
074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E 	 March/April 2013 | IEEE Software � 17

Impact

Thousands of people worked on de-
sign, construction, and testing of the hard-
ware for NASA’s latest mission to Mars.
This hardware includes not just the rover it-
self with its science instruments, but also the
cruise stage, which guided the Curiosity rover
to Mars, and the descent stage, with the intri-
cate sky-crane mechanism that gently lowered
the rover to the surface on 5 August 2012.

All this painstakingly developed, tested,
and retested hardware is controlled by soft-
ware. This software was written by a rela-
tively small team of about 35 developers at
NASA’s Jet Propulsion Laboratory (JPL).
Obviously, the control software is critically
important to the mission’s success, with
any failure potentially leading to the loss of
the spacecraft—as well as to headline news
around the world.

The control software onboard the space-
craft consists of about 3 MLOC . Most of
this code is written in C, with a small por-
tion (mostly for surface navigation) in C++.
The code executes on a radiation hardened
CPU. The CPU is a version of an IBM Pow-
erPC 750, called RAD750, which is designed
for use in space. It has 4 Gbytes of flash
memory, 128 Mbytes of RAM, and runs at a
clock-speed of 133 MHz.

About 75 percent of the code is auto-gen-
erated from other formalisms, such as state-
machine descriptions and XML files. The re-
mainder was handwritten specifically for this
mission, in many cases building on heritage
code from earlier Mars missions.

The Curiosity Rover is the seventh space-
craft that NASA has successfully landed on
Mars. Previous spacecraft include

•	 two Viking landers in 1976,
•	 the Pathfinder minirover in 1996,
•	 the two Mars Exploration Rovers Op-

portunity and Spirit in 2004, and
•	 the Phoenix Mars lander, which was

launched in 2007 but reused the design of
the failed Mars Surveyor lander from 2001.

Each new mission is more complex and
uses more control software than its predeces-
sor. But that’s putting it mildly. As in many
other industries, code size is growing expo-
nentially fast: each new mission to Mars uses
more control software than all missions be-
fore it combined:

•	 the Viking landers had about 5 KLOC
onboard,

•	 Pathfinder had 150 KLOC,

Landing a Spacecraft
on Mars
Gerard J. Holzmann

How much software does it take to land a spacecraft safely on
Mars, and how do you make all that code reliable? In this column,
Gerard Holzmann describes the software development process
that was followed. —Michiel van Genuchten and Les Hatton

Editor: Michiel van Genuchten
Open Digital Dentistry
genuchten@ieee.org

Editor: Les Hatton
Kingston University
l.hatton@kingston.ac.uk

18	 IEEE Software | www.computer.org/software

Impact

•	 the Phoenix lander had 300 KLOC,
•	 the Mars Exploration Rovers each

had 650 KLOC, and
•	 the MSLRover upped the ante to 3

MLOC.

There’s clearly no single magic tool
or technique that can be used to secure
the reliability of any large and complex
software application; rather, it takes
good tools, workmanship, and a care-

fully managed process. The three main
control points in this process are pre-
vention, detection, and containment.

Prevention
The best way to make software reliable
is to prevent the introduction of defects
from the start. We tried to do this in a
number of ways.

First, we adopted a strong new cod-
ing standard for the mission (which
was later also adopted as a common
standard for all software development
at JPL1). Although most software devel-
opment projects use coding standards,
we followed a somewhat different ap-
proach in the definition of this one. To
define the rules in this standard, we
first looked at everything that had gone
wrong in previous space missions. We
categorized the problems that could
be attributed to software and devised
a small set of rules that could prevent
these classes of errors. Next, we fo-
cused on those rules for which we could
mechanically check compliance—for
example, with a static analyzer. Our
coding standard captured those rules,
and only those rules. Therefore, the
rules in this coding standard cannot be
silently ignored (as is often done with
other standards). We mechanically
checked compliance with all the rules
on every build of the software. Any de-
viations were reported and became part
of the input to the downstream code re-
view process.

Second, we introduced a flight soft-
ware developer certification course,
focused in part on software risk and
defensive coding techniques. Every
software developer is required to com-
plete this course and pass the exams be-
fore they can touch flight software. The
course covers the coding standard’s ra-
tionale, as well as general background
on computer science principles and the
basic structure of spacecraft control
software. Some of this material is also
presented to more senior managers at

Compound Annual Growth Rate
in Mars Missions’ Code

The Compound Annual Growth Rate, as described in previous columns,1 in flight
software for spacecraft over the last 36 years comes out at roughly 1.20—close to
the median value of 1.16. The Mars Science Laboratory software is comparable to
other safety-critical systems that were described in this column, such as the Tokyo
Railway system,2 Honeywell’s Flight Management System,3 and Airbus.4 What sets
this system apart is that it must operate reliably at a distance of millions of miles
from Earth, making it inaccessible to standard types of maintenance and repair.

References
	 1.	 M. Genuchten and L. Hatton, “Compound Average Growth Rate for Software,” IEEE Software, vol. 29,

no. 4, 2011, pp. 19–21.
	 2.	 D. Avery, “The Evolution of Flight Management Systems,” IEEE Software, vol. 28, no. 1, 2011, pp. 11–13.
	 3.	 S. Burger, O. Hummel, and M. Heinisch, “Airbus Cabin Software,” IEEE Software, vol. 30, no. 1, 2013,

pp. 21–25.
	 4.	 K. Tomita and K. Ito, “Software in an Evolving Train Traffic Control System,” IEEE Software, vol. 28, no.

2, 2011, pp. 19–21.

1

10

100

1,000

10,000

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Li
ne

s
of

 c
od

e
in

 th
ou

sa
nd

s
(K

LO
C)

Year

Code size—exponential growth trend

MSL

MER

PhoenixPath�nder

Viking

Figure A. The amount of flight code that is flown to land spacecraft on Mars has

grown exponentially in the last 36 years. Its Compound Annual Growth Rate comes

out at roughly 1.20—close to the median value of 1.16 from previous columns.

	 January/February 2013 | IEEE Software � 19

Impact

JPL to secure a common knowledge
base regarding the challenges of mis-
sion-critical software development (al-
though in the latter case, the material
is presented without the pressure of an
exam at the end).

Detection
The next best thing to preventing de-
fects is to detect them as early as pos-
sible in the software development cycle.
To do this, we adopted a range of state-
of-the-art static source code analyzers,
paired with a new tool-based code re-
view process.2

The challenges in conducting peer
code reviews on millions of lines of
code are well known.3 The process we
adopted therefore shifted much of the
burden of the routine checks (such as
checks for common types of coding er-
rors, compliance with the coding stan-
dard, or risky code patterns) to back-
ground tools. A complete integration
build of all MSL flight software was
performed nightly, with all checkers
running over the code in parallel to the
builds. We jointly used four different
static analyzers with close to a hundred
simpler custom-written checking scripts
that verified compliance with various
types of requirements that are harder to
encode in static analyzers (such as rules
against the use of tabs in code or rules
for the types of header files that must or
must not be used).

We used the static analyzers Cov-
erity (www.coverity.com), Codesonar
(www.grammatech.com), Uno,4 and,
toward the end of the software devel-
opment, the newer tool Semmle (http://
semmle.com). Each of these tools has
different strengths and tends to find dif-
ferent types of flaws in the code; there’s
surprisingly little overlap in the output.
The results of the nightly analyses were
made available in the single uniform in-
terface of the Scrub tool,2 which also
integrated peer comments collected
during the code review phase for each

module. What was perhaps different
about the code review process we fol-
lowed was that we did all peer reviews
offline rather than in face-to-face meet-
ings. We required the module owner
to respond to all reports (generated by
tools or peers) with a simple agree, dis-
agree, or discuss response. Agree meant
that the module owner agreed with
the finding and committed to chang-
ing the code. Disagree indicated a dif-
ference of opinion, where the module
owner believed that the code was cor-
rect as previously written and shouldn’t
be changed. Discuss meant that the re-
port was unclear and the owner needed
more information before they could de-
termine a fix or no-fix resolution.

At the end of the offline review-
ing period for each module, we held
a single face-to-face meeting with re-
viewers, module owner, and the flight
software lead present to discuss any re-
maining disagreements. In almost two
hundred peer code review sessions held
for the MSL mission, approximately
80 percent of all peer comments and
tool reports were accepted with an im-
mediate agree from the module owner.

Only the remaining 20 percent of the
reports or tool warnings therefore re-
quired discussion in the review meet-
ings, leading to a final resolution of ei-
ther fix (which in some cases overruled
an earlier disagree response from the
module owner), or no fix (see Figure
1). In all, roughly 10,000 peer com-
ments on the code were processed in
this way, together with approximately
25,000 tool reports. As shown, the
vast majority of these peer comments
and tool reports led to changes in the
flight code to either address an issue or
to prevent a tool warning from recur-
ring in later builds.

We added another layer of checking
with the application logic model-check-
ing techniques (http://spinroot.com) to
analyze key parts of the multithreaded
code for possible race conditions or
deadlocks. We analyzed five critical
subsystems of the control software’s in
this way. In one case our findings led to
a complete redesign of the subsystem to
prevent the types of problems that the
model checker had uncovered.

Apart from the static analysis, peer
code reviews, and logic model-checking

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

High

Pe
rc

en
t o

f c
om

m
en

ts
le

ad
in

g
to

 c
od

e
�x

LowMedium

84.4 82.3
86.0

Figure 1. The percent of peer comments resulting in a code fix in the Mars Science

Laboratory code review process between 2008 and 2012, by priority, showing that all

comments were taken equally seriously. The majority of comments led to changes in the code.

20	 IEEE Software | www.computer.org/software

Impact

analyses, every software module had
to pass rigorous unit and integration
tests, both in a desktop software-only
context with simulated hardware and
on the real hardware in flight system
testbeds. The requirement for the unit
tests was, as is common in this type of
application, to realize full code cover-
age. Note, though, that this require-
ment isn’t always easy to comply with,
especially when using defensive coding
techniques. After all, defensive coding
techniques often deal with cases that
should be impossible under nominal
circumstances but that protect against
the consequences of as-yet unknown
and unpredictable types of errors. De-
fensive code, then, can sometimes be
flagged as unreachable, which would
violate a coding rule that bans the in-
clusion of unreachable code. The solu-
tion in this case is to devise demonic

tests that can trigger the defensive code
and show the circumstances under
which it could be executed.

Containment
The final layer of defense in a reliable
software system is more structural in
nature. It’s the mechanism that targets
defects that weren’t prevented or de-
tected earlier, to make sure that these
residual defects do not spread beyond
the module in which they occur and
bring down the system as a whole.
One method to achieve this is to pro-
vide redundant backups. The principle
of redundancy is well understood in the
hardware design and relatively easy to
implement in those cases. We can, for
instance, put a second set of thrusters
on a spacecraft, or a second transmit-
ter and receiver. The assumption here
is that hardware failures in duplicated
equipment are mostly uncorrelated.

This same principle is much harder
to follow in software. Obviously,
running the same software on multiple
CPUs doesn’t protect against software
failures (a lesson that has been learned
a few times too many in the past5).

The principle of containment was
most prominently used in software that
was used to control the critical land-
ing sequence, which is often described
as the “seven minutes of terror.” The
hardware for the spacecraft was de-
signed to be “dual string,” which means
that many critical components are du-
plicated for reliability. This duplica-
tion includes the CPU; there are two
completely separate CPU and memory
subsystems.

The backup CPU is designed to
take over control of the spacecraft if
the main CPU fails. However, if the
software caused the failure, it clearly
wouldn’t help much for the second
CPU to execute precisely the same code
after such a switch. During the landing
sequence, the backup CPU therefore
executed a simplified, stripped-down

version of the landing software. That
software version was called “Second-
Chance” (although, within the soft-
ware team it was also referred to as
“Last-Chance”). As we know now,
the main CPU succeeded in guiding
the spacecraft to a flawless landing
on Mars, and this part of the system
wasn’t needed. To date, no significant
anomalies have revealed themselves in
the flight software.

Acknowledgments
The research described in this article was
carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a
contract with the National Aeronautics and
Space Administration.

References
	 1.	 JPL Coding Standard for Flight Software

Written in the C Programming Language, Jet
Propulsion Laboratory California Institute of
Technology, 2009; http://lars-lab.jpl.nasa.gov/
jpl_coding_standard_c.pdf.

	 2.	 G.J. Holzmann, “Scrub: A Tool for Code Re-
views,” Innovations in System and Software
Eng., vol. 6, no. 4, 2010, pp. 311–318.

	 3.	 G.W. Russell, “Experience with Inspection
in Ultralarge-Scale Developments,” IEEE
Software, Jan. 1991, pp. 25–31.

	 4.	 G.J. Holzmann, “Static Source Code Checking
for User-Defined Properties,” Proc. 6th World
Conf. Integrated Design and Process Technol-
ogy (IDPT 02), 2002; http://spinroot.com/
uno.

	 5.	 J.L. Lions, ARIANE 5: Flight 501 Failure,
tech. report, Centre National d’Etudes
Spatiales, 1996; www.di.unito.it/~damiani/
ariane5rep.html.

Gerard J. Holzmann is a senior research
scientist and fellow at NASA’s Jet Propulsion Labo-
ratory at the California Institute of Technology. He
was a member of the Mars Science Laboratory flight
software team. Contact him at gholzmann@acm.org.

Register today!
http://www.sstc-online.org/

8-11 April 2013

Salt Lake City, Utah, USA

IEEE STC 2013
25th IEEE Software Technology
Conference

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

