
RESEARCH NOTE

Gerard Holzmann is a Faculty Associate at Caltech in the

Department of Computing and Mathematical Sciences and

is the Lead Scientist of the Laboratory for Reliable Software

(LaRS) at the Jet Propulsion Laboratory (JPL). He was recently

part of a small team of NASA and JPL engineers commis-

sioned by the U.S. Department of Transportation to study the

possibility of software triggers for unintended acceleration in

Toyota® vehicles.

Ruling Out Bad Behavior:
Designing Software to Make Extremely Dangerous Consequences

Not Just'Unlikely' but'Impossible'

ENGenious: What inspired you to

become an engineer?

Holzmann: You can view engineering

as the art of combining components

in such a way that the whole becomes

greater than the sum of its parts. This

is an effort to strive for perfection: the

illusion that we can build things that

work perfectly all the time and that

accomplish things that we as humans

cannot. The most interesting part for

me is that no matter how hard we try,

the perfection that we aim for almost

always remains elusive.

Engineering is interesting because

it perpetually confronts us with the

frailty of our understanding of how

things work. A computer program,

for instance, can be 'perfect' in the

sense that it will make a machine

do precisely what we tell it to do, in

precisely the order in which we tell it

to do it. But almost inevitably things

still go wrong, not because the com-

puter misunderstands our instruc-

tions, but because we as programmers

don't always appreciate the complex-

ity of what we are trying to do, which

means that we often get the instruc-

tions wrong in subtle ways.

ENGenious: Can you give an ex-

ample?

Holzmann: A few years ago, NASA

lost contact with the Mars Global

Surveyor (MGS). The spacecraft had

been orbiting Mars since September

1997. It all started with a regular

maintenance action involving a

minor update to some parameters

to increase their precision. But the

update for one of these parameters

was off by one word in the memory.

This meant that this key parameter

(and the one next to it in the com-

puter's memory) was corrupted and

ended up having the wrong value.

It went unnoticed at the time. Six

months later, though, the solar panels'

positions had to be adjusted from

winter to summer, but because of

the first corrupt parameter the solar

panels rotated too far. This automati-

cally put the spacecraft in `safe mode.'

Safe mode is programmed to have

two priorities, the first is to be power

positive—that means to make sure

that the batteries are always charged.

The second priority is to maintain

a communication link with Earth.

Clearly, not doing so can lead to a

loss of the mission. Since the solar

panels were considered stuck, the only

remaining way to point the panels at

the sun to charge the batteries was to

rotate the entire spacecraft, which was

done automatically. As the space-

craft was charging the batteries, the

fault protection system noticed that

they were heating up. Typically, this

means that they're overcharging. So,

Mars Global Surveyor (MGS)

40$

\30 	I DIVISION OF ENGINEERING & APPLIED SCIENCE

RESEARCH NOTE

D001110111011000010111001;

0011101uUoi 	i1 	D 0 0 0 0 011011010110 0 0 010110
1100100010000001100101011

lid 30111010001110010011001011
)101100101011011000111100
000011001000110000101101

1110010011011110111010101110011001000000110001
0110111101101110011100110

1001010111X001011101010110010101101110011000110
10110010010101

101011100110010000001101110011011110111010001
001100010011101010111011

000100101100010011011000110 1

Gerard Holzmann

100110011101100101

the fault protection system decided
that the batteries must be full and
stopped charging. But the batteries
were actually getting hot because the
rotation that the spacecraft under-
went in order to point the solar panels
at the sun exposed the batteries to
the sun as well. The fault protection
system did not know this. To act on
the second priority the spacecraft had
to point its antennas at Earth, but the
earth-pointing parameter was next to
the soft-stop parameter for the solar
arrays, and had also been corrupted in
the earlier update. So the spacecraft
was unable to find earth as it tried to
send out its calls for help. Next, the
fault protection system noticed that
the batteries had cooled off and were
almost depleted—so it went back to
its first priority. This cycle repeated
a number of times until the batteries
were fully depleted and the spacecraft
became uncommandable. The curi-
ous thing is that the fault protection
system was doing precisely what it
was programmed to do, but there was
this circumstance that nobody had
thought of until it happened. How do
you predict these things? Well, that is

very difficult, but it is precisely what
makes this fascinating. You think
you've covered all the possibilities, but
you probably didn't even scratch the
surface.

ENGenious: How is JPIA Laboratory
for Reliable Software making flight
software more reliable?

Holzmann: We started the Labora-
tory for Reliable Software when I
joined JPL in 2003. It has the daunt-
ing task of trying to achieve long-
term improvements in the reliability
of the software we use to fly inter-
planetary space missions. So far, we've
introduced the use of state-of-the-art
static source code analyzers as part of
the software development process at
JPL. These analyzers can intercept a
lot of common software defects that
otherwise slip through. We've also

developed a new Institutional Coding
Standard for all flight code developed
at JPL, we initiated a new and more
thorough code review process, and
we've started a formal "Certification"
course for our flight software devel-
opers. We've made good progress in
the last few years, but we don't take
anything for granted.

ENGenious: Tell us about being
asked by the U.S. Department of
Transportation and NASA to study
the possibility of software triggers
for unintended acceleration events in
Toyota vehicles.

Holzmann: I was very fortunate to be
part of the team of software experts
that could work on this problem. I
was asked to apply some of the tech-
niques I developed for these types of
problems in my years as a computing

ENGenious ISSUE 8 2011
	

31

010 0 01110 1 110110 0 0 0 1 01110 0 10
0110 010 10 0100 00 0 0111010 0 01101111 0 01000
000 110110101100 0 010 1101
011 0 11 0 0 10
0 010 0 0 0 00110 01010111
100 0 01110100 01110010 0110 01010
1101101011001010110110 0 011110 01
0 010 0 0 0 0 0110 010 0 01100 0 010 11011
10 0110 0 1110X110 01011110 010 011011110111
010101110 0110 010 00 0 0 01100 011

RESEARCH NOTE

science researcher at Bell Labs. We
were given unlimited access to the
source code that drives Toyotas and
to the technical experts who could
explain its working in detail. I learned
more about the software controls in
cars than I could have imagined. We
immersed ourselves in this problem

"...to make sure that unacceptable events are actually rendered 'impossible'

—and not just 'unlikely' .., we first have to recognize that no single part of a

complex system is ever perfect, and that includes the software."

for about five months in 2010, work-
ing full-time at Toyota facilities in
Los Angeles, and I believe we were
able to complete a really thorough
analysis of the code. The puzzle was
the usual one: can we find out how
something that is not supposed to be
happening might happen anyway?
We were able to rule out a number
of potential causes for unintended
acceleration, although much of our
analysis has not been released publi-
cally. The complexity of an analysis
like this immediately leads back to
my original fascination with software
complexity: it should be possible to
design software in such a way that we
can rule out bad behavior conclusive-
ly. My colleagues and I are today even
more determined than ever to develop
such a method for use in safety criti-
cal systems.

ENGenious: What are the main
research challenges in reliable systems
design?

Holzmann: The main challenge in
reliable systems design is to make
sure that unacceptable events are
actually rendered Impossible'—and
not just 'unlikely.' To do this, we first
have to recognize that no single part
of a complex system is ever perfect,
and that includes the software. The
key is to build reliable systems from
potentially unreliable parts. Noth-
ing is foolproof. So, we often try to

find a compromise between cost and
benefit, but extremely dangerous
consequences should firmly be placed
outside such a cost benefit analysis.
Many have not yet fully embraced
this approach, partly because it is
tempting to interpret events with a
very small probability of occurrence
as virtually impossible. We only have
to look at how nuclear power plants
sometimes fail to see that extremely
low probability events are still very
much possible.

ENGenious: Are engineer stu-
dents trained well to design reliable
systems? What, if anything, should
change?

Holzmann: I think there are two pos-
sible answers to this. In most areas of
engineering, the answer is yes. Civil
engineers, for instance, can design
a building or bridge to successfully
withstand an earthquake of a certain
magnitude. In software engineering,
though, the answer is often nega-
tive. The prevailing belief is that the
hardware has known failure modes,
but that software can be perfect. The
fault protection software on-board
a spacecraft is designed to recover
the spacecraft when a hardware
problem strikes, but is often power-
less when a software problem occurs.
The fault protection software itself,
furthermore, can also be faulty or
subtly incomplete. We should design

safety critical applications in medical
devices, cars, power plants, and space-
craft with knowledge of the failure
modes, including software failure
modes. This is something that we are
not very good at today.

ENGenious: One way of improving
the reliability of systems is to have
them tested extensively. Should mem-
bers of the community participate in
testing? Can systems such as OnStar
help?

Holzmann: Direct measurement of
the true performance of a system
in practice is invaluable. It is how
we learn the hidden flaws and what
gives us the opportunity to adapt
our designs to improve them. In a
sense, all spacecraft that are currently
active across the solar system have
the equivalent of an `OnStar' button.
Every time a spacecraft presses that
button, so to speak, we learn some-
thing new about how the spacecraft
we built yesterday works today and
how it could be designed even better
tomorrow. CI El

Gerard Holzmann is a Faculty Associate
at Caltech in the Department of
Computing and Mathematical Sciences
and the Lead Scientist of LaRS at the
Jet Propulsion Laboratory.

Visit tars-lab.jpthasa.gov

\32 	ik DIVISION OF ENGINEERING & APPLIED SCIENCE

	Page 1
	Page 2
	Page 3

