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SOME SOFTWARE COMPANIES put 
prospective employees in front of a 
whiteboard and challenge them to solve 
a few programming problems on the fly. 
A sample problem could be to find a way 
to sort a billion numbers when you can 
store only a million in memory. Another 
could be to give an algorithm that can 
factor a given number into primes or 
generate prime numbers up to some pre-
set bound. Quite a few websites describe 
such problems; a favorite seems to be 
projecteuler.net.

If you’re the candidate, I bet you’ll try 
hard to avoid reproducing the most ob-
vious solution to a problem and instead 
show some spunk by coming up with 
something a little more creative. I’ll take 
the problem of generating a sequence of 
prime numbers as a simple example, just 
to show how trying to be creative can 
trip you up.

There’s quite a bit of history about 
creating good methods for generating 
primes that I’ll conveniently skip here. 
When you’re standing in front of the 
whiteboard, you don’t get to Google 
your answer, anyway.

The simplest way you can probably 
think of is to walk through every posi-
tive integer, up to the requested maxi-
mum, and check whether it’s divisible 
by a number other than one and itself. 
That’s a slow, tedious process, so the 

game is now to find ways to speed that 
up. For candidate prime numbers larger 
than two, there’s of course no point in 
trying numbers that are divisible by two 
because they can’t possibly be prime. 
With the same reasoning, you also don’t 
have to consider numbers that are divis-
ible by any other prime number you al-
ready know about.

This will lead you quickly to some 
version of the classic algorithm that has 
been known since the days of the Greek 
mathematician Eratosthenes (276–194 
BC), even if you can’t remember his 
name. You can start drafting your white-
board algorithm once you realize that if 
you know the primes up to some number 
N, the next prime number in the series 
must be the first number larger than N 
that’s not divisible by any of the primes 
smaller than N.

An Iterative Version
We can code this in any reasonable pro-
gramming language, and in quite a few 
unreasonable ones as well. It can be fun 
to express the algorithm in Python, C, 
C++, Scala, or Go, or even in scripting lan-
guages such as Tcl or Awk. And, yes, I con-
fess that I’ve tried most of these, including 
Awk. Each language offers different fea-
tures that can simplify the job or make it 
more interesting. For our current purpose, 
it’ll suffice to stick to just plain old C.
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In a first attempt, we might come 
up with the version in Figure 1, 
which assumes that we provide the 
value of N in some other way—for 
example, with a macro directive to 
the C compiler.

Let’s take the first prime number, 
two, for granted, and try to generate 
the rest. We consider only odd num-
bers and eliminate any new number 
that’s divisible by one of the primes 
discovered before. Clearly this isn’t 
the best we could do, but it’s a start-
ing point.

A couple of improvements will 
quickly come to mind. For example, 
we could shortcut the search in the 
for loop and declare a new prime 
once the value of primes[i] starts ex-
ceeding the square root of cand. We 
can avoid the potentially costly 

square root computation by instead 
checking whether primes[i]*primes[i] 
> cand holds. And, we can even pre-
compute and store the value of those 
products of primes so that we don’t 
have to compute them over and over 
again. Those changes should im-
prove the efficiency, but they’ll also 
obfuscate the code a bit. So, let’s ig-
nore them for now and look at other 
alternatives that can make the algo-
rithm more interesting.

Recursion
You might get a gut feeling that a 
recursive procedure is hiding in our 
first cut at the algorithm. Didn’t 
somebody once say, “To iterate 

is human, to recurse, divine”? It 
doesn’t take much to come up with 
the recursive version of the code in 
Figure 2, which isn’t any shorter but 
perhaps is at least a bit less stale.

The Sieve
Neither version of the code we’ve 
been discussing is a faithful render-
ing of what’s called the sieve of Er-
atosthenes. Over 2,000 years ago, 
Eratosthenes also considered the 
problem of generating primes up to 
some number N, although not likely 
in a job interview. He noticed that 
for any new prime we discover, start-
ing with two, we can eliminate from 
consideration all multiples of that 
number as well. So, we can indeed 
eliminate not only all even numbers 
but also all multiples of 3, 5, 7, and 
so on. In this way, we can eliminate 
more and more numbers with each 
new prime we discover.

This elimination process should 
speed up the checks because we 
have fewer and fewer numbers to 
check as candidate primes, while 
we’re discovering more and more 
primes. To store the additional in-
formation that records whether 
a number is worth checking for 
primeness, we need to store only a 
single bit of information per num-
ber up to our preset bound N. We 
can use the bit to record whether a 
number has already been eliminated 
as a multiple of an earlier prime. 
This leads to the version of the code 
in Figure 3, which is now definitely 
more interesting.

For simplicity, this example uses 
a byte instead of a bit to record the 
primeness of each candidate number, 
but you get the idea. The code is now 
not only closer to the true sieve algo-
rithm but also a bit shorter. It would 
be even shorter if we could eliminate 
the four lines for the final loop over 

int nprimes=1;
int primes[N];
int
main(void) // iterative
{ int i, cand = 3;
  primes[0] = 2;
  printf(“2\n”);
  while (nprimes < N)
  { for (i = 0; i < nprimes; i++)
    { if (cand % primes[i] == 0)
      { break; // not prime
    } }
    if (i == nprimes)
    { primes[nprimes++] = cand;
      printf(“%d\n”, cand);
    }
    cand += 2;
  }
  return 0;
}

FIGURE 1. An iterative algorithm for 

generating prime numbers. This isn’t the 

best algorithm you could write, but it’s a 

starting point.

int nprimes=1;
int primes[N];
int
divides(int cand, int n)
{
  if (n > 0 && divides(cand, n-1))
  { return 1;
  }
  return (cand%primes[n] == 0);
}
int
main(void) // recursive
{ int cand = 3;
  primes[0] = 2;
  printf(“2\n”);
  while (nprimes < N)
  { if (!divides(cand, nprimes-1))
    { primes[nprimes++] = cand;
      printf(“%d\n”, cand);
    }
    cand += 2;
  }
  return 0;
}

FIGURE 2. A recursive algorithm for 

generating prime numbers. This example 

isn’t any shorter than the one in Figure 1 

but is slightly more interesting.
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the numbers, which only serves to 
print each final prime number once 
we’ve reached the preset bound. This 
last version might be the most pleas-
ing, especially if you can come up 
with it during your whiteboard ses-
sion. Is it also the most efficient?

Measuring
Figure 4 shows the result of a quick 
performance comparison that used 
each version of the algorithm to gen-
erate the first N prime numbers. For 
the sieve version, that means allo-
cating an array larger than N to en-
sure that it contains the required N 
primes. For example, to make sure 
we can find each of the first 1,000 
prime numbers, the notprime array 
from the sieve algorithm must use 
a definition of MAX of at least 7,920, 
because the 1,000th prime is 7,919.

As we might expect, both peak 

memory use and runtime increase 
as the number of generated primes 
increase. Figure 4 shows a log–log 
plot for a sequence of tests I used to 
generate up to one million primes. 
In both graphs, lower means better. 
No significant differences in perfor-
mance exist between the algorithms 
up to about 1,000 primes, but be-
yond that, the differences are stark.

The best-performing algorithm of 
the three versions we discussed turns 
out to be the basic one we wrote 
first, before we started “improving” 

it. And yes, each new improvement 
seems to have worsened the per-
formance a little. The difference in 
runtime between the best and worst 
version of the code when generating 
a million primes is no less than five 
orders of magnitude. Now, I don’t 
want to be petty about small dif-
ferences, but the difference between 
waiting six hours or six seconds for 
a result is often quite noticeable.

You likely know Donald Knuth’s 
statement that “premature optimi-
zation is the root of all evil.”1 So, 

FIGURE 4. The relative performance of a few trial algorithms for computing primes, 

comparing (a) memory use and (b) runtime. The top three curves show the performance 

of the three algorithms discussed here, using iteration, recursion, or the prime sieve 

method. The bottom curve shows the performance of the primes command of the Plan 

9 OS, which dates back to an early version of Unix from 1975.
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char notprime[MAX];
int
main(void) // sieve
{ int i, cand;
  for (cand = 2; cand < MAX; 
cand++)
  { if (!notprime[cand])
    for (i = cand+1; i < MAX; i++)
    { if (!notprime[i]
      && i % cand == 0)
      { notprime[i] = 1;
  } } }
  for (i = 2; i < MAX; i++)
  { if (!notprime[i])
    { printf(“%d\n”, i);
  } }
  return 0;
}

FIGURE 3. An algorithm for generating 

prime numbers that’s based on the sieve 

of Eratosthenes. This algorithm is shorter 

than the ones in Figures 1 and 2.
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is there really nothing we could do 
to improve our code’s performance 
beyond that of the first version? Of 
course there is, but it requires using 
a little more theory and likely bet-
ter coding skills than I can bring to 
the job, as illustrated by the bottom 
curve in the two graphs in Figure 4.

Morris’s Code
The measurements that produced 
those bottom curves were from 
running the same tests on the ver-
sion of the primes command I found 

in the Plan 9 OS. The code for this 
command can be traced back to 
Sixth Edition Unix from 1975. It 
was initially written in PDP-11 as-
sembly code by Robert Morris Sr. 
(1932–2011), a mathematician and 
an original member of the former 
Unix group at Bell Labs Research. 
In 1986, Morris left Bell Labs to join 
the US National Security Agency 
as the chief scientist of its National 
Computer Security Center. His 
primes program was rewritten into 
C shortly before Eighth Edition Unix 

was released in 1985; it handles 
primes up to 256 (about 7.2 × 1016).

The Plan 9 and Unix version 
of the primes command is still a bit 
faster than the more recent compa-
rable command, matho-primes, that you 
can install on the Ubuntu OS. It im-
proves over our trial version of the 
code by another order of magnitude, 
cutting the time for generating a mil-
lion primes down to just 0.6 s.

The Plan 9 and Unix versions are 
approximately 100 lines of C, and 
the Sixth Edition assembly code 
version was approximately 350 
lines of code. So, with these, we’re 
decidedly no longer in the territory 
of something that ordinary mortals 
can produce extemporaneously on 
a whiteboard.

I find it sobering that the differ-
ence in performance between 
Morris’s code and the initial 

version of the algorithm isn’t as large 
as the degree of harm we inflicted 
upon ourselves by trying to rewrite 
that initial version without first mea-
suring its performance. Who among 
us hasn’t fallen into that trap a few 
times too many?
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