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Thousands of people worked on de-
sign, construction, and testing of the hard-
ware for NASA’s latest mission to Mars. 
This hardware includes not just the rover it-
self with its science instruments, but also the 
cruise stage, which guided the Curiosity rover 
to Mars, and the descent stage, with the intri-
cate sky-crane mechanism that gently lowered 
the rover to the surface on 5 August 2012.

All this painstakingly developed, tested, 
and retested hardware is controlled by soft-
ware. This software was written by a rela-
tively small team of about 35 developers at 
NASA’s Jet Propulsion Laboratory (JPL). 
Obviously, the control software is critically 
important to the mission’s success, with 
any failure potentially leading to the loss of 
the spacecraft—as well as to headline news 
around the world.

The control software onboard the space-
craft consists of about 3 MLOC . Most of 
this code is written in C, with a small por-
tion (mostly for surface navigation) in C++. 
The code executes on a radiation hardened 
CPU. The CPU is a version of an IBM Pow-
erPC 750, called RAD750, which is designed 
for use in space. It has 4 Gbytes of flash 
memory, 128 Mbytes of RAM, and runs at a 
clock-speed of 133 MHz.

About 75 percent of the code is auto-gen-
erated from other formalisms, such as state-
machine descriptions and XML files. The re-
mainder was handwritten specifically for this 
mission, in many cases building on heritage 
code from earlier Mars missions.

The Curiosity Rover is the seventh space-
craft that NASA has successfully landed on 
Mars. Previous spacecraft include 

•	 two Viking landers in 1976, 
•	 the Pathfinder minirover in 1996, 
•	 the two Mars Exploration Rovers Op-

portunity and Spirit in 2004, and 
•	 the Phoenix Mars lander, which was 

launched in 2007 but reused the design of 
the failed Mars Surveyor lander from 2001. 

Each new mission is more complex and 
uses more control software than its predeces-
sor. But that’s putting it mildly. As in many 
other industries, code size is growing expo-
nentially fast: each new mission to Mars uses 
more control software than all missions be-
fore it combined:

•	 the Viking landers had about 5 KLOC 
onboard,

•	 Pathfinder had 150 KLOC,
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•	 the Phoenix lander had 300 KLOC,
•	 the Mars Exploration Rovers each 

had 650 KLOC, and
•	 the MSLRover upped the ante to 3 

MLOC.

There’s clearly no single magic tool 
or technique that can be used to secure 
the reliability of any large and complex 
software application; rather, it takes 
good tools, workmanship, and a care-

fully managed process. The three main 
control points in this process are pre-
vention, detection, and containment. 

Prevention
The best way to make software reliable 
is to prevent the introduction of defects 
from the start. We tried to do this in a 
number of ways.

First, we adopted a strong new cod-
ing standard for the mission (which 
was later also adopted as a common 
standard for all software development 
at JPL1). Although most software devel-
opment projects use coding standards, 
we followed a somewhat different ap-
proach in the definition of this one. To 
define the rules in this standard, we 
first looked at everything that had gone 
wrong in previous space missions. We 
categorized the problems that could 
be attributed to software and devised 
a small set of rules that could prevent 
these classes of errors. Next, we fo-
cused on those rules for which we could 
mechanically check compliance—for 
example, with a static analyzer. Our 
coding standard captured those rules, 
and only those rules. Therefore, the 
rules in this coding standard cannot be 
silently ignored (as is often done with 
other standards). We mechanically 
checked compliance with all the rules 
on every build of the software. Any de-
viations were reported and became part 
of the input to the downstream code re-
view process.

Second, we introduced a flight soft-
ware developer certification course, 
focused in part on software risk and 
defensive coding techniques. Every 
software developer is required to com-
plete this course and pass the exams be-
fore they can touch flight software. The 
course covers the coding standard’s ra-
tionale, as well as general background 
on computer science principles and the 
basic structure of spacecraft control 
software. Some of this material is also 
presented to more senior managers at 

Compound Annual Growth Rate 
in Mars Missions’ Code

The Compound Annual Growth Rate, as described in previous columns,1 in  flight 
software for spacecraft over the last 36 years comes out at roughly 1.20—close to 
the median value of 1.16. The Mars Science Laboratory software is comparable to 
other safety-critical systems that were described in this column, such as the Tokyo 
Railway system,2 Honeywell’s Flight Management System,3 and Airbus.4 What sets 
this system apart is that it must operate reliably at a distance of millions of miles 
from Earth, making it inaccessible to standard types of maintenance and repair. 
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Figure A. The amount of flight code that is flown to land spacecraft on Mars has 

grown exponentially in the last 36 years. Its Compound Annual Growth Rate comes 

out at roughly 1.20—close to the median value of 1.16 from previous columns.
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JPL to secure a common knowledge 
base regarding the challenges of mis-
sion-critical software development (al-
though in the latter case, the material 
is presented without the pressure of an 
exam at the end).

Detection
The next best thing to preventing de-
fects is to detect them as early as pos-
sible in the software development cycle. 
To do this, we adopted a range of state-
of-the-art static source code analyzers, 
paired with a new tool-based code re-
view process.2

The challenges in conducting peer 
code reviews on millions of lines of 
code are well known.3 The process we 
adopted therefore shifted much of the 
burden of the routine checks (such as 
checks for common types of coding er-
rors, compliance with the coding stan-
dard, or risky code patterns) to back-
ground tools. A complete integration 
build of all MSL flight software was 
performed nightly, with all checkers 
running over the code in parallel to the 
builds. We jointly used four different 
static analyzers with close to a hundred 
simpler custom-written checking scripts 
that verified compliance with various 
types of requirements that are harder to 
encode in static analyzers (such as rules 
against the use of tabs in code or rules 
for the types of header files that must or 
must not be used).

We used the static analyzers Cov-
erity (www.coverity.com), Codesonar 
(www.grammatech.com), Uno,4 and, 
toward the end of the software devel-
opment, the newer tool Semmle (http://
semmle.com). Each of these tools has 
different strengths and tends to find dif-
ferent types of flaws in the code; there’s 
surprisingly little overlap in the output. 
The results of the nightly analyses were 
made available in the single uniform in-
terface of the Scrub tool,2 which also 
integrated peer comments collected 
during the code review phase for each 

module. What was perhaps different 
about the code review process we fol-
lowed was that we did all peer reviews 
offline rather than in face-to-face meet-
ings. We required the module owner 
to respond to all reports (generated by 
tools or peers) with a simple agree, dis-
agree, or discuss response. Agree meant 
that the module owner agreed with 
the finding and committed to chang-
ing the code. Disagree indicated a dif-
ference of opinion, where the module 
owner believed that the code was cor-
rect as previously written and shouldn’t 
be changed. Discuss meant that the re-
port was unclear and the owner needed 
more information before they could de-
termine a fix or no-fix resolution. 

At the end of the offline review-
ing period for each module, we held 
a single face-to-face meeting with re-
viewers, module owner, and the flight 
software lead present to discuss any re-
maining disagreements. In almost two 
hundred peer code review sessions held 
for the MSL mission, approximately 
80 percent of all peer comments and 
tool reports were accepted with an im-
mediate agree from the module owner. 

Only the remaining 20 percent of the 
reports or tool warnings therefore re-
quired discussion in the review meet-
ings, leading to a final resolution of ei-
ther fix (which in some cases overruled 
an earlier disagree response from the 
module owner), or no fix (see Figure 
1). In all, roughly 10,000 peer com-
ments on the code were processed in 
this way, together with approximately 
25,000 tool reports. As shown, the 
vast majority of these peer comments 
and tool reports led to changes in the 
flight code to either address an issue or 
to prevent a tool warning from recur-
ring in later builds.

We added another layer of checking 
with the application logic model-check-
ing techniques (http://spinroot.com) to 
analyze key parts of the multithreaded 
code for possible race conditions or 
deadlocks. We analyzed five critical 
subsystems of the control software’s in 
this way. In one case our findings led to 
a complete redesign of the subsystem to 
prevent the types of problems that the 
model checker had uncovered.

Apart from the static analysis, peer 
code reviews, and logic model-checking 
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Figure 1. The percent of peer comments resulting in a code fix in the Mars Science 

Laboratory code review process between 2008 and 2012, by priority, showing that all 
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analyses, every software module had 
to pass rigorous unit and integration 
tests, both in a desktop software-only 
context with simulated hardware and 
on the real hardware in flight system 
testbeds. The requirement for the unit 
tests was, as is common in this type of 
application, to realize full code cover-
age. Note, though, that this require-
ment isn’t always easy to comply with, 
especially when using defensive coding 
techniques. After all, defensive coding 
techniques often deal with cases that 
should be impossible under nominal 
circumstances but that protect against 
the consequences of as-yet unknown 
and unpredictable types of errors. De-
fensive code, then, can sometimes be 
flagged as unreachable, which would 
violate a coding rule that bans the in-
clusion of unreachable code. The solu-
tion in this case is to devise demonic 

tests that can trigger the defensive code 
and show the circumstances under 
which it could be executed.

Containment
The final layer of defense in a reliable 
software system is more structural in 
nature. It’s the mechanism that targets 
defects that weren’t prevented or de-
tected earlier, to make sure that these 
residual defects do not spread beyond 
the module in which they occur and 
bring down the system as a whole. 
One method to achieve this is to pro-
vide redundant backups. The principle 
of redundancy is well understood in the 
hardware design and relatively easy to 
implement in those cases. We can, for 
instance, put a second set of thrusters 
on a spacecraft, or a second transmit-
ter and receiver. The assumption here 
is that hardware failures in duplicated 
equipment are mostly uncorrelated.

This same principle is much harder 
to follow in software. Obviously, 
running the same software on multiple 
CPUs doesn’t protect against software 
failures (a lesson that has been learned 
a few times too many in the past5).

The principle of containment was 
most prominently used in software that 
was used to control the critical land-
ing sequence, which is often described 
as the “seven minutes of terror.” The 
hardware for the spacecraft was de-
signed to be “dual string,” which means 
that many critical components are du-
plicated for reliability. This duplica-
tion includes the CPU; there are two 
completely separate CPU and memory 
subsystems.

The backup CPU is designed to 
take over control of the spacecraft if 
the main CPU fails. However, if the 
software caused the failure, it clearly 
wouldn’t help much for the second 
CPU to execute precisely the same code 
after such a switch. During the landing 
sequence, the backup CPU therefore 
executed a simplified, stripped-down 

version of the landing software. That 
software version was called “Second-
Chance” (although, within the soft-
ware team it was also referred to as 
“Last-Chance”). As we know now, 
the main CPU succeeded in guiding 
the spacecraft to a flawless landing 
on Mars, and this part of the system 
wasn’t needed. To date, no significant 
anomalies have revealed themselves in 
the flight software.
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