
0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E 	 MAY/JUNE 2017 | IEEE SOFTWARE � 67

RELIABLE CODE
Editor: Gerard J. Holzmann
NASA/JPL
gholzmann@acm.org

SOME SOFTWARE COMPANIES put
prospective employees in front of a
whiteboard and challenge them to solve
a few programming problems on the fly.
A sample problem could be to find a way
to sort a billion numbers when you can
store only a million in memory. Another
could be to give an algorithm that can
factor a given number into primes or
generate prime numbers up to some pre-
set bound. Quite a few websites describe
such problems; a favorite seems to be
projecteuler.net.

If you’re the candidate, I bet you’ll try
hard to avoid reproducing the most ob-
vious solution to a problem and instead
show some spunk by coming up with
something a little more creative. I’ll take
the problem of generating a sequence of
prime numbers as a simple example, just
to show how trying to be creative can
trip you up.

There’s quite a bit of history about
creating good methods for generating
primes that I’ll conveniently skip here.
When you’re standing in front of the
whiteboard, you don’t get to Google
your answer, anyway.

The simplest way you can probably
think of is to walk through every posi-
tive integer, up to the requested maxi-
mum, and check whether it’s divisible
by a number other than one and itself.
That’s a slow, tedious process, so the

game is now to find ways to speed that
up. For candidate prime numbers larger
than two, there’s of course no point in
trying numbers that are divisible by two
because they can’t possibly be prime.
With the same reasoning, you also don’t
have to consider numbers that are divis-
ible by any other prime number you al-
ready know about.

This will lead you quickly to some
version of the classic algorithm that has
been known since the days of the Greek
mathematician Eratosthenes (276–194
BC), even if you can’t remember his
name. You can start drafting your white-
board algorithm once you realize that if
you know the primes up to some number
N, the next prime number in the series
must be the first number larger than N
that’s not divisible by any of the primes
smaller than N.

An Iterative Version
We can code this in any reasonable pro-
gramming language, and in quite a few
unreasonable ones as well. It can be fun
to express the algorithm in Python, C,
C++, Scala, or Go, or even in scripting lan-
guages such as Tcl or Awk. And, yes, I con-
fess that I’ve tried most of these, including
Awk. Each language offers different fea-
tures that can simplify the job or make it
more interesting. For our current purpose,
it’ll suffice to stick to just plain old C.

A Tale of Three Programs
Gerard J. Holzmann

RELIABLE CODE

68	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

In a first attempt, we might come
up with the version in Figure 1,
which assumes that we provide the
value of N in some other way—for
example, with a macro directive to
the C compiler.

Let’s take the first prime number,
two, for granted, and try to generate
the rest. We consider only odd num-
bers and eliminate any new number
that’s divisible by one of the primes
discovered before. Clearly this isn’t
the best we could do, but it’s a start-
ing point.

A couple of improvements will
quickly come to mind. For example,
we could shortcut the search in the
for loop and declare a new prime
once the value of primes[i] starts ex-
ceeding the square root of cand. We
can avoid the potentially costly

square root computation by instead
checking whether primes[i]*primes[i]
> cand holds. And, we can even pre-
compute and store the value of those
products of primes so that we don’t
have to compute them over and over
again. Those changes should im-
prove the efficiency, but they’ll also
obfuscate the code a bit. So, let’s ig-
nore them for now and look at other
alternatives that can make the algo-
rithm more interesting.

Recursion
You might get a gut feeling that a
recursive procedure is hiding in our
first cut at the algorithm. Didn’t
somebody once say, “To iterate

is human, to recurse, divine”? It
doesn’t take much to come up with
the recursive version of the code in
Figure 2, which isn’t any shorter but
perhaps is at least a bit less stale.

The Sieve
Neither version of the code we’ve
been discussing is a faithful render-
ing of what’s called the sieve of Er-
atosthenes. Over 2,000 years ago,
Eratosthenes also considered the
problem of generating primes up to
some number N, although not likely
in a job interview. He noticed that
for any new prime we discover, start-
ing with two, we can eliminate from
consideration all multiples of that
number as well. So, we can indeed
eliminate not only all even numbers
but also all multiples of 3, 5, 7, and
so on. In this way, we can eliminate
more and more numbers with each
new prime we discover.

This elimination process should
speed up the checks because we
have fewer and fewer numbers to
check as candidate primes, while
we’re discovering more and more
primes. To store the additional in-
formation that records whether
a number is worth checking for
primeness, we need to store only a
single bit of information per num-
ber up to our preset bound N. We
can use the bit to record whether a
number has already been eliminated
as a multiple of an earlier prime.
This leads to the version of the code
in Figure 3, which is now definitely
more interesting.

For simplicity, this example uses
a byte instead of a bit to record the
primeness of each candidate number,
but you get the idea. The code is now
not only closer to the true sieve algo-
rithm but also a bit shorter. It would
be even shorter if we could eliminate
the four lines for the final loop over

int nprimes=1;
int primes[N];
int
main(void) // iterative
{ int i, cand = 3;
 primes[0] = 2;
 printf(“2\n”);
 while (nprimes < N)
 { for (i = 0; i < nprimes; i++)
 { if (cand % primes[i] == 0)
 { break; // not prime
 } }
 if (i == nprimes)
 { primes[nprimes++] = cand;
 printf(“%d\n”, cand);
 }
 cand += 2;
 }
 return 0;
}

FIGURE 1. An iterative algorithm for

generating prime numbers. This isn’t the

best algorithm you could write, but it’s a

starting point.

int nprimes=1;
int primes[N];
int
divides(int cand, int n)
{
 if (n > 0 && divides(cand, n-1))
 { return 1;
 }
 return (cand%primes[n] == 0);
}
int
main(void) // recursive
{ int cand = 3;
 primes[0] = 2;
 printf(“2\n”);
 while (nprimes < N)
 { if (!divides(cand, nprimes-1))
 { primes[nprimes++] = cand;
 printf(“%d\n”, cand);
 }
 cand += 2;
 }
 return 0;
}

FIGURE 2. A recursive algorithm for

generating prime numbers. This example

isn’t any shorter than the one in Figure 1

but is slightly more interesting.

RELIABLE CODE

	 MAY/JUNE 2017 | IEEE SOFTWARE � 69

the numbers, which only serves to
print each final prime number once
we’ve reached the preset bound. This
last version might be the most pleas-
ing, especially if you can come up
with it during your whiteboard ses-
sion. Is it also the most efficient?

Measuring
Figure 4 shows the result of a quick
performance comparison that used
each version of the algorithm to gen-
erate the first N prime numbers. For
the sieve version, that means allo-
cating an array larger than N to en-
sure that it contains the required N
primes. For example, to make sure
we can find each of the first 1,000
prime numbers, the notprime array
from the sieve algorithm must use
a definition of MAX of at least 7,920,
because the 1,000th prime is 7,919.

As we might expect, both peak

memory use and runtime increase
as the number of generated primes
increase. Figure 4 shows a log–log
plot for a sequence of tests I used to
generate up to one million primes.
In both graphs, lower means better.
No significant differences in perfor-
mance exist between the algorithms
up to about 1,000 primes, but be-
yond that, the differences are stark.

The best-performing algorithm of
the three versions we discussed turns
out to be the basic one we wrote
first, before we started “improving”

it. And yes, each new improvement
seems to have worsened the per-
formance a little. The difference in
runtime between the best and worst
version of the code when generating
a million primes is no less than five
orders of magnitude. Now, I don’t
want to be petty about small dif-
ferences, but the difference between
waiting six hours or six seconds for
a result is often quite noticeable.

You likely know Donald Knuth’s
statement that “premature optimi-
zation is the root of all evil.”1 So,

FIGURE 4. The relative performance of a few trial algorithms for computing primes,

comparing (a) memory use and (b) runtime. The top three curves show the performance

of the three algorithms discussed here, using iteration, recursion, or the prime sieve

method. The bottom curve shows the performance of the primes command of the Plan

9 OS, which dates back to an early version of Unix from 1975.

Sieve
Recursive
Iterative
Plan 9 primes

1
100 1,000 10,000 100,000 1,000,000

10

M
em

or
y

(M
by

te
s)

No. of primes(a)

(b)

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

100 1,000 10,000 100,000 1,000,000

Ti
m

e
(s

)

No. of primes

Sieve
Recursive
Iterative
Plan 9 primes

char notprime[MAX];
int
main(void) // sieve
{ int i, cand;
 for (cand = 2; cand < MAX;
cand++)
 { if (!notprime[cand])
 for (i = cand+1; i < MAX; i++)
 { if (!notprime[i]
 && i % cand == 0)
 { notprime[i] = 1;
 } } }
 for (i = 2; i < MAX; i++)
 { if (!notprime[i])
 { printf(“%d\n”, i);
 } }
 return 0;
}

FIGURE 3. An algorithm for generating

prime numbers that’s based on the sieve

of Eratosthenes. This algorithm is shorter

than the ones in Figures 1 and 2.

RELIABLE CODE

70	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

is there really nothing we could do
to improve our code’s performance
beyond that of the first version? Of
course there is, but it requires using
a little more theory and likely bet-
ter coding skills than I can bring to
the job, as illustrated by the bottom
curve in the two graphs in Figure 4.

Morris’s Code
The measurements that produced
those bottom curves were from
running the same tests on the ver-
sion of the primes command I found

in the Plan 9 OS. The code for this
command can be traced back to
Sixth Edition Unix from 1975. It
was initially written in PDP-11 as-
sembly code by Robert Morris Sr.
(1932–2011), a mathematician and
an original member of the former
Unix group at Bell Labs Research.
In 1986, Morris left Bell Labs to join
the US National Security Agency
as the chief scientist of its National
Computer Security Center. His
primes program was rewritten into
C shortly before Eighth Edition Unix

was released in 1985; it handles
primes up to 256 (about 7.2 × 1016).

The Plan 9 and Unix version
of the primes command is still a bit
faster than the more recent compa-
rable command, matho-primes, that you
can install on the Ubuntu OS. It im-
proves over our trial version of the
code by another order of magnitude,
cutting the time for generating a mil-
lion primes down to just 0.6 s.

The Plan 9 and Unix versions are
approximately 100 lines of C, and
the Sixth Edition assembly code
version was approximately 350
lines of code. So, with these, we’re
decidedly no longer in the territory
of something that ordinary mortals
can produce extemporaneously on
a whiteboard.

I find it sobering that the differ-
ence in performance between
Morris’s code and the initial

version of the algorithm isn’t as large
as the degree of harm we inflicted
upon ourselves by trying to rewrite
that initial version without first mea-
suring its performance. Who among
us hasn’t fallen into that trap a few
times too many?

Reference
1.	D. Knuth, “Structured Programming

with go to Statements,” Comput-

ing Surveys, vol. 6, no. 4, 1974, pp.

262–301.

GERARD J. HOLZMANN works on developing

stronger methods for the design and analysis

of safety-critical software as a consultant and

researcher at Nimble Research. Contact him at

gholzmann@acm.org.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

