interactive code checking
with Cobra

a Tutorial

Gerard Holzmann
Nimble Research
gholzmann@acm.org

this tutorial

* how does it work, and

Code Browser * how can you use it?
and Analyzer

topics covered

1. background and principle of operation | 4. scripted queries

* installation and configuration * recursive functions
e guide to online documentation * associative arrays
2. pattern queries and regular expressions * the query libraries
* exercises * using concurrency
3. interactive queries * exercises
* token attributes 5. standalone checkers
e sets and ranges * using concurrency: multi-
 functions threaded checkers
« reading files, libraries 6. use of Cobra for runtime
. exercises verification

* using live data or event-logs

why does traditional static analysis take so long?

building data structures
thousands or millions of
lines of source code

but, a large number of checks
require no more information
than is already available here

more detailed information may be

most of the time is_| derived as needed, if needed

spent here
for a large code-
base this can take
hours

cobra’s design

minimize prep-time and query time

query source

language code
| |

ident — (—> void
’ \ 7 \
main ~ - P ~

= e — —

A\ 4
—

v
—~—

\ 4

S
[l
v

switch — >

= e — —

a linked list of lexical tokens with annotations
(token types, ranges, levels of nesting for parentheses, brackets, and braces, etc.)

cobra’s design

minimizing query response time

o interactive query commands over sets & ranges
o pattern matching commands
o inline programs

Source Code Patterns of Interest

parallel query
processing is easy
(in most cases)

N CPU cores

getting started

recommended:
installation and configuration install also tcl/tk
_ _ . . install also graphviz
S # pick the directory where you’ll install the cobra files on ubuntu:
S git clone https://github.com/nimble-code/Cobra sudo apt-get install graphviz
Sls -l on mac:
drwxrwxr-x 2 gh gh 4096 May 16 12:59 bin_linux # executables for linux brew install graphviz
drwxrwxr-x 2 gh gh 4096 May 16 12:59 bin_cygwin # executables for cygwin on cygwin:
drwxrwxr-x 2 gh gh 4096 May 16 12:59 bin_mac # executab!es for macs install Cygwin-X and then
drwxrwxr-x 2 gh gh 4096 May 16 10:03 doc # change history, manpage dd tcl/tk and hvi
drwxrwxr-x 2 gh gh 4096 May 16 10:03 gui # optional small tcl/tk script : ¢ and grapnviz
drwxrwxr-x 8 gh gh 4096 May 16 15:55 rules # cobra checker libraries
drwxrwxr-x 1 gh gh 4096 May 16 12:43 src # cobra source files
_drwxrwxr-x 1 gh gh 4096 May 16 12:43 src_app # standalone cobra checkers
'S cd src | ootional
| . . o . i i i
'S sudo make install_mac # or install_cygwin, install_linux 9P .
¢ ed . to compile from scratch
$ export PATH=S$PATH: pwd'/bin_mac # or bin_cygwin, bin_linux

S cobra —configure ‘pwd /rules

https://github.com/nimble-code/Cobra

getting started

manual pages are all online

http://spinroot.com/cobra
Cobra Static Code Analyzer

about Rapers anpages downloads

Cobra is a structural source code analyzer, fast enough that it can be used
interactively. The tool prototype (Version 1.0) was developed at NASA's
Jet Propulsion Laboratory late 2015, and released for general distribution
about a year later.

Versions 2 and 3 of the tool are extended versions that can handle
interactive analyses of code bases with up to millions of lines of code,
while supporting a significantly richer online query scripting language. It
also comes with multi-core support for many types of queries, including a
new set of cyber-security related checks.

Starting with Version 3, the Cobra code is distributed in open source form
at github.com/nimble-code.

Cobra can analyze C, C++, Ada, and Python, and can relatively easily be
retargeted for other languages. The distribution includes sample query
libraries and scripts.

For bug reports and additional information:
gholzmann atsign acm dot org

getting started

all manual pages are online

http://spinroot.com/cobra/manual.html

COBRA Reference Manual
Code Browser and Analysis Tool

Principle of Operation

Cobra uses a lexical analyzer to scan in the source code in the files given as
arguments on the command-line. It then builds a data structure that can be
used for querying that source code, either interactively or with predefined
scripts.

The internal data structure dat Cobra builds is a basic linked list of lexical
tokens, annotated with some basic information and links to other tokens, for
instance to identify matching pairs of parentheses, brackets and braces. The
tool does not attempt to parse the code, which means that it can handle a
broad range of possible inputs. Despite the simplicity of the data structure,
the tool can be remarkably powerful in quickly locating complex patterns in a
code base to assist in peer review, code development, or structural code
analysis.

There are several ways to write queries. You can use: /

o Interactive queries (overview below, or see the index),
o Inline programs (described separately),
o Standalone checkers (described separately).

Interactive queries are written in a simple command language that can
support the most frequent types of searches. When more complex queries
need to be handled, requiring anything other than a sequential scan of the

getting started

all manual pages are online

http://spinroot.com/cobra/commands/index.html

Cobra Command Overview

Commands with short-hand:

a append a source file

b move marks back one token
B browse a source file (cf V)
(colon) execute a named script
contains: query a range
display

. (dot) read a command file

e extend match

E list of open files

G grep in source files

? help

h command history

print something

inspect lexical tokens

|[o N (o B

~

-m mark tokens

Commands without short-hand:

cfg cfg
context context
CpRR preprocessing

def...end define named scripts
default default

fcg fcg

fcts fcts

ff ff

ft ft

map map

ncore set nr of cores to use

disable window popups for display
commands (default)

%{...%} inline programs

pat pattern token expression
pe same as pat

re regular token expression

getting started

all manual pages are online .
Pag http://spinroot.com/cobra/commands/mark.html

Cobra Interactive Query Language mark

NAME
mark — mark tokens if they match one or two patterns

SYNTAX

m[ark] [qualifier]* pattern [pattern2]
pattern: string | @string | /re | (expr)
qualifier: ir | no | &

DESCRIPTION

If used without qualifiers, the mark command can only add additional marks, but not remove
them. The qualifiers can be used to restrict an existing set of marks to a subset.

A pattern can be one of the following:

a string (without quotes) to match the token text precisely,
a token type (when prefixed with a @ symbol),

a regular expression (when preceded by a / symbol), or

a pattern expression (when enclosed in round braces).

A qualifier is one of the three terms ir, no, or &. Qualifiers can be escaped as \no, \&, or \ir if
a literal match is intended, as can the / that would otherwise identify a regular expression, or

a rnnd hrara (that wninld athanasicea indicata a nattarn avnraccinn

getting started

predefined query libraries

try, for instance:
S cobra —f basic *.c

or for summary output:
S cobra —terse —f basic *.c

$ cd $SCOBRA/rules

$ 1ls -1

total 60

drwxr-xr-x+
drwxr-xr-x+
drwxr-xr-x+
drwxr-xr-x+
drwxr-xr-x+
drwxr-xr-x+
drwxr-xr-x+

RR R RRR

=

gh None
gh None
gh None
gh None
gh None
gh None
gh None

O OO0 O0O0OO0OOo

$ 1ls -1 main/*.cobra

total 89

-rwxXr-xr-x+
-rwxXr-xr-x+
-rwxXr-xr-x+
-rwxXr-xr-x+
-rwxXr-xr-x+
-rwxXr-xr-x+
-rwxXr-xr-x+
- rwXr-xXr-x+
- rwXr-xXr-x+
- rwXr-xXr-x+
- rwXr-xXr-x+
- rwXr-xXr-x+
- rwXr-xXr-x+

RFRRERRRERRPRRERRRBRRRBRR

USER None
USER None
USER None
USER None
USER None
USER None
USER None
USER None
USER None
USER None
USER None
USER None
USER None

May
Oct
May
Oct
Oct
Jun
Mar

1017
3513
21
793
2490
4004
589
714
725
658
501
1008
585

11
11

61
11
11
11
20 1

May
May
May
Apr
May
May
May
May
May
May
May
May
May

6:31
2018
7:16
2018
2018
4:18
5:49

12
13

20
13
15
12
12
12
12
12
31

6

cwe
jpl

main

misra
pedantic

play
stats

2017
2017
17:16
2017
2017
2017
2017
2017
2017
2017
2017
09:02
17:09

basic.cobra
binop.cobra
cwe.cobra
extern.cobra
iridex.cobra
jpl.cobra
metrics.cobra
misral997.cobra
misra2004.cobra
misra20l12.cobra
pl0.cobra
reverse null.cobra
stats.cobra

getting started

languages supported

* Cobrais language neutral, which means that:
* it can be retargeted to a broad range of languages, by
providing it with the relevant set of lexical tokens types
* the defaultis C, predefined alternatives include:
S cobra —-Ada ...
S cobra —Java ...
S cobra —C++ ...
S cobra —Python ...
e other languages can be added by using the map command
(discussed in Part 3 of this tutorial)
* to see all currently recognized cobra command-line flags:
S cobra --

13

