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ABSTRACT

A significant part of the call processing software for Lucent’s new PathStar
access server [FSW98] was checked with automated formal verification techniques. The
verification system we built for this purpose, named FeaVer, maintains a database of fea-
ture requirements which is accessible via a web browser. Via the browser the user can
invoke verification runs. The verifications are performed by the system with the help of a
standard logic model checker that runs in the background, invisibly to the user. Require-
ment violations are reported as C execution traces and stored in the database for user
perusal and correction. The main strength of the system is in the detection of undesired
feature interactions at an early stage of systems design, the type of problem that is notori-
ously difficult to detect with traditional testing techniques.
Error reports are typically generated by the system within minutes after a check is initi-
ated, quickly enough to allow near interactive probing of requirements or experimenting
with software fixes.

1. Introduction

Distributed systems software can be difficult to test. The detailed behavior of such a system typically
depends on subtle timings of events and on the relative speed of execution of concurrent processes. This
means that errors, once they manifest themselves, can be very hard to reproduce, and it means that when the
system passes a series of tests, one cannot safely conclude that the very same tests can never fail. Call pro-
cessing software is not immune to this problem, after all, the telephone system is really a large distributed
system controlled by complex software.

Perhaps the best-known manifestation of the problem in call-processing software is the so-called feature
interaction problem [KK98]. Telephone companies compete with each other partly on the basis of the fea-
ture packages that they can offer their customers. Market forces dictate that the number of features in tele-
phony applications continually rises, ranging from standard features such as call forwarding, to more
obscure variations like call parking. The number of distinct features offered on a main switch today can be
well over one hundred. Each of these features can require a different response to the same basic set of
events that can occur on a subscriber line, and hence the feature interaction problem is born. With just 25
features there can already be 225 possible feature combinations. If each combination could be tested in a
second, it would take about a year to test all combinations. By any standard, this is an undesirable strategy.

Fortunately, in practice the situation is not quite this bad. Telcordia, the former BellCore, has issued stan-
dards on feature behavior that switch providers must comply with [B92-96]. According to these standards,
some feature combinations are not allowed, some are non-conflicting, and for some a feature precedence
relation is prescribed that determines which feature behavior is to take precedence in case of conflict. The
rules from the standards are not always complete, and they are sometimes hard to interpret unambiguously.
The task of checking systematically if the Telcordia standards have been implemented correctly by a ven-
dor of a switching system is a formidable one.

In this work we are interested in developing techniques that can be applied mechanically in the verification
of feature code for a commercial switch. This rules out any technique that relies on extensive manual
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analysis, and it rules out the use of any convenient simplifying assumption about the nature of call process-
ing. We would also like it to identify any possible problems in minutes, not in months. In short, the
method we seek has to scale to handle a full working telephone system and help us to effectively intercept
any potential for problems in its feature code. We believe that the system we have developed is one of the
first that can meet these criteria.

Earlier attempts to apply automated verification techniques to distributed software applications generally
have relied on hand crafted abstract models, often produced by verification experts over a period of months
in collaboration with the developers of the application, e.g. [CAB98][S98]. Because of the time required to
construct models by hand, significant changes in the source application cannot easily be tracked without a
significant reinvestment of time and energy. By eliminating the need for hand crafted models, the FeaVer
system can be used to verify virtually every version of the source code, following the product through every
phase of the design cycle.

In the next three sections we will discuss the central components of the FeaVer feature verification system:

• Mechanized model extraction: a method for mechanically extracting verification models from imple-
mentation level C code, controlled by a user-defined lookup table. The model extraction takes a frac-
tion of a second to execute.

• Property formulation: defining the set of formal requirements that the application has to satisfy. In
our case many properties could be derived from the Telcordia standards for call processing feature
implementation. Others define more specific local requirements or are more exploratory in nature.
The use of a database of correctness properties is comparable to the use of test suites and test objec-
tives in a traditional testing method.

• System support: the mechanics of the verification process including the use of a system of networked
PCs, called TrailBlazer, to execute larger numbers of verification jobs in parallel.

We conclude the paper with a summary of our findings.

2. Mechanized model extraction

It is known that it is not possible to devise an algorithm that could prove arbitrary properties of arbitrary C
or C++ programs. It is not even possible to mechanically prove a single specific, property such as program
termination for arbitrary programs [T36][S65]. So if we want to be able to render proofs, we have no
choice but to restrict ourselves to a smaller class of programs. An example of such a class is the set of all
finite state programs: programs that on any given input can generate only a finite number of possible pro-
gram states (i.e., memory configurations) when executed. We call a simplified program of this type a
model. The set of all possible executions for a finite state model defines a finite directed, and possibly
cyclic, graph. Even without explicitly constructing the complete graph, which can still be large, we can
now reason about feasible and infeasible paths in the graph, and prove if certain executions are possible or
not. This is precisely what a model checker is designed to do (side box A).

The first problem to be solved then is to reduce a given C or C++ program to a meaningful finite state
model that can be analyzed. The reduction will bring a loss of information, so it has to be chosen in such a
way that relevant information is preserved and irrelevant detail removed. What is ’relevant’ and what is not
depends on the properties that we are interested in proving about the program. If, for instance, the function-
ing of the billing subsystem is not mentioned in any of the system requirements we check, than all access to
and manipulation of billing data can be stripped from the program to produce the model. Some care has to
be taken, though, to guarantee that the removal of code preserves our ability to find all property violations.
The following procedure will ensure this.

All assignments and function calls that have been tagged as irrelevant to the verification effort are replaced
with a skip (a dummy no-op in the modeling language). All conditional choices that refer to data objects
tagged as irrelevant are replaced by nondeterministic choices. The use of nondeterminism is a standard
reduction technique that can be used to make a model more general, broadening its scope. The nondeter-
minism tells the model checker that all possible outcomes of a choice should be considered equally possi-
ble, not just one specifically computed choice. The original computation of the system is preserved as one
of the possible abstracted computations, and the scope of the verification is therefore not restricted. If no
property violation exists in the reduced system, we can safely conclude that no property violation can exist
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Fig. 0 — Overview of the Checking Process
in the original application

The reduction method is ’fail-safe’ in the sense that if we chose the reduction incorrectly, the above result
still holds true, although the reverse does not [CGL04],[K95],[B99]. It is possible, for instance, that the full
expansion of an error trace for a property violation detected in the reduced system does not correspond to a
valid execution of the original application. If this happens it constitutes a proof that information was inad-
vertently stripped from the system that was in fact relevant to the verification. In this case at least one of
the conditional choices in the abstract trace will turn out to be invalid in the concrete trace, not matching
assignments to data objects earlier in the trace. These data objects are now known to be relevant to be
properties being verified, and the reduction can be adjusted accordingly. Typically a few iterations of this
type suffice to converge on a stable definition of an abstraction that can be used to extract a verifiable
model from a program text, as we will discuss in more detail below.

The PathStar Code

In the verification of the code for the PathStar access server, shown in Figure 1, our focus is exclusively on
the verification of telephony features. Since we are not looking for faults in the sequential code of device
drivers, process schedulers, memory allocation routines, billing subsystems, etc., the function of such code
can be abstracted. For device drivers, for instance, it means that under the abstractions that we make we
cannot check that a device driver administers dialtone correctly when given the appropriate command by
the controller, but we can check that the controller can only issue the appropriate commands when required,
and cannot fail to do so [HS99].

In the PathStar code the function of the controller is specified in a large routine that defines the central state
machine for all basic call processing and feature behavior. This routine, roughly 1,600 lines of C source, is
executed concurrently by a varying number of processes, jointly responsible for the handling of incoming
and outgoing calls. In the extracted model for this code, we carefully preserve all concurrent behavior and
the complete execution of the state machine, be it in slightly abstracted form.

Nondeterministic test drivers in the model are used to generalize the behavior of all parts of the system that
are external to the state machine: subscriber behavior, connected devices, remote switches. The source text
of the original program is preserved in the abstract model so that we easily reproduce a concrete trace from
any abstract error trace that is discovered.

With the reduction process we have outlined, the control flow of the original source is preserved in the
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Fig. 1 — The PathStar Access Server
Providing data and voice service over a variety of media.

reduced model. Data access, however, passes through a user-defined abstraction filter. This filter, defined
as a conversion lookup table, determines which operations are irrelevant to the properties to be verified
(e.g., function calls for billing and accounting) and which need to be represented either literally, with an
equivalent representation in the language of the model checker, or in more abstract form. The irrelevant
operations are mapped into the null operation of the model checker.

The Conversion Table

From all different types of statements that appear in the PathStar call processing code, about 60% are
mapped to an equivalent statement in the extracted model (i.e., they are preserved in the abstraction), cf.
Figure 2. This includes all statements that cause messages to be sent from one process to another (like call
requests, call progress and call termination signals), and all statements that are used to record or test the call
state of a subscriber.

The remaining statements and conditionals are abstracted in one of three ways, depending on their rele-
vance to the verification effort.

1. A statement that is entirely outside the scope of the verification is replaced with skip and thereby
stripped from the model, as also discussed above. This applies to about 30% of the cases.

2. If a statement is partially relevant, the conversion table defines a mapping function that preserves
only the relevant part and suppresses the rest. The absolute value of timers was, for instance, not
used in the verifications. For the properties we defined it sufficed to know only if a timer was run-
ning or not, and therefore the integer range of possible timer values could be reduced with a mapping
function to the boolean values true and false: indicating whether or not a timer might expire. This
mapping would of course not be valid if we were to include requirements on the real-time perfor-
mance of the PathStar switch.

3. The last type of abstraction is used in cases where the details of an operation are irrelevant, but the
possible outcomes are not. For instance, digit analysis can be an involved operation that is mostly
irrelevant to the functional correctness of the call processing code. Only relevant is that the controller
deals correctly with the possible outcomes of this operation: to respond properly when an abbreviated
number or a feature access code is recognized, to start routing the call if it is determined that suffi-
cient digits were collected, or to wait for the subscriber to provide more digits, with the proper timers
set to guard the inter-digit timing interval. In this case the conversion table replaces the operation
with a nondeterministic choice of the possible outcomes.
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_ ___________________________________________________________________ __________________________________________________________________
Method Percentage of Code_ __________________________________________________________________

Not abstracted (preserved) 60%
Fully abstracted (stripped) 30%
Functional and Non-deterministic abstraction (mapped) 10%_ __________________________________________________________________ 












Fig. 2 — Ratio of basic types of abstractions applied

To track changes in the source text, and to retain the capability to extract models, we only have to keep the
conversion table up to date, rather than a hand-crafted model. Some changes in the source require no
update at all. This is the case, for instance, if code is copied or moved without the introduction of new types
of data manipulation. When a new type of data access appears, the model extractor warns the user and
prompts for a new entry in the conversion table. In most cases the new entry can be defined without know-
ing anything about the purpose of the change or it’s impact on behavior. Typically, a week’s worth of
upgrades of the call processing code translates into ten minutes of work on a revision of the conversion
table before a fully mechanized verification of all properties can be repeated. More detail on the definition
of conversion tables can be found in [HS99].

Assumptions about the Environment

The call processing code in PathStar interacts with a number of entities in its environment: subscribers,
remote switches, database servers, and the like. The task of constructing precisely detailed behavior defini-
tions for each of these entities would be both formidable and redundant [H97].

Fig. 3 — Verification Context
The verification context consists of a conversion map that defines the level of

abstraction, test drivers that capture the essential assumptions about the
environment, and a database of properties that define the system requirements.

For each remote entity that interacts with the call processing controller it suffices to construct a small
abstract model that captures a conservative estimate of the possible behaviors of these entities in a general
way. Note that our objective is not to verify the correct behavior of the remote entities, but that of our own
switch despite the presence of possibly ill-behaved remote entities. The system requirements, test drivers,
and the conversion map together define the verification context, as illustrated in Figure 3.

We can, for instance, define an abstract model for generic subscriber behavior with a simple demon that can
nondeterministically select an action from all the possible actions that a subscriber might take at each point
in a call: going on- or off-hook, flashing the hook, dialing feature access codes, etc. Similarly we can
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model the possible responses from a remote switch to call requests from the local controller, using a demon
that can generate possible response nondeterministically.

Abstractions such as these, based on nondeterminism, achieve two objectives: they remove complexity by
removing extraneous detail, while at the same time broadening the scope of the verification by representing
larger classes of possible behavior, instead of selected instances of specific behavior.

3. Formulating Properties

The database for feature verification of the PathStar code that we have constructed contains approximately
80 properties for 20 sets of features. For each feature set the database further defines one or more provi-
sioning constraints. When verifying the correct implementation of any given feature we must, for instance,
be able to specify that the feature is to be enabled, and that incompatible features are to remain disabled.
These additional constraints could be included into the definitions of the properties themselves, but the
extra information would hamper their readability. By decoupling provisioning detail from functional prop-
erties we can more easily experiment with different types of provisionings on a common set of properties.
It is, for instance, possible to check the correct implementation of feature precedence relations by deliber-
ately enabling and disabling higher precedence features. In the absence of an explicit provisioning con-
straint, the model checker will assume no knowledge about the enabledness or disabledness of features,
leaving this to nondeterministic choice.

For each feature, each property is verified for each related provisioning constraint. For 80 properties this
translates, in our current database, into approximately 200 separate verification runs. The number of runs
to be performed for a full verification of the source code can change with the addition or deletion of proper-
ties or provisioning constraints.

An Example

A simple example of a property from our database is the one we briefly mentioned in the introduction:
when the subscriber picks up the receiver for an idle (non-ringing) phone, a dial-tone should be generated.
In case the line is provisioned as a hotline, with a direct call (DC) feature, then dialtone will not be gener-
ated. Similarly, if the line is provisioned with the denial of originating service ’feature’ (DOS) then no
dialtones should be expected. To check this property, therefore, we need to define a provisioning constraint
that disables DC and DOS.

One method to specify this property is to use a simple form of linear temporal logic. Temporal logic, intro-
duced in the late seventies for the concise formulation of correctness properties of concurrent systems
[P77], defines a small number of operators that allow us to reason about executions. In temporal logic the
example property can be specified as follows:

( offhook → X ◊ ( dialtone ∨ onhook) )

In this case we allow for the possibility that the subscriber returns the phone onhook before actually hearing
the dialtone, which would of course be valid. The truth value of a temporal formula is evaluated over exe-
cution sequences. This means that if we evaluate the formula at any given point in a systems execution it
would return true if and only if the complete remainder of the execution from that point forward satisfies
the property stated.

Three unary temporal operators are used in the formula above: (always), X (next), and ◊ (eventually). p
states that p is true now and will remain invariantly true throughout the rest of the computation. X p states
that p will be true after the next execution step. ◊ p states that p either true now or it will become true
within a finite number of future execution steps. The right-arrow, →, denotes logical implication: (p → q)
≡ (¬ p ∨ q).

The model checker will use this formula to check if there can be any system executions that would violate
the property. This procedure works by first negating the formula, so that we get a positive statement of a
violating execution. The negated formula for the example can also be derived manually as follows, using
standard rewrite rules from boolean and temporal logic:
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¬ ( offhook → X ◊ ( dialtone ∨ onhook) ) ≡
◊ ¬ ( offhook → X ◊ ( dialtone ∨ onhook) ) ≡
◊ ¬ ( ¬ offhook ∨ X ◊ ( dialtone ∨ onhook) ) ≡
◊ ( offhook ∧ ¬ X ◊ ( dialtone ∨ onhook) ) ≡
◊ ( offhook ∧ X ¬ ◊ ( dialtone ∨ onhook) ) ≡
◊ ( offhook ∧ X (¬ dialtone ∧ ¬ onhook) )

This negated formula can be converted mechanically [GPVW95] into a 2-state ω-automaton, illustrated in
Figure 4, which is used in the model checking process (side box A).

s 0

s 1

offhook

true

¬ dialtone && ¬ onhook

Fig. 4 — Property Automaton.
This ω-automaton [T90], automatically extracted from a temporal logic formula,

defines the class of behaviors that would violate a given system requirement (side box C).
It is used in a verification process much like a ’pattern’ to match against the

class of all possible system executions.

Timeline Editor

For the specification of complex behavior, e.g., to capture properties on the correct functioning of a six-way
conference call, an accurate formalization of the property in temporal logic can pose a challenge. We have
therefore experimented with an alternative method for specifying properties using a simple graphical user
interface. Though this form of property specification is not as general, it covers many of the types of prop-
erties we are interested in. All properties specified in this way can be translated mechanically into temporal
logic formulae, or also directly into property automata for use in the model checking process. Figure 5
shows the specification of the earlier property, checking for dialtone after an offhook.

Fig. 5 — Timeline Editor
The timeline editor provides a more intuitive graphical method for property specification.

The user can add required or optional events, define a test target, and mark multiple, possibly
overlapping, intervals with constraints.

The timeline editor allows us to place events that are part of the required behavior on a horizontal line.
Some events must be observed for the behavior to comply with the requirements. Those events are labeled
as required. The last event of the sequence is called the target event, and is typically also a required event.
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Events that are not formally required are used as markers to identify the executions that fall within the
scope of the property and to exclude others from consideration. The model checker will verify that if the
markers are present the required events are also present.

The timeline editor also allows us to state that certain events must be absent for the execution to be of inter-
est. In this case, this applies to onhook events. We specify this as a constraint on the execution, using a
horizontal bar to identify to which part of the execution the constraint applies. For events or conditions that
are not mentioned in the requirement, no constraints apply.

The property definition shown in Figure 5 is automatically converted into the same automaton as shown in
Figure 4, so the two methods of specification yield identical checks.

4. System Support: TrailBlazer

The main interface to the feature verification system is a standard web-browser. Through the browser the
user can check on the verification status of all properties, lookup the text and the justification of each prop-
erty, refer to the source text of the Telcordia feature requirement documents, and inspect reported error
sequences in a number of different formats. An error sequence can be displayed as a message sequence
chart in either ASCII or graphical form (Figure 6), or it can be displayed as a detailed dump of a series of
concurrent execution traces interleaved in time, with one trace for each of the processes that participated in
the failed execution. The detailed execution traces list all concrete C statements and conditions that are
executed or evaluated during the execution, in time sequence. Typically such a sequence reveals subtle
race conditions in the interleaving of actions that can lead to faults.

Iring

Iring

Iredir

Ireorder

Iring

Pdone

Croffhook

Subscriber Parent Child1 Caller1 Caller2

repeat

Fig. 6 — A Sample Property Violation
A sample execution sequence, shown here in graphical form as a message sequence chart, presented
by the verification system as proof that executions are possible in which dialtone is not generated.
In this case the property violation can occur if the subscriber has call forwarding, and happens to
pick up the phone precisely when an incoming call is being forwarded. In an unlikely scenario, the
call processing software can be made to delay the generation of dialtone arbitrarily long while the

system is rejecting or forwarding more incoming calls. When the calls stop, the system will eventually
timeout and deliver dialtone (not shown here). The scenario can also be presented as a trace of C

statement executions.

The main pieces of the infrastructure for the checking process: test drivers, the conversion lookup table, and
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the supporting text for properties are created and maintained with a standard text editor.

The source code of the application is maintained by the developers and parsed directly by the FeaVer soft-
ware when a verification run is initiated.

Verification runs are always initiated by the user through the web interface. It would also be possible to
automatically trigger a comprehensive series of checks each time that the FeaVer system detects that either
the source of the application or the text of a property has changed, say in the early morning hours of every
day. So far, however, we have not used this intrigueing possibility.

To initiate a check, the user selects one or more properties and provisioning constraints from the web inter-
face, choses a verification mode (about which more shortly) and initiates the check with the click of a but-
ton. The remainder of this section describes what happens when the check button is pushed. The main
tasks to be performed in a verification are divided up into logical units, each of which is performed by a
small server application that can, in principle, run anywhere in the network. This capability allows us to
exploit large numbers of independent processors to assist in the execution of verification tasks. The addi-
tional processors are not necessary for FeaVer to perform its tasks, but, they can provide significantly
speedups. Four basic types of servers together provide the required functionality Tb_prep, Tb_sched,
Tb_exec, and Tb_wrap, as illustrated in Figure 7 and explained in more detail below.

Fig. 7 — Servers and Workflow in the TrailBlazer System
When the user presses the ’check’ button on the web browser, a sequence of steps is executed
to mechanically verify the properties selected. Negative results of the verification typically

flow back to the user within minutes after the check is initiated.

1. The FeaVer web browser sends a request to initiate one or more verification runs to a server called
Tb_prep. This server receives the property and provisioning information that the user provided and
starts the process.

It calls pry to parse the C code of the application, identify the state routine, and convert it into an
intermediate format, organized as state, event, transition triples. Another program, called catch then
parses this intermediate format and generates a SPIN verification model, using the conversion map. It
adds the user defined test drivers (defining context), suitably translated provisioning information, and
the property, after converting it into automata form. There are about two local states in the SPIN
model for every line of source code in the application. The final model defines the behavior of 7 dif-
ferent types of processes (several of which are used to create multiple independent processing
threads), 10 buffered message channels, and approximately 100 variables. The model is constructed
in less than a second.
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Tb_prep also generates a script that can be used to generate C code for a dedicated verifier for the
model that was produced, and to compile and run that code. It now hands hands over the task to a
central task scheduling server, Tb_sched, by sending it a to the job file.

Fig. 8 — TrailBlazer Compute-Servers
Fifteen standard PCs, running the Plan9 operating system as

compute servers, give the TrailBlazer system a performance boost.

2. Tb_sched collects the information and adds it to its table of tasks to be completed. This server also
collects offers to execute jobs from arbitrary workstations in our network. To make such an offer, the
workstation can run a little server program, Tb_exec. The volunteering workstation can run any
type of operating system. The FeaVer servers, for instance, run under WindowsNT, and a number of
dedicated PCs that act as computer servers run under the Plan9 operating system. Fifteen PCs are
permanently allocated to the FeaVer system to run jobs, shown in Figure 8.

3. When the scheduler Tb_sched identifies an available workstation it probes it to see if it is still alive
and if so it allocates a task to it by sending it a job script, with information on where any dependent
information (e.g., files to be compiled) can be retrieved. The scheduler will attempt to have as many
task performed in parallel as is possible, without overloading any one of the workstations. Typically
no new job is assigned to a workstation until the previous one has completed. The search itself is
performed with an interative search procedure that optimizes our chances of finding errors quickly
(side box B).

4. When a workstation completes a task it signals its renewed availability to the scheduler Tb_sched
and forwards the results of the run to the last server, on the FeaVer system, that performs all postpro-
cessing: Tb_wrap.

5. Tb_wrap produces ASCII and graphical format for error sequences, and generates detailed C traces.
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If no error was found, some statistics on the run are collected, the coverage of the property automaton
(see Avoiding false positives) and the coverage of the model code as a whole is determined, i.e., to
flag those parts of the code that were not exercised. The information is entered in the database, and
linked to the corresponding properties, so that it becomes accessible to the user via the web browser
interface.

Tracking Progress

When a comprehensive verification cycle is started for all properties that have been defined, for instance
after an update of the source text of the application, it is of great interest to know immediately when an
error sequence for a property has been discovered, so that it may be inspected. Typically this happens
within the first few minutes of a comprehensive run, but it is of course not known in advance which spe-
cific property might fail first. The job scheduler Tb_sched is the first server to know when the processing
of an error sequence was completed, and it can prompt the user, pointing at a URL where detailed informa-
tion on the error sequence can be found, through the standard web browser. There is also a visual tracker,
written in Tcl/Tk [O94], that shows the progress of the search with color bars, one for each property being
verified. The bar turns red as soon as an error sequence has been discovered for the corresponding prop-
erty. By clicking the bar, the detailed information on the sequence can be brought up in a web browser. This
application is illustrated in Figure 9.

Fig. 9 — Property Verification Tracking
A list of all properties included in the current verification run is displayed. In the figure up to

eight cycles in the iterative search refinement process are executed. The search stops, marking the
progress line in red, as soon as an error is found.

Separately, another small Tcl/Tk application can be used to track the actions of the scheduler; showing
visually which machines have volunteered to execute jobs, which have been assigned a job and what the job
details are, as illustrated in Figure 10.
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Fig. 10 — System Status Tracking
Optionally the user of the FeaVer system can track the status of the workstations that have volunteered
to run verification jobs. A color code identifies which of these workstations are currently free (green),

which are busy (blue or yellow), which are dead (red). To the left of busy workstations is briefly indicated
which job they are currently executing: a compilation (yellow) or a verification (blue).

Avoiding False Positives

From the point of view of the verification system, the best possible outcome of a verification attempt is the
generation of an error sequence. There is a possibility, if the abstraction in the conversion table was chosen
incorrectly, that the sequence is invalid and constitutes, what is called, a false negative. By inspecting the
sequence this can usually be determined quickly, and the abstraction can be adjusted to prevent reoccur-
rences. The absence of errors occurs when the application faithfully satisfies the property, but in this case it
is possible that the property itself was in fact inadequate. This is called a vacuous property, cf. [KV99], or
false positive, and it is addressed differently.

Consider a property of the type we discussed earlier

(p → X ( ◊ q))

A states that whenever a trigger condition p occurs then sometime thereafter, within a finite number of exe-
cution steps, a response q will follow, where q itself can either be a proper response or a discharge condi-
tion that voids the need for a response (e.g., an onhook event that voids the need for a dialtone signal). If
all is well, there will be executions in which p occurs at least once. If there are no executions possible in
which p occurs, then the formula is logically satisfied (note that the condition (p → q) is satisfied when p
is invariantly false). But even though the formula is strictly satisfied, it is almost certainly not what the user
intended. The telltale sign of this false positive can be found in the number of states that is reached during
the check for the automaton that corresponds to this property. In the case above, the property automaton
never leaves its initial state. This occurrence can easily, and mechanically, be detected, so that the user can
be warned to change the formulation of the property into a more meaningful one.
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Because properties that do not generate error sequences can take the longest run times (i.e., they will pass
through all iterative passes of the scheduler), the user can ask the scheduler to provide statistics on the runs
that have been completed for a property. If the first few approximate runs for a property all leave the prop-
erty automaton in its initial state, strong evidence that the property is void can be available within the first
few minutes of the verification, and it is not necessary for the user to wait for the complete verification pro-
cess to terminate.

Assessment

By concentrating on the central portion of the control code for call processing in PathStar, we were able to
perform unusually thorough checks of critical system properties. This focus, however, also pushed some
interesting types of properties outside our reach. The main burden on the user of this checking process is
the definition of meaningful properties, not on the mechanics of the checking process itself. The use of
temporal logic can be a stumbling block, even for experienced users. To try to remedy this we developed
the simple timeline editor, that is able to express the majority of the properties of interest in a fairly intu-
itive way. The vacuity check on apparently positive results from a verification run has also proved to be
essential: it can be easy to state complex properties that are in retrospect meaningless. We built some
mechanized checks to warn the user of such occurrences.

In a production environment, with strict project deadlines, the likelyhood that a system error is addressed
quickly is often inversely proportional to the number of words that is needed to describe it. Execution
sequences of thousands of steps that putatively violate complex logic properties are not likely to get quick
attention. We therefore use the verification system in two phases: the first phase is used to identify all pos-
sible property violations, and the second phase is used to to generate the shortest possible example of each
violation discovered, selecting the most likely manifestation of the error. This strategy has proven success-
ful. In most cases an error can be demonstrated in no more than ten to fifteen steps, whereas an initial error
sequence migh contain hundreds and risk escaping notice.

5. Conclusions

At the time of writing, we have tracked the design, evolution, and maintenance of the PathStar call process-
ing code over a period of approximately 18 months. In this period, the code grew fivefold in size and went
through roughly 300 different versions, often changing daily. We intercepted approximately 75 errors in
the implementation of the feature code by repeated verifications. Many of these errors were considered
critically important by the programmers, especially in the early phases of the design. About 5 of the errors
caught were also found independently by the normal system test group, especially in the later phases of the
project. (The traditional testing, of course, addressed the PathStar system as a whole, and did not concen-
trate solely on the call processing code like we did.) In about 5 other cases the testers discovered an error
that should have been within the domain of our verifications. These missed errors were caused by unstated
or ambiguous system requirements; once the proper requirements were added into our database, the viola-
tions were be caught.

In several cases we also used our verification system as a diagnostic tool. Occasionally the testers would
run into a problem that could not be reproduced. By feeding the event sequence of such a test into the
FeaVer system the error sequence could be reproduced in these cases and studied to determine which race
conditions or event timings were responsible for its occurrence. In other cases the programmers of the sys-
tem wanted to confirm their intuition about the occurrence or absence of certain conditions, such as a sus-
pected unreachability of part of the code. The verification framework proved ideal to settle such question
promptly.
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Side Box A: Model Checking

The model checker we use in the FeaVer system, SPIN, accepts specifications of asynchronous process sys-
tems in a modeling language that guarantees the desired finite behavior [H97]. It converts every process
specification into an automaton and can then in principle compute the complete global behavior of the sys-
tem specified as an asynchronous product of automata. Instead of doing so, however, the model checker
will first compute an automaton that captures all possible violations of a given correctness property. It then
performs the actual model checking job by computing the intersection of the languages defined by the two
sets of automata: the ones specifying possible system executions and the one specifying the executions that
would correspond to a property violation [VW86]. If the intersection product is empty, no violations exist
and the system passes the test. If the intersection product is not empty it will contain at least one complete
execution that is both in the lanuage of the system (i.e., it is a possible execution of the system as specified)
and in the language of the violations automaton (i.e., it constitutes the violation of a correctness property).
In this case, the model checker will generate one such sequence as output and stop, having proven the pos-
sible violation of the property. In the FeaVer system the sequence is now translated back automatically
from the specification language of the model checker into the source language of the application and
reported to the user.

Side Box B: Iterative Search Procedure

SPIN verification jobs can be compiled to be performed either exactly or with varying degrees of thor-
oughnes, using proof approximation techniques. The benefit of an exact run will be clear. An exact verifi-
cation can, however, be time consuming for large problems. An approximate answer that can be delivered
quickly is often of more value to a user than a precise answer that takes much longer to compute. In an
approximate SPIN verification run both the quality and the speed of the run can be controlled by an appro-
priate choice of parameters. The thoroughness of the run can be increased or decreased with the time
requirements. If property violations are possible, even very approximate runs have a reasonable chance of
identifying them.

The scheduler Tb_sched uses this fact to enforce an iterative search refinement method for each verifica-
tion task. The iterative search procedure starts by allocating the fastest possible, and most approximate,
runs for each task. The first of these runs typically completes in under a second of CPU time. If the run
finds an error, the remainder of the runs can be abandoned, and the error sequence can be processed for
inclusion in the FeaVer database (see below). If no error is found, the coverage is increased. The second
run may take two seconds, proceeding to four, eight, sixteen second runs, and so on until either an error is
found or maximal coverage was reached (and with that proof that no violations of the corresponding prop-
erty are possible).

With, say, 200 verification runs to be performed and 20 workstations available to perform the runs, we can
perform the first approximate scans in about ten seconds total for all jobs combined. In each new iteration
all jobs that produced errors are deleted from the workset, and the scan becomes more thorough for the
remaining properties. With this procedure it typically takes a few minutes to identify the first property vio-
lation in a set of about 200 verification tasks. After about five minutes a representative selection of viola-
tions is normally available, with the gaps filled in in subsequent searches. The iterative search procedure is
abandoned after about an hour, whether it has reached fully exact results or not. The rationale is that within
an hour one normally will have looked at the property violations and formulated corrections of the source
code. Further error sequences would be of little use, since the source code has by now changed, and more
value can be derived from a new scan of all properties for the new version of the source.

Side Box C: Omega Automata

The formal definition of an ω-automaton, as shown in Figure 4, differs slightly from that of a standard
finite automaton. Instead of accepting (input) sequences of finite length, as a standard finite automaton, an
ω-automaton accepts only sequences (in our case representing system executions) of infinite length. There
are several ways to define the acceptance conditions for an ω-automaton [T90]. The definition used in
SPIN is known as B

. .
uchi acceptance. It states that a sequence is accepted if and only if it traverses at least
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one accepting state in the automaton (indicated with a double circle in Figure 4) infinitely often. The
automaton in Figure 4 is also non-deterministic, which makes it’s behavior less obvious. In the model
checking process, the transitions of this automaton are ’matched’ one by one against the execution steps of
the system. Execution starts with the property automaton in its initial state s 0. After each step of the system
the property automaton is forced to make a transition. To do so we can choose only from transitions that
have label that evaluates to true at this point in the execution. The self-loop on s 0 can always be traversed,
since it’s label trivially always evaluates to true. The transition from s 0 to s 1 can only be taken when an
offhook is detected. Note carefully that if1 an offhook is detected the property automaton can either stay in
s 0 , and ignore this event, or move to s 1 and start the wait for a dialtone (i.e., it makes a non-deterministic
choice). The model checker will check for both possible choices. The choice is important because we do
not just want to check the first occurrence of an offhook signal is followed by a dialtone, but that this holds
for every occurrence.

Once the property automaton reaches state s 1 it can only remain there in the absence of dialtones and
onhooks. A sequence is formally accepted by the automaton if and only if it is possible for the property
automaton to remain in s 1 forever. If a dialtone is detected within a finite number of steps, the attempt to
match the corresponding execution to the property automaton fails: the execution satisfies the original
requirement and does not constitute a violation. The matching process stops at this point. The model
checker will abandon the search of this execution and explore other possible executions instead, in a hunt
for possible violations. Note also that there need not be a back-edge from state s 1 to state s 0, since all
behaviors of interest are already captured by the non-determinism on s 0.


