= req_1))
23: 2: (someone_in == 0)
24: 1: (someone_in = 1)
25: 2: (cand_2 = 1)
26: 1: (cand_2 = 0)
27: 1: (cand_1 == 1)
28: 1: (cand_0 == 0)
29: 1: critical = critical + 1
30: 1: (critical == 1)
31: 1: critical = critical - 1
32: 1: (cand_1 = 0)
33: 1: (req_1 = 100)
34: 1: time = time + 1
35: 1: (someone_in = 0)
36: 2: (someone_in == 0)
37: 2: (someone_in = 1)
38: 2: (cand_2 == 0)

- 9 -

G{2,1,4,4,0,0,0,0,0,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 0: (someone_in = 1)
6: 0: (cand_1 = 0)
7: 0: (cand_2 = 0)
8: 0: (cand_0 == 1)
9: 0: critical = critical + 1
10: 0: (critical == 1)
11: 0: critical = critical - 1
12: 0: (cand_0 = 0)
13: 0: (req_0 = 100)
14: 1: (req_1 = time)
15: 1: ((req_1 <= req_0) && (req_1 <= req_2))
16: 2: (req_2 = time)
17: 0: time = time + 1
18: 0: (someone_in = 0)
19: 1: (someone_in == 0)
20: 1: (cand_1 = 1)
21: 1: (someone_in == 0)
22: 2: ((req_2 <= req_0) && (req_2 <= req_1))
23: 2: (someone_in == 0)
24: 1: (someone_in = 1)
25: 2: (cand_2 = 1)
26: 1: (cand_2 = 0)
27: 1: (cand_1 == 1)
28: 1: (cand_0 == 0)
29: 1: critical = critical + 1
30: 1: (critical == 1)
31: 1: critical = critical - 1
32: 1: (cand_1 = 0)
33: 1: (req_1 = 100)
34: 1: time = time + 1
35: 1: (someone_in = 0)
36: 2: (someone_in == 0)
37: 2: (someone_in = 1)
38: 2: (cand_2 == 0)

- 10 -

G{1,1,4,0,1,0,0,0,0,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 1: (req_1 = time)
6: 1: ((req_1 <= req_0) && (req_1 <= req_2))
7: 1: (someone_in == 0)
8: 0: (someone_in = 1)
9: 1: (cand_1 = 1)
10: 0: (cand_1 = 0)
11: 0: (cand_2 = 0)
12: 0: (cand_0 == 1)
13: 0: critical = critical + 1
14: 0: (critical == 1)
15: 0: critical = critical - 1
16: 0: (cand_0 = 0)
17: 0: (req_0 = 100)
18: 0: time = time + 1
19: 0: (someone_in = 0)
20: 1: (someone_in == 0)
21: 1: (someone_in = 1)
22: 1: (cand_2 = 0)
23: 1: (cand_1 == 0)
24: 2: (req_2 = time)

- 11 -

G{1,1,4,0,0,0,0,0,0,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 1: (req_1 = time)
6: 1: ((req_1 <= req_0) && (req_1 <= req_2))
7: 1: (someone_in == 0)
8: 0: (someone_in = 1)
9: 1: (cand_1 = 1)
10: 0: (cand_1 = 0)
11: 0: (cand_2 = 0)
12: 0: (cand_0 == 1)
13: 0: critical = critical + 1
14: 0: (critical == 1)
15: 0: critical = critical - 1
16: 0: (cand_0 = 0)
17: 0: (req_0 = 100)
18: 2: (req_2 = time)
19: 0: time = time + 1
20: 0: (someone_in = 0)
21: 1: (someone_in == 0)
22: 1: (someone_in = 1)
23: 1: (cand_2 = 0)
24: 1: (cand_1 == 0)
25: 2: ((req_2 <= req_0) && (req_2 <= req_1))

- 12 -

G{2,1,4,0,4,0,0,0,0,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 1: (req_1 = time)
6: 1: ((req_1 <= req_0) && (req_1 <= req_2))
7: 1: (someone_in == 0)
8: 0: (someone_in = 1)
9: 1: (cand_1 = 1)
10: 0: (cand_1 = 0)
11: 0: (cand_2 = 0)
12: 0: (cand_0 == 1)
13: 0: critical = critical + 1
14: 0: (critical == 1)
15: 0: critical = critical - 1
16: 0: (cand_0 = 0)
17: 0: (req_0 = 100)
18: 2: (req_2 = time)
19: 0: time = time + 1
20: 0: (someone_in = 0)
21: 1: (someone_in == 0)
22: 2: ((req_2 <= req_0) && (req_2 <= req_1))
23: 2: (someone_in == 0)
24: 2: (cand_2 = 1)
25: 2: (someone_in == 0)
26: 2: (someone_in = 1)
27: 2: (cand_2 == 1)
28: 2: ((cand_0 == 0) && (cand_1 == 0))
29: 2: critical = critical + 1
30: 2: (critical == 1)
31: 2: critical = critical - 1
32: 2: (cand_2 = 0)
33: 2: (req_2 = 100)
34: 2: time = time + 1
35: 2: (someone_in = 0)
36: 1: (someone_in = 1)
37: 1: (cand_2 = 0)
38: 1: (cand_1 == 0)

- 13 -

G{1,1,4,0,0,0,0,1,2,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 1: (req_1 = time)
6: 1: ((req_1 <= req_0) && (req_1 <= req_2))
7: 1: (someone_in == 0)
8: 1: (cand_1 = 1)
9: 1: (someone_in == 0)
10: 0: (someone_in = 1)
11: 1: (someone_in = 1)
12: 1: (cand_2 = 0)
13: 1: (cand_1 == 1)
14: 0: (cand_1 = 0)
15: 0: (cand_2 = 0)
16: 0: (cand_0 == 1)
17: 0: critical = critical + 1
18: 0: (critical == 1)
19: 0: critical = critical - 1
20: 0: (cand_0 = 0)
21: 0: (req_0 = 100)
22: 1: (cand_0 == 0)
23: 1: critical = critical + 1
24: 2: (req_2 = time)
25: 0: time = time + 1
26: 0: (someone_in = 0)
27: 2: ((req_2 <= req_0) && (req_2 <= req_1))
28: 2: (someone_in == 0)
29: 2: (cand_2 = 1)
30: 2: (someone_in == 0)
31: 2: (someone_in = 1)
32: 2: (cand_2 == 1)
33: 2: ((cand_0 == 0) && (cand_1 == 0))
34: 2: critical = critical + 1

- 14 -

G{1,1,4,0,0,0,1,0,2,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 1: (req_1 = time)
6: 1: ((req_1 <= req_0) && (req_1 <= req_2))
7: 1: (someone_in == 0)
8: 1: (cand_1 = 1)
9: 1: (someone_in == 0)
10: 2: (req_2 = time)
11: 2: ((req_2 <= req_0) && (req_2 <= req_1))
12: 2: (someone_in == 0)
13: 2: (cand_2 = 1)
14: 2: (someone_in == 0)
15: 0: (someone_in = 1)
16: 0: (cand_1 = 0)
17: 1: (someone_in = 1)
18: 2: (someone_in = 1)
19: 2: (cand_2 == 1)
20: 0: (cand_2 = 0)
21: 0: (cand_0 == 1)
22: 0: critical = critical + 1
23: 0: (critical == 1)
24: 0: critical = critical - 1
25: 0: (cand_0 = 0)
26: 0: (req_0 = 100)
27: 0: time = time + 1
28: 0: (someone_in = 0)
29: 1: (cand_2 = 0)
30: 1: (cand_1 == 0)
31: 1: (someone_in == 0)
32: 2: ((cand_0 == 0) && (cand_1 == 0))
33: 1: (cand_1 = 1)
34: 1: (someone_in == 0)
35: 1: (someone_in = 1)
36: 1: (cand_2 = 0)
37: 1: (cand_1 == 1)
38: 1: (cand_0 == 0)
39: 1: critical = critical + 1
40: 2: critical = critical + 1

- 15 -

G{1,0,4,0,0,0,0,0,2,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 1: (req_1 = time)
6: 1: ((req_1 <= req_0) && (req_1 <= req_2))
7: 1: (someone_in == 0)
8: 1: (cand_1 = 1)
9: 1: (someone_in == 0)
10: 2: (req_2 = time)
11: 2: ((req_2 <= req_0) && (req_2 <= req_1))
12: 2: (someone_in == 0)
13: 2: (cand_2 = 1)
14: 2: (someone_in == 0)
15: 0: (someone_in = 1)
16: 1: (someone_in = 1)
17: 2: (someone_in = 1)
18: 2: (cand_2 == 1)
19: 1: (cand_2 = 0)
20: 1: (cand_1 == 1)
21: 0: (cand_1 = 0)
22: 0: (cand_2 = 0)
23: 0: (cand_0 == 1)
24: 0: critical = critical + 1
25: 0: (critical == 1)
26: 0: critical = critical - 1
27: 0: (cand_0 = 0)
28: 0: (req_0 = 100)
29: 0: time = time + 1
30: 0: (someone_in = 0)
31: 1: (cand_0 == 0)
32: 1: critical = critical + 1
33: 2: ((cand_0 == 0) && (cand_1 == 0))
34: 2: critical = critical + 1

- 16 -

G{1,1,4,1,0,0,0,0,0,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 0: (someone_in == 0)
5: 2: (req_2 = time)
6: 2: ((req_2 <= req_0) && (req_2 <= req_1))
7: 2: (someone_in == 0)
8: 0: (someone_in = 1)
9: 0: (cand_1 = 0)
10: 2: (cand_2 = 1)
11: 0: (cand_2 = 0)
12: 0: (cand_0 == 1)
13: 0: critical = critical + 1
14: 0: (critical == 1)
15: 0: critical = critical - 1
16: 0: (cand_0 = 0)
17: 0: (req_0 = 100)
18: 0: time = time + 1
19: 0: (someone_in = 0)
20: 1: (req_1 = time)
21: 2: (someone_in == 0)
22: 2: (someone_in = 1)
23: 2: (cand_2 == 0)

- 17 -

G{1,1,0,4,0,0,0,0,0,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 1: (req_1 = time)
5: 1: ((req_1 <= req_0) && (req_1 <= req_2))
6: 1: (someone_in == 0)
7: 1: (cand_1 = 1)
8: 1: (someone_in == 0)
9: 2: (req_2 = time)
10: 2: ((req_2 <= req_0) && (req_2 <= req_1))
11: 2: (someone_in == 0)
12: 1: (someone_in = 1)
13: 0: (someone_in == 1)
14: 0: (cand_0 = 0)
15: 2: (cand_2 = 1)
16: 1: (cand_2 = 0)
17: 1: (cand_1 == 1)
18: 1: (cand_0 == 0)
19: 1: critical = critical + 1
20: 1: (critical == 1)
21: 1: critical = critical - 1
22: 1: (cand_1 = 0)
23: 1: (req_1 = 100)
24: 1: time = time + 1
25: 1: (someone_in = 0)
26: 0: (someone_in == 0)
27: 0: (cand_0 = 1)
28: 2: (someone_in == 0)
29: 2: (someone_in = 1)
30: 0: (someone_in == 1)
31: 0: (cand_0 = 0)
32: 2: (cand_2 == 0)

- 18 -

G{1,1,0,4,0,1,0,0,2,} deadlock
0: 0: (req_0 = time)
1: 0: ((req_0 <= req_1) && (req_0 <= req_2))
2: 0: (someone_in == 0)
3: 0: (cand_0 = 1)
4: 1: (req_1 = time)
5: 1: ((req_1 <= req_0) && (req_1 <= req_2))
6: 1: (someone_in == 0)
7: 1: (cand_1 = 1)
8: 1: (someone_in == 0)
9: 2: (req_2 = time)
10: 2: ((req_2 <= req_0) && (req_2 <= req_1))
11: 2: (someone_in == 0)
12: 2: (cand_2 = 1)
13: 2: (someone_in == 0)
14: 1: (someone_in = 1)
15: 0: (someone_in == 1)
16: 0: (cand_0 = 0)
17: 2: (someone_in = 1)
18: 2: (cand_2 == 1)
19: 1: (cand_2 = 0)
20: 1: (cand_1 == 1)
21: 1: (cand_0 == 0)
22: 1: critical = critical + 1
23: 1: (critical == 1)
24: 1: critical = critical - 1
25: 1: (cand_1 = 0)
26: 1: (req_1 = 100)
27: 1: time = time + 1
28: 1: (someone_in = 0)
29: 0: (someone_in == 0)
30: 2: ((cand_0 == 0) && (cand_1 == 0))
31: 0: (cand_0 = 1)
32: 0: (someone_in == 0)
33: 0: (someone_in = 1)
34: 0: (cand_1 = 0)
35: 0: (cand_2 = 0)
36: 0: (cand_0 == 1)
37: 0: critical = critical + 1
38: 2: critical = critical + 1

- 19 -

G{1,1,1,4,0,0,0,0,0,} deadlock
0: 1: (req_1 = time)
1: 1: ((req_1 <= req_0) && (req_1 <= req_2))
2: 1: (someone_in == 0)
3: 1: (cand_1 = 1)
4: 1: (someone_in == 0)
5: 2: (req_2 = time)
6: 2: ((req_2 <= req_0) && (req_2 <= req_1))
7: 2: (someone_in == 0)
8: 1: (someone_in = 1)
9: 2: (cand_2 = 1)
10: 1: (cand_2 = 0)
11: 1: (cand_1 == 1)
12: 1: (cand_0 == 0)
13: 1: critical = critical + 1
14: 1: (critical == 1)
15: 1: critical = critical - 1
16: 1: (cand_1 = 0)
17: 1: (req_1 = 100)
18: 1: time = time + 1
19: 0: (req_0 = time)
20: 1: (someone_in = 0)
21: 2: (someone_in == 0)
22: 2: (someone_in = 1)
23: 2: (cand_2 == 0)

- 20 -

G{2,1,4,1,4,0,0,0,0,} deadlock
0: 2: (req_2 = time)
1: 2: ((req_2 <= req_0) && (req_2 <= req_1))
2: 2: (someone_in == 0)
3: 2: (cand_2 = 1)
4: 2: (someone_in == 0)
5: 2: (someone_in = 1)
6: 2: (cand_2 == 1)
7: 2: ((cand_0 == 0) && (cand_1 == 0))
8: 2: critical = critical + 1
9: 2: (critical == 1)
10: 2: critical = critical - 1
11: 2: (cand_2 = 0)
12: 2: (req_2 = 100)
13: 2: time = time + 1
14: 0: (req_0 = time)
15: 1: (req_1 = time)
16: 0: ((req_0 <= req_1) && (req_0 <= req_2))
17: 1: ((req_1 <= req_0) && (req_1 <= req_2))
18: 2: (someone_in = 0)
19: 0: (someone_in == 0)
20: 0: (cand_0 = 1)
21: 0: (someone_in == 0)
22: 1: (someone_in == 0)
23: 0: (someone_in = 1)
24: 1: (cand_1 = 1)
25: 0: (cand_1 = 0)
26: 0: (cand_2 = 0)
27: 0: (cand_0 == 1)
28: 0: critical = critical + 1
29: 0: (critical == 1)
30: 0: critical = critical - 1
31: 0: (cand_0 = 0)
32: 0: (req_0 = 100)
33: 0: time = time + 1
34: 0: (someone_in = 0)
35: 1: (someone_in == 0)
36: 1: (someone_in = 1)
37: 1: (cand_2 = 0)
38: 1: (cand_1 == 0)

